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Abstract. We study the classical field limit of non relativistic many-boson
theories in space dimension n ̂  3, extending the results of a previous paper to
more singular interactions. We prove the expected results: when h tends to
zero, the quantum theory tends in a suitable sense to the corresponding
classical field theory, and the quantum fluctuations are governed by the
equation obtained by linearizing the quantum evolution equation around the
classical solution. These results hold uniformly in time and therefore apply to
scattering theory. The interactions considered here are so singular as to require
a change of domain in order to define the generator of the evolution of the
fluctuations, but sufficiently regular so that no energy renormalization is
needed.

1. Introduction

This is the second paper in which we study the classical field limit of non-
relativistic many-boson theories with two-body interactions in space dimension
n ̂  3. A mathematical treatment of this problem has been given previously by
Hepp [5] for suitably regular potentials and in finite time intervals. In [2] we have
extended Hepp's results to more singular potentials and to the case of infinite time
intervals (scattering theory). We refer to the introduction of [2] for a more detailed
exposition of the problem and of the results. They consist in proving that, when
ft-»0, the difference between the Heisenberg field operators and the solution of the
classical field equation is O(h112) and evolves according to the equation obtained
by linearizing the quantum evolution equation around the classical solution. In a
suitable representation of the field operators the estimates are uniform in time and
imply the convergence, when ft-»0, of suitable matrix elements of the wave
operators and of the S-matrix.

Various degrees of difficulty arise in the problem, depending on the regularity
of the interaction potential V. The role of this regularity is best understood from its
bearing on the definition and properties of the unitary group of operators U2{t, s)
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describing the evolution of the quantum fluctuations around the classical limiting
solution. In [2] we have treated the most regular case, namely when the generator
H2(t) of U2(t,s) has the same domain as Ho + N where Ho is the free hamiltonian
and N is the particle number operator. This corresponds to potentials VeL2

oc, as
far as local regularity is concerned. The present paper is devoted to the study of the
next level of singularity, where a change of domain is necessary but where H2(t)
still has the same form domain as Ho + N and no energy renormalization is
needed. This corresponds to potentials VeL^{n + 2\ For more singular in-
teractions an infinite energy renormalization for the fluctuations and possibly a
change of Hubert space will be necessary. The situation is somewhat analogous to
that encountered in relativistic quantum field theory [4].

In order to implement our program we need to control both the classical and
quantum theories. The classical theory is studied in [3] and the relevant results are
summarized in Sect. 2 of [2]. Our treatment requires the local regularity condition
F G L J 1 ^ , SO that the greater generality achieved in this paper as compared to [2]
takes place for 3 ̂  n ̂  7. In particular for these values of n our analysis covers the
case of a potential V = C\x\~y with C > 0 and 2 < y < ί -f n/2.

In order to derive the necessary estimates for the more singular potentials
considered here we need stronger regularity properties of the classical solutions
than in [2]. In addition we need a boundedness property of some operators
uniformly in h and in time (see Condition 2.1). Under a suitable stability
assumption on the potential V [see (2.46)], this property can be proved in bounded
time intervals. However for infinite time intervals it can only be reduced to time
decay estimates of the classical solutions which are likely to hold for smooth
dispersive solutions, but which we are unable to prove from first principles. In the
derivation of the main results we shall therefore keep Condition 2.1 as a technical
assumption.

This paper relies heavily on [2] and is not supposed to be readable by itself. In
particular we shall freely use the notation and results of [2]. Proofs will be
shortened or even omitted whenever similar to those in [2].

The paper is organized as follows. In Sect. 2 we study the evolution operators
both for the quantum theory and for the quantum fluctuations around the
classical solution. In Sect. 3 we proceed to the proof of the announced convergence
as h->0. The main results are stated in Proposition 3.1 for finite time intervals and
in Theorem 3.1 for infinite time intervals.

2. The Quantum Theory and the Quantum Fluctuations

In this section, we derive the properties of the quantum evolution operators W(t, s)
and W(t,s) defined by (1.25) and (1.45) of [2] and of the operators U2(t,s) and
ϋ2(t,s), defined by (1.22) and (1.41) of [2], which describe the evolution of the
quantum fluctuations. To a large extent we follow Sects. 3 and 4 of [2], with which
most definitions and notation are common. In particular, we denote by | \q the
norm in Lq = Lq{W) except for q = 2 where the subscript 2 is omitted, by jf the
boson Fock space, by 3tifN the N-particle subspace (in particular ^ =L2\ by | |Φ||
the norm of Φ in ffl and by \\\A\\\ (resp. IH^M )̂ the norm of a bounded operator A
in JP (resp. in J^N). If A is semi-bounded, we denote by Q{A) its form domain and
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by Q*{A) the dual of Q(A) where the duality is defined by the scalar product in jtf\
Throughout this section, we omit the dependence of the various operators on the
canonical operators a.

