On Contraction of Lie Algebra Representations

U. Cattaneo¹* and W. Wreszinski²**

¹ Institut de Physique, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland

² Seminar für theoretische Physik, ETH Hönggerberg, CH-8093 Zürich, Switzerland

Abstract. Given a net (g_i) of finite-dimensional real Lie algebras contracting into a Lie algebra \hat{g} , a representation $\hat{\pi}_J$ of \hat{g} is constructed explicitly as "limit" of a net (π_i) of representations, each π_i being a representation of g_i on a complex Hilbert space \mathfrak{H}_i . Conditions are imposed on the net (π_i) implying that the carrier space of $\hat{\pi}_J$ contain a $\hat{\pi}_J(\hat{g})$ -stable set of vectors which are analytic for all $\hat{\pi}_J(g)$ ($g \in \mathscr{G}$), where \mathscr{G} is a basis of \hat{g} . As a corollary, the corresponding result for contractions of representations of simply connected finitedimensional real Lie groups is derived.

I. Introduction

In this note, we present a theory of contraction of nets of Lie algebra representations. Let J be a directed system (usually a subset of \mathbf{R} with the induced ordering) and, for each $i \in J$, let π , be a representation of a finite-dimensional real Lie algebra g_i on a complex Hilbert space \mathfrak{H}_i . Suppose that, in addition, every g_i is isomorphic to a reference Lie algebra g which is "contracting into g" in a precise sense reviewed in Sect. II.2. We define and investigate a representation $\hat{\pi}_I$ of the contracted Lie algebra \hat{g} whose carrier space is constructed in terms of the net (\mathfrak{H}_{0}). The adopted definition permits to give the operators of $\hat{\pi}_{T}$ directly, without appealing to matrix elements, in a way which seems naturally suited to the problem considered. Since the theory of Lie algebra contraction is rooted in a notion of limit, which is responsible for the fact that \mathfrak{q} and $\hat{\mathfrak{q}}$ are not, in general, isomorphic, the final space cannot be defined in a "canonical" way [for instance, as the Hilbert sum or as a tensor product of the family (\mathfrak{H}) . Our definition is rather more similar in spirit to Trotter's definition of a Banach space approximated by a sequence of Banach spaces ([1], Sect. 2), with the main difference that Trotter presupposes knowledge of the final space.

^{*} Supported by the Swiss National Science Foundation

^{**} Present address : Instituto de Física, Universidade de São Paulo, São Paulo, Brazil

More precisely, the paper is organized as follows. In Sect. II.1, we define the "limit" \mathfrak{H}_{J} (resp. A_{J}^{F}) of a net (\mathfrak{H}_{J}) [resp. (A_{J})] of complex Hilbert spaces [resp. of operators in (\mathfrak{H}) indexed by a directed system J. We further provide conditions sufficient to assure the nontriviality of the operator A_I^F in \mathfrak{H}_I (Proposition 1). In Proposition 2, conditions are imposed, for each $i \in J$, on the action of an operator A_i on a set \mathfrak{S}_i of vectors of \mathfrak{H}_i in order that the net (A_i) should define a nontrivial operator A_J^F in \mathfrak{H}_J and that the linear span of the "limit vectors" of the net (\mathfrak{S}_i) should be a set of analytic vectors for A_I^F . In Sect. II.2, we remind the notion of contraction of a net (g_i) of finite-dimensional real Lie algebras into a Lie algebra \hat{g} [2–5]. We also introduce the concept of a contracting net (π_i) of representations of (\mathfrak{g}_{n}) on (\mathfrak{H}_{n}) and, in Proposition 3, we prove that a contracting net (π_{n}) always defines a representation $\hat{\pi}_{I}$ of \hat{g} . In Proposition 4, we show the existence of $\hat{\pi}_{I}$ defined by a net (π_i) satisfying conditions which are essentially borrowed from the assumptions of Proposition 2. Moreover, we prove that there exists a $\hat{\pi}_{I}(\hat{g})$ -stable set of vectors which are analytic for all $\hat{\pi}_{I}(g)$ with g belonging to an appropriate basis of $\hat{\mathfrak{g}}$. From this it follows that our assertion on the existence of $\hat{\pi}_{J}$ in Proposition 4 has a counterpart in a result on Lie group representations. This is stated in a corollary at the end of Sect. II.2.