The Weyl operators are defined by (3.5) of [2] and satisfy Lemma 3.1 of [2].
The evolution operator t/(ί, s) = U(t — s) is defined by (3.14) of [2] for potentials V
satisfying (3.12) of [2]. The operators Hk(k = 2, 3, 4) are defined by (3.15)-(3.24) of
[2] for fe = 2,3 and by (1.63) of [2] for fc = 4.

We recall that if n ̂  3, if Ve Ln/2 + L00 and if v is the operator of multiplication
by V in j ^ l 9 then for any ε>0, there exists b ε > 0 such that the following inequality
holds in the sense of quadratic forms on M?

1r\Q{H0) ( Ξ H 1 ) :

\v\S-εA+bε. (2.1)

From this it follows that

where Γ2 is defined by (5.2) of [2] and kt is the momentum of the z-th particle,

+ bεN). (2.2)

In all this section, we assume that V satisfies the condition:

VeLPi + LP2 with 2n/(n + 2)^p2^p1 ^ o o . (2.3)

We recall that for any q, l^q^co, the conjugate index q is defined by 1/q+l/q
= 1.

We first derive some properties of H2(t). In the following three lemmas
(Lemmas 2.1 and 2.2 and Corollary 2.1), the time dependence of φ and of the
various operators is omitted.

Lemma 2.1. Let V satisfy (2.3), V= Vx + V2 with VteLp\ and let φeL2ΓλL2p\ Then
1) N~1G and N~1K are bounded and satisfy

IIIΛΓ^GIII^IIgll^Co, (2.4)

lllΛΓ'^lll^lllfclllt^Co, (2.5)

where

WφWhr ( 2 6 )

2) Corresponding to the decomposition V=V1 + V2, let L = L1+L2. Let 0 ^ α t

^Min(p.— 1,1) for i= 1, 2, and define qt by

pι. = l for z = l , 2 . (2.7)

Then

^ή for i = l , 2 , (2.8)
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where

ct = ( ί M W +a<*\φ\2)}112 S II ̂  +^)/2 IIφ\\l. (2.9)

3) Let in addition (l—(xi)n/2^pifor i = l , 2 . For any ε>0, let bε be such that

fr^-'^-εΔ + b, for i = l , 2 . (2.10)

Let ωeC, |ω| = l. Then

(2.11)

Proo/ 1) The first inequalities in (2.4) and (2.5) are obvious, while the last ones with
(2.6) follow from Holder's and Young's inequalities.

2) Let Ψ in Jtf have finitely many particles and smooth wave functions. Let
X = (xv...,xN). Then for O ^ α ^ l ,

by Schwarz's inequality,

(2.12)

For 1 + α ^ p the quantity c is estimated as in (2.9) by the use of Holder's and
Young's inequalities. Note that q. ( ΐ=l,2) lies in the allowed interval [2, 2p 2].

3) Note first that the condition p1 ^p2^2n/(n + 2) ensures that the conditions
1-fα rgp; and (1 — ocί)n/2^pi are compatible, while the latter ensures that
\Vi\

1~<XιeLnl2 + Lco and therefore that for any ε>0, there exists bε such that (2.10)
holds. It then follows from (2.2, 8) that

+ bεN). (2.13)

From the inequality

HN + 2)\ ωLi^Nl p θ (2.14)

we then obtain

ωLi + ώLf S foiN + 2) + %c JV) - 1 LfL,

^φH0 + (bε+l)N + 2) (2.15)

from which (2.11) follows immediately. Q.E.D.
Lemma 2.1 has immediate consequences for the operator H2.

Corollary 2.1. Let V satisfy (2.3) and φeL2r\L2p2. Then the operator H2 defined by
(3!5)-(3.21) of [2] is bounded from Q(H0+N) to Q*(H0 + N) and norm continuous
as a function of φ in L2nL2?2. Furthermore, there exists a constant c3 ^ 1 depending
on V but uniform in φ for φ in a bounded set of L2nL2p2 such that

(2.16)
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Proof. We prove only the inequality (2.16). By (2.11), there exists a constant b
depending on V but uniform in φ as stated above such that

(2.17)

The estimates (24), (25), and (217) imply

(218)

from which (2.16) follows after choosing c3 such that c 3^Max(l,2b-h4c 0).
Q.E.D.

For the estimates of the next section, we shall make essential use of the
regularization operator Pvκ defined in Sect. 3 of [2]. Pvκ is bounded from Q*(#o)
to 2tf (because |fc|ρ(fc) is bounded) and satisfies the following property:

Lemma 2.2. Let V satisfy (2.3) and let φeL2. Then PVKH^ and Pv κtf4 are bounded
operators from Q(H0) to jf, and the former is norm continuous as a function of
φeL2.

Proof We first prove boundedness. Because of the particle number cut off, it is
sufficient to prove that RκA39 RKA% and RKH4 are bounded from ^2nQ{H0\
^i^Q(H0) and J^2

nQ{H0) respectively to Jf. One then sees easily that it is
sufficient to prove that the one particle operator ρ^Vy is bounded from H1 to L2,
where Vy is the operator of multiplication by the function Vy{x) = V(x - y) uniformly
with respect to y. We factor ρ^Vy as follows:

^ + 2 ^ } . (2.19)

Now

and

Since ρeLιr\L2, the first factor in the R.H.S. of (2.19) is bounded in L2 by Holder's
and Young's inequalities, while the second factor is bounded from Hί to L2 by
Holder's and Sobolev's inequalities, or equivalently by (2.1). Uniformity in y is
immediate. This proves boundedness. Continuity follows from the fact that A% is
linear in φ. Q.E.D.

We are now in a position to prove a regularized version of the differentiability
of W(t,s)9 which is defined as in Sect. 3 of [2].

Proposition 2.1. Let V satisfy (2.3) and v_eLMax(Pun'2) + Lni\ let
and satisfy the Eq. (2.9) o/[2]. Then for all vectors ΨeJ^ such that W{t,s)Ψe^(R,
Q{H0)) as a function of t for fixed s (of which there exists a dense set), PvκW{t, s)Ψ is
differentiable in Jf with derivative given by

W(t,s)Ψ. (2.20)
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Proof. For Ψ in the dense set Sf defined by (3.46) of [2], W(t9 s)Ψe<g(JR, Q(H0)). For
such Ψ9 the proof is identical with that of Proposition 3.1 of [2]. Therefore for

Pvκ(W(t\ s)- W(t9 s))Ψ=- i)dτPvκB(τ)W(τ, s)Ψ, (2.21)
ί

where

B(τ) = H2(τ) -Ho + hll2H3(τ) + hH4(τ). (2.22)

By Corollary 2.1 and Lemma 2.2, PvκB(τ) is bounded and norm continuous in τ
from Q(H0) to Jf.

We now take Ψ such that W(t9s)Ψe(g(lR9 Q(H0)) and prove (2.21) for this Ψ by
a limiting procedure. Since U0(s) and C(φh(s)) are fixed unitary operators and since
U0(t) and C(φh(t)) are bounded and strongly continuous in t as operators in Q(H0),
it is sufficient to show that any ΦeJtf such that [7(ί)Φ e#(!R, Q{H0)) can be
approximated by a sequence Φne^(H)n^0(N) in the sense that U{t)Φn tends to
U(t)Φ in β(H 0) uniformly in compact intervals. Since N commutes with both Ho

and H, one can first approximate Φ in this sense by vectors in ^0{N) and therefore
restrict one's attention to the case where Φe^0(N). For such a Φ, one can take

I In

Φn = n j dτC7(τ)Φ
o

as a strong Riemann integral in Q(H0). Then

Φ) = n j dτ{U(t + τ)-U(t))Φo

and therefore

\\U(t)(Φn-Φ)\\QiHo)S Sup ||l/(ί + τ)-t/(ί))Φ||Q (H0 )

Since U(t)Φe%>(lR,ζ)(H0)\ it is uniformly continuous on compact intervals. This
proves the required convergence, and therefore (2.21) for all Ψ such that
W(t,s)Ψe^(JR, Q(H0)). Differentiability follows from (2.21). Q.E.D.

In order to prove our main result in Sect. 3, we shall need an additional
property of W(t, s) which we state in the form of the following condition.