In what follows, J will always denote a directed system and every net considered in the present paper will be indexed by J; we shall always write (\mathfrak{H}_i) , (A_i) ,... short for $(\mathfrak{H}_i)_{i\in J}, (A_i)_{i\in J}, \ldots$ The symbol D(A) will denote the domain of a (bounded or unbounded linear) operator A and, given a subset D of a Hilbert space \mathfrak{H} , $\mathfrak{sp}(D)$ will stand for the linear span of D in \mathfrak{H} .

II. Contraction of Representations

II.1. Hilbert Spaces of Equivalence Classes of Convergent Nets

For each $i \in J$, let \mathfrak{H}_i be a complex Hilbert space and let $(\cdot | \cdot)_i$ be the inner multiplication on \mathfrak{H}_i . We say that an element (ϕ_i) of the product vector space $\prod \mathfrak{H}_i$.

of the family (\mathfrak{H}_i) is *convergent* if the net $(\|\phi_i\|_i)$ converges in **R**. Let \mathscr{H}_J be the vector subspace of all convergent nets $(\phi_i) \in \prod_i \mathfrak{H}_i$ equipped with the positive Hermitian form $(\cdot | \cdot)_J$ defined by

$$((\phi_{i})|(\phi_{i}'))_{J} = \lim (\phi_{i}|\phi_{i}')_{i} . \tag{II.1}$$

We note that (II.1) is meaningful by reason of the polarization identity. If \mathscr{J} is the vector subspace of all nets $(\phi_i) \in \mathscr{H}_J$ such that $\|(\phi_i)\|_J = 0$, we define a Hilbert space \mathfrak{H}_J as the completion of the quotient vector space $\mathscr{H}_J/\mathscr{J}$ endowed with the extended quotient form which we shall also write $(\cdot | \cdot)_J$.

We shall denote by $[\phi_i], [\psi_i], \ldots$, respectively, the equivalence classes modulo \mathscr{J} of the elements $(\phi_i), (\psi_i), \ldots$ of \mathscr{H}_J . If *D* is a subset of \mathscr{H}_J , the symbol [D] will stand for the subset of all $[\phi_i] \in \mathfrak{H}_J$ with $(\phi_i) \in D$.

Notice that if $(\phi_i) \in \mathcal{H}_J$ and if (γ_i) is a net of complex numbers converging to γ in **C**, then $[\gamma_i \phi_i] = \gamma [\phi_i]$.

Remark 1. If there exists a complex Hilbert space \mathfrak{H} such that the net (\mathfrak{H}_i) satisfies $\mathfrak{H}_i = \mathfrak{H}$ for all $i \in J$, then the mapping $\alpha : \phi \mapsto [\phi_i]$ with $\phi_i = \phi$ for all $i \in J$ is a closed

Contraction of Lie Algebra Representations

injective homomorphism of \mathfrak{H} into \mathfrak{H}_J . However, in general, $\alpha(\mathfrak{H})$ is a *proper* subspace of \mathfrak{H}_J . For instance, if $J = \mathbb{N}$ and \mathfrak{H} is separable with an orthonormal basis $\{\phi^{(n)}\}_{n \in \mathbb{N}}$, then the element $[\phi_n]$ of \mathfrak{H}_J defined by $\phi_n = \phi^{(n)}$ $(n \in \mathbb{N})$ is orthogonal to $\alpha(\mathfrak{H})$.

A net of operators $in(\mathfrak{H}_i)$ is a family (A_i) of (linear) operators, where every A_i is an operator in \mathfrak{H}_i . Let $D_J(A_i)$ be the vector subspace of all $(\phi_i) \in \mathscr{H}_J$, with $\phi_i \in D(A_i)$ for all $i \in J$, such that the net $(A_i\phi_i)$ is convergent and, given an arbitrary vector subspace F of $D_J(A_i)$, let $D_u^F(A_i)$ be the vector subspace of all $(\phi_i) \in F$ such that we have $[A_i\phi_i] = [A_i\phi'_i]$ whenever (ϕ'_i) is an element of F in the equivalence class of (ϕ_i) modulo \mathscr{I} . Then we define an operator A_J^F in \mathfrak{H}_J by

$$A_J^F[\phi_i] = [A_i\phi_i] \qquad ((\phi_i) \in D_u^F(A_i)) \tag{II.2}$$

with $D(A_J^F) = [D_u^F(A_i)]$. It can happen that $D(A_J^F) = \{0\}$, i.e., that A_J^F is trivial. If F' is a vector subgade of F, then $A_J^{F'} \subseteq A_J^F$, i.e., $D(A_J^{F'}) \subseteq D(A_J^F)$ and $A_J^{F'}[\phi_i] = A_J^F[\phi_i]$ for all $[\phi_i] \in D(A_J^{F'})$ (in words: $A_J^{F'}$ is a restriction of A_J^F).

Remark 2. Even if the elements (ϕ_i) and (ϕ'_i) of \mathscr{H}_J are in the same equivalence class modulo \mathscr{I} , it can occur that $(A_i\phi_i)$ is convergent but $(A_i\phi'_i)$ is not.

Remark 3. The above definitions are related to those introduced, in another context, by Trotter [1] and Kurtz [6]. For each $i \in J$, we can define a linear mapping P_i of $\mathcal{H}_J/\mathcal{J}$ into \mathfrak{H}_i such that

 $\lim \|P_{i}[\phi_{i'}]\|_{i} = \|[\phi_{i'}]\|_{J}$

for all $(\phi_{i'}) \in \mathscr{H}_J$. But, contrarily to the corresponding Trotter's mappings, the P_i are, in general, unbounded [see however Proposition 4(v)].

Of particular importance in the sequel will be nets (A_i) of operators in (\mathfrak{H}_i) satisfying the following condition

(K) For each $i \in J$, each $\phi \in D(A_i)$, and each real (resp. imaginary) scalar λ , we have

$$\|\lambda\phi - A_i\phi\|_i \ge |\lambda| \|\phi\|_i . \tag{II.3}$$

Notice that nets of skew-symmetric (resp. symmetric) operators satisfy Condition (K), as can be checked by developing the square of the left-hand side of (II.3).

Proposition 1. Let (A_i) be a net of operators in (\mathfrak{H}_i) satisfying Condition (K). If F is a vector subspace of $D_J(A_i) \cap D_J(A_i^2)$, then $D_u^F(A_i) = F$.

Proof. Our proof is modeled on that of Kurtz's Lemma (1.1) [6]. Let (ϕ_i) , (ϕ'_i) be two elements of *F* in the same equivalence class modulo \mathscr{J} and put $(\psi_i) = (\phi_i) - (\phi'_i)$. Then, if λ is any real (resp. imaginary) scalar, we have by virtue of (II.3)

 $\lim \|\{\lambda \mathrm{Id}_{\mathfrak{H}_{i}} - A_{i}\}\{A_{i}\psi_{i} + \lambda\psi_{i}\}\|_{i} = \|[A_{i}^{2}\psi_{i}]\|_{J} \ge |\lambda|\|[A_{i}\psi_{i}]\|_{J},$

whence $[A_i \psi_i] = 0.$

Let $(A_i), (B_i)$ be two nets of operators both in (\mathfrak{H}_i) and let F be a vector subspace of $D_J(A_iB_i)$ such that $(A_i\phi_i)\in F$, $(B_i\phi_i)\in F$ whenever $(\phi_i)\in F$. Then we define an operator $(AB)_J^F$ in \mathfrak{H}_J by

$$(AB)_J^F[\phi_1] = [A_1B_1\phi_1] \qquad ((\phi_1) \in D_u^F(A_1B_1))$$

with $D((AB)_{J}^{F}) = [D_{u}^{F}(A_{i}B_{i})].$

Remark 4. If F is as in the definition of $(AB)_J^F$ and if, in addition, $D_u^F(A_i) = D_u^F(B_i) = F$, we have $D_u^F(A_iB_i) = F$ and $(AB)_J^F = A_J^F B_J^F$.

Proposition 2. Let (A_i) be a net of operators in (\mathfrak{H}_i) satisfying Condition (K), let S be a subset of \mathbf{R} , and let $\mathfrak{S}_J = \{ [\phi_i^{(s)}] \}_{s \in S}$ be a norm-bounded subset of \mathfrak{H}_J with $\phi_i^{(s)} \in D(A_i)$ for all $i \in J$ and all $s \in S$. Suppose that, for each $i \in J$ and each $s \in S$, we have

$$A_{i}\phi_{i}^{(s)} = \sum_{m=-k}^{k} c_{i,s,m}\phi_{i}^{(s+m)} , \qquad (II.4)$$

where k is a positive integer, the $c_{i,s,m}$ are complex numbers with $c_{i,s,m}=0$ whenever $s+m\notin S$, and, for any fixed pair s, m, the net $(c_{i,s,m})$ converges in **C** to $c_{s,m}$. If there exist two real numbers v and t such that $|c_{s,m}| \leq v(|s|+|t|)$ for $-k \leq m \leq k$ and all $s \in S$, then

(i) $\operatorname{sp}(\{(\phi_i^{(s)})\}_{s\in S})$ is a vector subspace of $W = \bigcap_{n\in \mathbb{N}^s} D_J(A_i^n)$.