Condition 2.1. 1) There exists a fixed (i.e., independent oft, 5, and h) dense set Q)ι in
Jf such that for any ΨeΘJor any seIR, W{ ,s)Ψe<g{Ά,Q(H0 + N)) and W(t,s)Ψ is
bounded in Q(H0 + N) uniformly with respect to h for 0<h^ho for some h0

depending only on V, and uniformly with respect to t, s in compact intervals.
2) In addition, for any Ψe@ί9 W{t,s)Ψ is bounded in Q(H0 + N) uniformly with

respect to hfor 0<h^ho and uniformly with respect to ί, 5 in 1R+ (resp. 1R", resp.

JR;.

[The uniformity in ί, s is relevant to ensure the uniformity in t, s of the ft->0
limit in the corresponding ranges of ί, 5 and the existence of the ft->0 limit for the
wave operators Ω+ (resp. the wave operator Ω_, resp. the S-matrix).]
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Under the additional assumption that the potential be stable in a suitable sense
(see Condition 2.2 below), we shall prove part 1) of Condition 2.1. However, we
shall not be able to prove part 2) from first principles, and we shall only reduce it
to some decay properties of the classical solution φ(t). This will be done at the end
of this section after the study of the quantum fluctuations, to which we turn now.

In order to define the unitary groups U2{t,s) and U2{t9s) we need to solve the
evolution Eqs. (1.22) and (1.42) of [2] with time dependent generators H2(t) and
H2(t)-H0. For the regular potentials considered in [2], the perturbation H2-H0

was bounded by JV, and it was therefore simpler to disregard U2(t,s) and consider
U2(t, s) directly. Since here H2 - Ho is only bounded by Ho + iV (cf. Corollary 2.1),
this is no longer the case, and we shall therefore study U2(t, s) first. The existence
and relevant properties of U2(t, s) will follow immediately from those of U2(t, s).
We shall make extensive use of the spaces jf7δ defined for — 1 ̂  δ ^ 1 by
jeδ = Q({H0 + N)δ) if δ^O and by Jίrδ = Q*((H0 + N)W) if <$gθ. Note that these
spaces are different from those with the same name used in [2].

Proposition 2.2. Let V satisfy (2.3) and let φe^^(JR,L2nL2p2). Then there exists a
unique group of operators U2(t9s) satisfying the following properties:

1) For each δe[— 1, + 1 ] , U2(t,s) is bounded and strongly continuous with
respect to ί, 5 in J4?δ.

2) U2(t,s) is unitary in Jtf.
3) U2(t,s) is strongly differentiable from J^1 to 2tf~x and

ijtU2(t9s) = H2(t)U2(t,s). (2.23)

Proof This is a special case of a general result of Kato [6], (Theorems 4.1, 5.1, 5.2,
and Remarks 5.3 and 5.4), where we take X = 2tf~1 and Y=3tfι. The proof is
greatly simplified by the fact that we deal with a scale of Hubert sp^cos, and we
restrict our attention to the verification of the main assumptions. That Jf ι and
Jf7"1 are if2(£)-admissible for each t and that H2(t) is norm continuous in t from
Jf1 to iff ~x follows from Corollary 2.1, from the estimate (2.26) below and from
Proposition 2 of [7].

There remains to be proved that H2(t) is stable in j f ι and/or in J'f"1 (one
follows from the other by duality), or equivalently that the Kato approximants
with stepwise constant generator are uniformly bounded in Jf 1 and/or in J f ~1 for
ί, 5 in a compact interval. Let therefore / be a compact interval and choose the
constant c 3 such that (2.16) holds for all tel. Let ,42(ί) = i/2(ί)-f-c3(iV+l) and
define the family of equivalent norms in J^"1

(2.24)

From (2.11) with ε = l and from (2.16), it follows that

±iLH2(t\A2{t)l=±2ic3(L(t)-L*{t)) (2.25)

(2.26)
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where

c4(ί) = (c3 + F1 + l)(c1(ί) + c2(ί)) (2.27)

and cf(ί), z = l, 2, are defined and estimated by (2.9).
Furthermore, from estimates similar to those in Lemma 2.1, it follows that

A2(t) is norm differentiate from Jf 1 to Jf7"1 and that its time derivative satisfies
the estimate