(ii) $\operatorname{sp}(\mathfrak{S}_J)$ is a set of analytic vectors for A_J^F , where F is any vector subspace of W containing $\operatorname{sp}(\{(\phi_i^{(s)})\}_{s\in S})$.

Proof. Assertion (i) follows from (II.4). To prove (ii), we remark that we have $D_u^F(A_i^n) = D_u^F(A_i) = F$ for all $n \in \mathbb{N}^*$ by virtue of Proposition 1. Hence $\operatorname{sp}(\mathfrak{S}_J)$ is a set of \mathbb{C}^∞ -vectors for A_J^F because $(A^n)_J^F = (A_J^F)^n$ for all $n \in \mathbb{N}^*$. Now let *r* be a real number ≥ 1 such that $\|[\phi_i^{(s)}]\|_J \leq r$ for all $s \in S$. For each $n \in \mathbb{N}^*$ and each $s \in S$, we have (with $-k \leq m_i \leq k$ and $1 \leq i \leq n$)

$$\begin{split} \|(A_{J}^{r})^{n}[\phi_{\iota}^{(s)}]\|_{J} \\ &= \lim_{\iota} \left\| \sum_{m_{\iota}} c_{\iota,s,m_{1}} c_{\iota,s+m_{1},m_{2}} \cdots c_{\iota,s+m_{1}+\dots+m_{n-1},m_{n}} \phi_{\iota}^{(s+m_{1}+m_{2}+\dots+m_{n})} \right\|_{\iota} \\ &\leq \sum_{m_{\iota}} |c_{s,m_{1}}| \cdots |c_{s+m_{1}+\dots+m_{n-1},m_{n}}|r \\ &\leq (2k+1)^{n} v^{n} (|s|+|t|) (|s|+|t|+k) \cdots (|s|+|t|+(n-1)k)r \leq d^{n} n! , \end{split}$$

where *d* is some positive real number depending on *k*, *r*, *v*, and (|s| + |t|), but not on *n*. Therefore $[\phi_i^{(s)}]$ is an analytic vector for A_J^F and sp (\mathfrak{S}_J) is a set of analytic vectors for A_J^F . \Box

II.2. Contraction of Nets of Lie Algebra Representations

To begin with, let us recollect some facts about contraction of Lie algebras. In this Section, V will always stand for a *finite-dimensional real vector space*.

Let \mathfrak{M}_V be the algebraic set of all Lie multiplications on V, i.e., the set of all bilinear alternating mappings of $V \times V$ into V satisfying the Jacobi identity. Notice that, by choosing a basis of V, we can identify \mathfrak{M}_V with the set of all families of

structure constants of Lie algebras with underlying vector space V. We give \mathfrak{M}_V the topology induced by the canonical Hausdorff topology of the vector space of all bilinear alternating mappings of $V \times V$ into V. We shall denote by $\operatorname{alg}(V, \mu)$ the Lie algebra with underlying vector space V and Lie multiplication μ .

A net $(alg(V, \mu_i))$ of Lie algebras is said to be *contracting* with respect to a Lie algebra $alg(V, \mu)$ if all its elements are isomorphic to $alg(V, \mu)$ and if the net (μ_i) converges in \mathfrak{M}_V to some Lie multiplication $\hat{\mu}$. In other words, the net $(alg(V, \mu_i))$ is contracting into $alg(V, \hat{\mu})$ if there exists a net (Γ_i) of automorphisms of V such that, for each $i \in J$, the mapping Γ_i is an isomorphism of $alg(V, \mu_i)$ onto $alg(V, \mu)$ and

$$\lim \Gamma_i^{-1}(\mu(\Gamma_i(g),\Gamma_i(g'))) = \hat{\mu}(g,g')$$

for all g, g' in V. Alternatively, if we are given the net (Γ_i) , then the net (μ_i) is defined by

$$\mu_{\iota}(g,g') = \Gamma_{\iota}^{-1}(\mu(\Gamma_{\iota}(g),\Gamma_{\iota}(g'))) .$$

The Lie algebra $\operatorname{alg}(V, \hat{\mu})$ is said to be the *contracted Lie algebra* of the net $(\operatorname{alg}(V, \mu_i))$ and the operation performed is called a *contraction* (of a net of Lie algebras). By abuse of language, we shall also say that $\operatorname{alg}(V, \hat{\mu})$ is a contraction of $\operatorname{alg}(V, \mu)$. We shall call $\operatorname{alg}(V, \mu)$ the reference Lie algebra and (Γ_i) the reference net of automorphisms of V. Notice that we do not exclude the trivial case of a contracted Lie algebra isomorphic to the reference Lie algebra.

We remind that a *representation* of a Lie algebra $\mathfrak{g} = \mathfrak{alg}(V, \mu)$ on a complex Hilbert space \mathfrak{H} is an ordered pair $(\pi, D(\pi))$, where π is a mapping of \mathfrak{g} into the set of all operators in \mathfrak{H} and $D(\pi)$ is a $\pi(\mathfrak{g})$ -stable vector subspace of $\bigcap_{g \in \mathfrak{g}} D(\pi(g))$ dense in \mathfrak{H} , such that

$$\pi(\gamma g + \gamma' g')\phi = \gamma \pi(g)\phi + \gamma' \pi(g')\phi ,$$

$$(\pi(g)\pi(g') - \pi(g')\pi(g))\phi = \pi(\mu(g,g'))\phi$$

for all γ, γ' in **R**, all g, g' in g, and all $\phi \in D(\pi)$. In what follows, we shall simply say "the representation π ", tacitly understanding that $D(\pi)$, which is called the *domain* of π , is also given. By the *restriction* of π to a $\pi(g)$ -stable vector subspace D' of $D(\pi)$, we shall mean the representation π' of g on the closure of D' in \mathfrak{H} defined by $\pi'(g)|D' = \pi(g)|D'$ and with $D(\pi') = D'$. We shall denote by Env(g) the enveloping algebra of g; thus $\pi^{(\text{Env})}$ will stand for the canonical extension of π to a representation of Env(g) on \mathfrak{H} [with domain $D(\pi)$]. The representation π is said to be symmetric (resp. skew-symmetric) if $\pi(g)$ is symmetric (resp. skew-symmetric) for all $g \in g$. The meaning of "irreducibility" and "(unitary) equivalence" of Lie algebra representations should be clear.

Given a net $(g_i) = (alg(V, \mu_i))$ of Lie algebras contracting into $\hat{g} = alg(V, \hat{\mu})$ with respect to $g = alg(V, \mu)$ by means of a reference net (Γ_i) of automorphisms of V and, for each $i \in J$, a representation π_i of g_i on a complex Hilbert space \mathfrak{H}_i , let $\tilde{\pi}_i$ be the representation $\pi_i \circ \Gamma_i^{-1}$ of g on \mathfrak{H}_i . We put

$$D_J(\pi_i) = \bigcap_{x \in \operatorname{Env}(g)} D_J(\tilde{\pi}_i^{(\operatorname{Env})}(x)) ,$$

we denote by $D_{\mu}(\pi_{i})$ the vector subspace of all $(\phi_{i}) \in D_{J}(\pi_{i})$ such that we have

$$\left[\tilde{\pi}_{i}^{(\text{Env})}(x)\phi_{i}\right] = \left[\tilde{\pi}_{i}^{(\text{Env})}(x)\phi_{i}'\right]$$

for all $x \in \text{Env}(\mathfrak{g})$ whenever (ϕ'_i) is an element of $D_J(\pi_i)$ in the equivalence class of (ϕ_i) modulo \mathscr{J} , and we write $D^q_u(\pi_i)$ instead of $[D_u(\pi_i)]$. Notice that

$$D_u(\pi_i) = \bigcap_{x \in \operatorname{Env}(\mathfrak{g})} D_u^{D_J(\pi_i)}(\tilde{\pi}_i^{(\operatorname{Env})}(x)) \ .$$

A net (π_i) of representations of (\mathfrak{g}_i) on (\mathfrak{H}_i) is said to be *contracting* if $D_u(\pi_i) = D_J(\pi_i) \neq \{0\}$. In other words, (π_i) is contracting if $D_J(\pi_i) \neq \{0\}$ and

$$D_u^{D_J(\pi_i)}(\tilde{\pi}_i^{(\text{Env})}(x)) = D_J(\pi_i)$$

for all $x \in \text{Env}(g)$. For each $g \in V$, we shall denote by $\pi_J(g)$ the operator defined by (II.2) with $A_i = \pi_i(g)$ and $F = D_J(\pi_i)$. Moreover, $\hat{\pi}_J$ will stand for the mapping of V into the set of all operators in cl $(D^q_u(\pi_i))$ [the closure of $D^q_u(\pi_i)$ in \mathfrak{H}_J] obtained by restricting to $D^q_u(\pi_i)$ all the operators $\pi_J(g)$.