± A2(t) £ 4c'0(t)N + (c\(t) + cf

2(ή) (εH0 + (be + ί)N + 2), (2.28)

where

c ό W = Σ I I ^ H p , l l φ l l 2 Λ I I Φ I I 2 Λ . (2-29)
£ = 1 , 2

Φ)=\\Vt\\< p\
+*>)l2\\φ\\Jφ\\tt

 f o r i = 1 ' 2 , (2.30)

where q. is defined by (2.7) and φ is the time derivative of φ. From (2.28) with ε = 1
and (2.16), we obtain

t), (2.31)

where

cs(ί) = 4c'0(t) + Φ1 + 2) (c'S) + c'2(ί)) (2.32)

and we have used the fact that c3 S: 1. Using (2.26) and (2.31), one easily shows by
differentiation and integration that for all ΦeM"x and all s, tel,

| |exp(iτH2(ί))Φ|| tgexp{|τ|c4(ί))||Φ|| t, (2.33)

'\dτc5{τ)

By Proposition 3.4 of [6], these estimates imply that H2(t) is stable in j f x.
Stability in Jf 1 follows by duality. Q.E.D.

As a by-product of the proof of Proposition 2.2, we obtain norm estimates for

Corollary 2.2. Let Vand φ satisfy the assumptions of Proposition 2.2 and choose c3

such that (2.16) holds for all t in some interval I o / R Then

1) For any Φ in ^~ι,for any ί, s in /,

\dτc(τ) (2-35)

where

c(τ) = c4(τ) + c5(τ). (2.36)

2) Define the norms

± 1 / 2 Φ | | (2.37)
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i n / 1 1 and denote by ||| ||| ± the corresponding operator norms inJtf?±ί. Then for all
t, 5 in I

]dτc(τ) (2.38)

Since U0(t) is a unitary group both in Jf 1 and Jtf \ [equipped with the norms
(2.37)], the properties of U2(t, s) imply similar properties of U2(t,s)

Corollary 2.3. Under the assumptions of Proposition 2.2, U2(t, s) satisfies all the
properties stated for U2(t,s) in that proposition, with however (2.23) replaced by

i j t U2(t, s) = (H2(t)- H0)ϋ2(t, s). (2.39)

Furthermore U2(t,s) satisfies the estimate (cfi (2.38)y>

/1 \

(2.40)\dτc{τ)
s

We next study the behaviour of U2(t,s) as t and/or s tend to ± oo.

Proposition 2.3. Let V satisfy (2.3), let φe^1{lR,L2nL2p2), let φ be bounded in
L2nL2p2 uniformly in t for ί e R + (resp. R~, resp. RJ, and let the functions φ)
(i = l,2) defined by (2.9) and φ) (z = 0,1,2) defined by (2.29) and (2.30) be integrable
at + oo (resp. at — oo, resp. in RJ. Then

1) U2(t, s) and U2(t, s) are bounded inJ4f±1 uniformly in t, sfor t, s in R + (resp. in
R~, resp. inWL).

2) Let in addition co(t) defined by (2.6) be integrable at + oo (resp. at — oo, resp.
in RJ. Then, when t and/or s tend to + oo (resp. to — oo, resp. to ± oo), U2(t,s) has
norm limits as an operator from J^1 to J^~ι and therefore strong limits as an
operator in J/?δ for - 1 <Ξ δ ^ 1.

Proof. By the boundedness property of φ and Corollary 2.1, one can choose the
constant c3 such that (2.16) holds for all t in R + (resp. R", resp. R). Part 1) then
follows from (2.38), (2.40), (2.36), (2.27), and (2.32). Part 2) is proved in the same
way as part 2) of Proposition 4.2 of [2]. Q.E.D.

We conclude this section by analyzing Condition 2.1 for stable potentials (see
below), proving part 1) and reducing part 2) to decay estimates on the classical
solution φ. This requires first some estimates on H3(t) stated in the next lemma
(where the time dependence is omitted for brevity).

Lemma 2.3. Let Vsatisfy (2.3) and let φeL2c\L2p2. Then A3 (defined by (3.24) of
[2]j satisfies the estimate

A*A3S2c0(N-ϊ)Γ2(\V\), (2.41)

where c0 is defined by (2.6). Furthermore, for any ωe(C, |ω| = l, and any AeR,

hιl2(ωA3 + ώA*) ^ 2λc0N + λ~ ιhF2{\ V\). (2.42)
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Proof. Let Φ be a vector in Jί? with finitely many particles and smooth wave
functions. Let X = (xί, ...,xN). Then

ldx Σ φ(x)V(x-Xi)Φ(X,x)

so that

•NSupμy\φ(y)\z\V(x-y)\
X

(2.43)

by Schwarz's inequality. This proves (2.41). In order to prove (2.42), we note that
for all

((λN)ll2-ώ(λ(N-l)Γ1/2A*)((λN)ll2-ωA3(λ(N-l)y1/2)^0 (2.44)

and therefore

ojAi + ώA^λN + λ-^N-iyiA^Ai, (2.45)

from which (2.42) follows by the use of (2.41) and the replacement of λ by
2λcoh~112. Q.E.D.