Remark 5. For each $g \in V$, each $(\phi_i) \in D_{\mu}(\pi_i)$, and each $(\phi'_i) \in \mathcal{H}_J$, we have

$$[\hat{\pi}_J(g)[\phi_i]|[\phi'_i]]_J = \lim (\pi_i(g)\phi_i|\phi'_i)_i$$

We can now realize as follows the proposal of Inönü and Wigner ([3], Sect. IIb) for the study of representations of contracted Lie algebras.

Proposition 3. Let $(g_i) = (alg(V, \mu_i))$ be a net of Lie algebras contracting into $\hat{g} = alg(V, \hat{\mu})$ with respect to $g = alg(V, \mu)$ by means of a reference net (Γ_i) of automorphisms of V, and let (π_i) be a contracting net of representations of (g_i) on a net (\mathfrak{H}_i) of complex Hilbert spaces. Then $\hat{\pi}_J$ is a representation of \hat{g} on $cl(D_u^q(\pi_i))$ with $D(\hat{\pi}_J) = D_u^q(\pi_i)$.

Proof. The mapping $\hat{\pi}_J$ is obviously linear. Let *n* be the dimension of *V*, let $\mathscr{G} = \{g_j\}_{1 \leq j \leq n}$ be a basis of *V*, and, for $1 \leq j, k, l \leq n$, let \hat{c}_{jk}^l (resp. $c_{(1)jk}^l$) be the structure constants of \hat{g} [resp. g_i $(l \in J)$] with respect to \mathscr{G} . By Remark 4, we have

$$\begin{aligned} &(\hat{\pi}_{J}(g_{j})\hat{\pi}_{J}(g_{k}) - \hat{\pi}_{J}(g_{k})\hat{\pi}_{J}(g_{j})) \left[\phi_{i}\right] \\ &= \left[\pi_{i}(\mu_{i}(g_{j}, g_{k}))\phi_{i}\right] = \sum_{l=1}^{n} \left[c_{(i)jk}^{l}\pi_{i}(g_{l})\phi_{i}\right] = \sum_{l=1}^{n} \hat{c}_{jk}^{l} \left[\pi_{i}(g_{l})\phi_{i}\right] \\ &= \hat{\pi}_{I}(\hat{\mu}(g_{j}, g_{k})) \left[\phi_{i}\right] \end{aligned}$$

for all pairs g_i, g_k of elements of \mathscr{G} and all $[\phi_i] \in D^q_u(\pi_i)$.

The operation performed to obtain $\hat{\pi}_J$ is called a *contraction* (of a net of Lie algebra representations).

Let \mathfrak{H} be a Hilbert space, let (\mathfrak{H}_i) be a net of Hilbert spaces, and, for each $i \in J$, let P_i be a continuous linear mapping of \mathfrak{H} into \mathfrak{H}_i . The net (\mathfrak{H}_i) is said to approximate \mathfrak{H} with respect to the net (P_i) ([1], Sect. 2) if $||P_i|| \leq 1$ for all $i \in J$ and $\lim_i ||P_i \phi||_i = ||\phi||_{\mathfrak{H}}$ for all $\phi \in \mathfrak{H}$. Then a net $(\phi_i) \in \prod_i \mathfrak{H}_i$ is (P_i) -convergent to $\phi \in \mathfrak{H}$, and we shall write $\phi = (P_i) - \lim_i \phi_i$, if $\lim_i ||\phi_i - P_i \phi||_i = 0$; a net (A_i) of operators in (\mathfrak{H}_i) is (P_i) -convergent to the operator A in \mathfrak{H} , and we shall write $A = (P_i) - \lim_i A_i$, if $A\phi = (P_i) - \lim_i A_i P_i \phi$ for all $\phi \in \mathbf{D}(A)$. Contraction of Lie Algebra Representations

Proposition 4. Let (g_i) , \hat{g} , g_i , (Γ_i) be as in Proposition 3 and let \mathscr{G} be a basis of V. For each $i \in J$, let \mathfrak{H}_i be a complex Hilbert space of dimension at most Card (**R**), let π_i be a skew-symmetric representation of g_i on \mathfrak{H}_i , let S_i be a subset of **R** such that $S_i \subseteq S_i$ whenever i' < i, and let $\{\phi_i^{(s)}\}_{s \in S_i}$ be an orthonormal basis of \mathfrak{H}_i contained in $D(\pi_i)$. Suppose that for $-k \leq m \leq k$, where k is a fixed positive integer, for each $s \in S = \bigcup_i S_i$, and each $g \in \mathscr{G}$, we have a net $(c_{i,s,m}(g))$ of complex numbers, which are 0

whenever $s \notin S_i$ or $s + m \notin S_i$, converging in **C** to $c_{s,m}(g)$. If

$$\pi_{i}(g)\phi_{i}^{(s)} = \sum_{m=-k}^{k} c_{i,s,m}(g)\phi_{i}^{(s+m)}$$
(II.5)

for all $i \in J$, all $s \in S_i$, all $g \in \mathscr{G}$, and if there exist two real numbers v(g), t(g) such that

$$|c_{s,m}(g)| \le v(g) \left(|s| + |t(g)|\right) \tag{II.6}$$

for $-k \leq m \leq k$, all $s \in S$, and all $g \in \mathscr{G}$, then (i) For each $s \in S$, the net $(\psi_i^{(s)}) \in \prod \mathfrak{H}_i$, where $\psi_i^{(s)} = \phi_i^{(s)}$ whenever $s \in S_i$ and

 $\psi_{\iota}^{(s)} = 0$ otherwise, is convergent and $\mathfrak{S}_{J} = \{ [\psi_{\iota}^{(s)}] \}_{s \in S}$ is an orthonormal system in \mathfrak{H}_{J} .

(ii) $\hat{\pi}_J$ is a skew-symmetric representation of \hat{g} on cl $(D_u^q(\pi_i))$ with $D(\hat{\pi}_J) = D_u^q(\pi_i)$.

(iii) For each $g \in \mathscr{G}$, sp (\mathfrak{S}_J) is a $\hat{\pi}_J(\hat{\mathfrak{g}})$ -stable set of analytic vectors for $\hat{\pi}_J(\hat{\mathfrak{g}})$.

(iv) The restriction $\hat{\pi}$ of $\hat{\pi}_J$ to sp (\mathfrak{S}_J) is a skew-symmetric representation of $\hat{\mathfrak{g}}$ on the closure \mathfrak{H} of sp (\mathfrak{S}_J) in \mathfrak{H}_J ; for each $g \in \mathscr{G}$ and each $s \in S$, we have

$$\hat{\pi}(g) \left[\psi_{\iota}^{(s)} \right] = \sum_{m=-k}^{k} c_{s,m}(g) \left[\psi_{\iota}^{(s+m)} \right] \,.$$

(v) The net (\mathfrak{H}_i) approximates \mathfrak{H} with respect to the net (P_i) defined in \mathfrak{S}_J by $P_i[\psi_{i'}^{(s)}] = \psi_i^{(s)} (s \in S)$ and extended to \mathfrak{H} by linearity and continuity. For each $g \in V$, we have $\hat{\pi}(g) = (P_i) - \lim \pi_i(g)$.

Proof. Assertion (i) follows at once from the remark that, by reason of the assumption on the sets S_i ($i \in J$) we have $(\psi_i^{(s)}) \in \mathscr{H}_J$ and $[\psi_i^{(s)}] \neq 0$ for all $s \in S$. Now for each $g \in V$ and each $n \in \mathbb{N}^*$, we have

 $D_u^{D_J(\pi_i)}(\pi_i(g)^n) = D_J(\pi_i)$

by virtue of Proposition 1; it follows, on account of Remark 4 and by using the Poincaré-Birkhoff-Witt theorem [7], that $D_u(\pi_i) = D_J(\pi_i)$. On the other hand, sp $(\{(\psi_i^{(s)})\}_{s\in S}) \subseteq D_J(\pi_i)$ by (II.5), so that the net (π_i) is contracting. Then Proposition 3 implies (ii), the skew-symmetry of $\hat{\pi}_J$ being a consequence of that of the π_i ($i \in J$).