We now restrict our attention to potentials satisfying the following stability
condition:

Condition 2.2. (Stability of the potential.) There exist η >0, β0 ^ 0 and βx^0 such
that the following inequality holds in the sense of quadratic forms

Γ2{V-η\V\) + β0H0 + β1N^O. (2.46)

This condition is closely related to the stability condition used in Statistical
Mechanics ([8], pp. 33-40). In particular, if the modified potential V—η\V\
obtained from the original one V by slightly reducing its positive part and slightly
increasing its negative part is stable in the sense of [8], Condition 2.2 is satisfied
(with 0O = O). We refer to [8] for the description of a large class of potentials
satisfying this condition. Positive potentials obviously satisfy Condition 2.2 (with

00=01=0).
For potentials satisfying Condition 2.2, Lemma 2.3 implies the following result.

Lemma 2.4. Let Vsatisfy (2.3) and Condition 2.2, let h^h0 = Mm (1, ( ^ J " 1 ) , and
let φeL2oL2p2. Then the following inequalities hold in the sense of quadratic forms

) , (2.47)

(2.48)

where A^t) is defined by

(2.49)
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and c8 is a constant depending only on c3 and on the constants η, β0, and βv One can
take for instance

Proof The result follows by an elementary computation from (2.42) with various
choices of λ and ω = ώ = + 1 , from Condition 2.2, from (2.16) and from the fact that
c 3 ^ 4 c 0 . Q.E.D.

We can now prove the following result.

Proposition 2.4. Let V satisfy (2.3) and Condition 2.2, let h0 = Min(l, (4/?0)~ι) and let
^R, L2nL2β2). Then

1) W(t,s) is bounded and strongly continuous in t at fixed s from Q(H0 + h0H4

+ 2c8(iV+l)) to Q(H0 + N) and W(t,s) and W(t,s) are bounded and strongly
continuous in t for fixed s from Q((NH0)

{n+2)l*+ N2) to Q(H0 + N). Boundedness is
uniform with respect to h for 0<h^ho and with respect to t and s in compact
intervals.

2) Let in addition φ be bounded in L2nL2p2 uniformly in t for ίeIR+ (resp. IR~,
resp. IRJ, and let the functions ct(t\ i= 1, 2, defined by (2.9), c (ί), ΐ = 0, 1, 2, defined by
(2.29) and (2.30), co(ί)1 / 2 defined by (2.6) and φ)112 defined by

Φ)=Σ\\Vi\\pι\\Φ\\22P~ι (2.50)
i

be integrable at + GO (resp. at — GO, resp. in IR̂ ). Then the boundedness properties of
1) hold uniformly for t, seIR+ (resp. IR~, resp. RJ.

Note that part 1) [resp. part 2)] of Proposition (2.4) implies part 1) [resp. part
2)] of Condition 2.1 with ^ 1 = β((NJΪ0)

(II 2 ) / 4 2

Proof. We prove only the statements relative to W(t, s), from which those relative
to W(t, s) follow immediately. Let / be an interval (possibly unbounded) of the real
line and let us choose the constant c8 such that (2.47) and (2.48) hold for all tel.
This is always possible if φ(t) is bounded in L2nL2^2 uniformly for tel. The case
where I is bounded (resp. unbounded) is relevant for the proof of part 1) [resp. part
2)]. Let now h be fixed and define Ax(t) by (2.49). From (2.11) with ε - 1 and (2.42)
with λ = co(t)~1/2 it follows that

= ±ics(2(L(t)-L*(t)) + A3(t)-A*(ή) (2.51)

c2(ί))(ff0

(2.52)

where

! ^ £)1/2) (2.53)
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Furthermore ^ ( ί ) is norm differentiable from Q(H0 + hH^ + c8(N + l)) to Q*(H0

+ c8(N + l)) and its time derivative satisfies the estimate

) , (2.54)

where

01 / 2) (2.55)

and c5(t) and c'^t) are defined by (2.32) and (2.50) respectively.
Let now s be fixed and define

92 = {ΨeJί?: C(φn(s))Ψe@(H)n@(N)}. (2.56)