Assertion (iii) follows from Proposition 2, whereas (iv) is obvious. To prove (v) it is sufficient to note that, for each $g \in \mathcal{G}$ and each $s \in S$, we have

$$P_{i}\hat{\pi}(g)[\psi_{i'}^{(s)}] = \sum_{m=-k}^{k} c_{s,m}(g)\psi_{i}^{(s+m)},$$

whence

$$\begin{split} &\lim_{\iota} \|\pi_{\iota}(g)P_{\iota}[\psi_{\iota'}^{(s)}] - P_{\iota}\hat{\pi}(g)[\psi_{\iota'}^{(s)}]\|_{\iota} \\ &\leq \sum_{m=-k}^{k} \lim_{\iota} |c_{\iota,s,m}(g) - c_{s,m}(g)| = 0 \; . \quad \Box \end{split}$$

Remark 6. By virtue of Proposition 1, Proposition 4 is still true if "skew-symmetric" is everywhere replaced by "symmetric".

Remark 7. Since the topological space \mathfrak{M}_{V} is metrizable, it is always possible to use countable index sets in the study of Lie algebra contractions. But this is, a priori, no longer the case when contractions of representations are considered.

Let G be a finite-dimensional real Lie group, let Lie (G) be its Lie algebra, and let \mathfrak{H} be a complex Hilbert space. We remind that a strongly continuous unitary representation U of G on \mathfrak{H} defines a skew-symmetric representation dU of Lie (G) on \mathfrak{H} by

$$dU(g)\phi = \lim_{t \to 0} \frac{U(\exp{(tg)})\phi - \phi}{t} \qquad (\phi \in \mathfrak{H}^{\infty}(G)),$$

where $\mathfrak{H}^{\infty}(G) = \mathbb{D}(dU)$ is the vector subspace of all $\phi \in \mathfrak{H}$ such that the mapping $x \mapsto U(x)\phi$ of *G* into \mathfrak{H} is of class \mathbb{C}^{∞} . The representation dU is called the *differential* of *U*. A skew-symmetric representation π on \mathfrak{H} of a finite-dimensional real Lie algebra g is said to be *integrable* if, for every simply connected Lie group *G* whose Lie algebra is isomorphic to g, there exist a (necessarily unique) strongly continuous unitary representation *U* of *G* on \mathfrak{H} and an isomorphism θ of g onto Lie (*G*) such that $\pi(g) \subseteq dU(\theta(g))$ for all $g \in \mathfrak{g}$.

By ([8], Theorem 1), we now have the

Corollary. Let G be a simply connected finite-dimensional real Lie group and let $g = alg(V, \mu)$ be its Lie algebra. For each $i \in J$, let U_i be a strongly continuous unitary representation of G on a complex Hilbert space \mathfrak{H}_i of dimension at most Card (**R**), let (Γ_i) be a reference net of automorphisms of V for a contraction $\hat{\mathfrak{g}}$ of \mathfrak{g} , and put $\pi_i = dU_i \circ \Gamma_i$. If $\mathscr{G}, S_i, \{\phi_i^{(s)}\}_{s \in S_i}$, and $(c_{i,s,m}(g))$ are as in Proposition 4 and if (II.5), (II.6) are satisfied, then the skew-symmetric representation $\hat{\pi}$ of $\hat{\mathfrak{g}}$ on \mathfrak{H} defined in Proposition 4(iv) is integrable.

References

- 1. Trotter, H.F.: Approximation of semi-groups of operators. Pacific J. Math. 8, 887-919 (1958)
- 2. Segal, I.E.: A class of operator algebras which are determined by groups. Duke Math. J. 18, 221–265 (1951)
- 3. Inönü, E., Wigner, E.P.: On the contraction of groups and their representations. Proc. Natl. Acad. Sci. U.S.A. **39**, 510–524 (1953)
- 4. Saletan, E.J.: Contraction of Lie groups. J. Math. Phys. 2, 1-21 (1961)
- 5. Lévy-Nahas, M.: Deformation and contraction of Lie algebras. J. Math. Phys. 8, 1211-1222 (1967)
- 6. Kurtz, T.G.: Extensions of Trotter's operator semigroup approximation theorems. J. Funct. Anal. **3**, 354–375 (1969)
- 7. Jacobson, N.: Lie algebras. New York: Interscience 1962
- Flato, M., Simon, J., Snellman, H., Sternheimer, D.: Simple facts about analytic vectors and integrability. Ann. Sci. Éc. Norm. Sup. (4ème série) 5, 423-434 (1972)

Communicated by H. Araki

Received January 5, 1979; in revised form March 23, 1979