By Lemma 3.1 of [2], W(t,s)Ψ is strongly differentiable in Jt? for all Ψ in 0 2 .
For such Ψ, one can then estimate by differentiation and integration

•expi jdτ(c6(τ) + c7( (2.57)

This estimate extends by continuity to all Ψ in Q*{H0 + hH4 + c8(N+ 1)). By
duality and use of (2.48), it implies the estimate

(2.58)]dτ(c6(τ) +

for all fte(0,fto] and all ί, s in I. The boundedness properties of W{t,s) from
Q(H0 + h0HA -f 2c8(iV +1)) to Q(H0 + N) both in parts 1) and 2), follow immediate-
ly from the estimate (2.58). Strong continuity follows from weak continuity and the
continuity of the norm, which in turns follows from similar estimates. Finally,
boundedness and strong continuity of W(t9s) from Q((iVH0)

("+2)/4 + iV2) to
Q{H0 + N) follow from the preceding results and the inequality

# 4 S β2((NH0)
{n+2)l4 + N2), (2.59)

where β2 is a constant depending only on V. (2.59) follows from Sobolev's
inequality and elementary estimates. Q.E.D.

The integrability conditions of cf(ί), i = l,2, and cj(ί), ι' = 0,1,2, that appear in
Proposition 2.4 are the same as in Proposition 2.3. For dispersive classical
solutions with suitably regular initial data, they follow from our general theory of
the classical equation [3]. This is not the case, however, for the integrability
conditions of co(ί) 1 / 2 and c'ό(ί)1/2. These conditions are equivalent to the in-
tegrability of ||φ(ί)ll2p a n d IIΦWIUpv z = 1' 2 F ° r solutions of the free equation with
suitable initial data, they are satisfied provided p 2 = P i <w/2, a condition that we
shall require anyway in order to control the ft-»0 limit in Sect. 3. Since dispersive
solutions of the classical equation tend to behave asymptotically in time like



Classical Field Limit. II 57

solutions of the free classical equation, it is reasonable to expect these integrability
conditions to hold also in the interacting case.

We shall not go further in the reduction of Condition 2.1, and we shall use it as
a technical assumption wherever needed in Sect. 3.

3. The Limit fc->0

In this section, we prove the main result of this paper, namely the strong
convergence of W(t,s) to U2(t,s) uniformly in t,s. We follow to a large extent
Sect. 5 of [2] with which most of the notation is common. In all this section, we
assume that V and φ satisfy the conditions

{VeLPi + LP2 with 2n/(n + 2)Sp2^Pι ^ ° ° ,

φe^^^nL^n^i^^nL2^), (3.2)

and that φ satisfies the Eq. (2.9) of [2]. We define bγ and b2 by (5.3) and (5.4) of [2]
and B^ΓJίbί), i = l,2 (cf. (5.1) and (5.2) of [2]). In all this section, we assume that
part 1) of Condition 2.1 is satisfied and that the set Q) λ which appears in this
condition is such that @ίnQ(NBί) is dense in Jtif. Note that by definition
®i C Q(H0 + N). We take a fixed ΨeSf^QiNBJ, we define ψ.(t)9 i = 1,2, by (5.7) of
[2], and we start estimating the quantity || Ψ^ή— Ψ2{ή\\2, which we decompose as
in (5.8)—(5.13) of [2]. We consider the various terms J{ of this decomposition
successively. As in Sect. 5 of [2], we omit the dependence on v, K, most of the time.

Lemma 3.1. 1) Jo tends to zero as v, κ;-»oo uniformly for Ψ in a bounded set of
Q(H0 + N).

2) Jx tends to zero as v, κ->oo uniformly for t,s in a compact interval and
uniformly for Ψ in a bounded set of Q{H0 + N). If in addition the assumptions of
Proposition 23, part 1), hold, the convergence is uniform for t,s in IR+ (resp. JR~,
resp. IRJ.

Proof We note that

-ρ^) (3.3)

(3.4)

where

yK (3.5)
k

Therefore

Jo^v-'+γJWΨWl, (3.6)

J 1 g ( v - 1 + y 1 ) 1 ' 2 | | ¥ ' | | | | « P 2 ( ί ) | | + . (3.7)

The assumptions made on ρ ensure that yx -»0 when κ-»-oo. The result then follows
from (3.6) and (3.7) and Proposition 2.3, part 1). Q.E.D.
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We now turn to J 2.

Lemma 3.2. J2 satisfies the estimate

τ))}| | !P1(τ)| |+ | | lP2(τ)| |+ (3.8)

for any ε >0, where σί is the particle number cut off function, σ\ its derivative, cf( ),
i = 0,1,2, are defined by (2.6) and (2.9), and

y2=Sup(l-ρ(k))(k2/2+l)-^2. (3.9)

In particular, if the assumptions of Proposition 2.3, part 2), and Condition 2.1 hold,
J2 tends to zero as v, /<—> oo uniformly for t,s in R + (resp. R~, resp. RJ.

Proof. We observe that

[H2(τ), P] = [H2(τ), σ]Λ + σ[H2(τ), R] (3.10)

and

[H2(τ), σ] = (σ(N + 2) - σ(N))L(τ) + (σ(N - 2) - σ(iV))L*(τ). (3.11)

By the same argument as in the proof of (2.11), we obtain

. (3.12)

On the other hand

(3.13)

by (2.4), (2.5), and (3.9).

Finally, we estimate [L(τ) + L*(τ), R~\. By the same argument as in the proof of
(2.8), we obtain easily

[L*(τ),Λ][R,L ί (τ)]g |c ί (τ) 2 Γ 2 ((l-Λ)|Vi | 1 - β ( l-Λ)) (3.14)

for /=1,2. Using (2.10) and momentum variables, we obtain for any ε > 0

Γ2( ) g Σ ( 1 " β(K)β(kj))2 ft (fc, - kj)2 + b

(3.15)
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By the same argument as in the proof of (2.11), (3.14) and (3.15) imply the estimate

(3.16)

Collecting (3.12), (3.13), and (3.16) and using Schwarz's inequality, we obtain (3.8).
In order to prove the last statement of the lemma, we note that y2-+0 when κ-> oo
and that the sum (ε1 / 2 -f 2ε~ ί/2bjl) can be made arbitrarily small by fixing first ε
sufficiently small and then K sufficiently large. Q.E.D.

We next turn to J 3 and J 4 in a first step, we obtain the crude estimate

s

for f = 3,4. By part 1) of Condition 2.1, by Lemma 2.2 and Proposition 2.2, the
integrand in (3.17) is a continuous function of τ. At the present stage, we can
already prove the convergence of W(t, s) to U2(t9 s) in finite time intervals.

Proposition 3.1. Assume that V satisfies (3.1), that φ satisfies (3.2) and the Eq. (2.9)
of [2], and that part 1) of Condition 2.1 holds with 2ίnQ(NBι) dense in Jf. Then

s-\imW{t,s)=U2(t9s) (3.18)

uniformly for t, s in compact intervals.

Proof The proof is analogous to that of Proposition 5.1 of [2]. Q.E.D.
We recall that, for stable potentials in the sense of Condition 2.2, part 1) of

Condition 2.1 holds with @ίr\Q(NBί) obviously dense in Jf (see Proposition 2.4).
We are now left with the task of estimating J 3 and J 4 uniformly in time. For

this purpose, we need more refined estimates than (3.17). We define the operator
F 4 in tf2 by

V4 = V(ί-AΦ)~1V, (3.19)

where A Φ is the Laplace operator in the difference variable, and the operator g2(τ)
in J ^ by

y±AΓίVy, (3.20)

where Vy is the operator of multiplication by Vy(x) = V(x-y) in Jtv

We also define

F4(τ)=C/0(τfF4C/0(τ)(^2, (3.21)

§2(τ) = M0(τ)*fif2(τ)tι0(τ), (3.22)

and

ΦiW = 1/0(1)^(1) for i = l , 2 . (3.23)

We can then estimate J 3 and J 4 as follows.
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Lemma 3.3. J3 and J 4 satisfy the estimates

2 + 2|lφ(τ)| |2)1 / 2<Ψ2(τ),PΓ2(F4(τ))P'P2(τ)>1 '2}, (3.24)

dτ\\Ψι(τ)\\ + (Ψ2(τ),PΓ2(VMP'P2(ΦU2- (3-25)
s

Proof. In this proof, we omit the τ dependence. We consider first J3 and estimate
successively the contributions of A* and A3 to the scalar product (Ψί,H3PΨ2y
(cf. (3.23) and (3.24) of [2]).

where <, >N denotes the iV particle contribution to the scalar product in jήf, the
subscripts i and j label the variables that occur in V, ψ{ denotes the classical
solution taken as function of the variable i and (PΦ2)(ί) denotes the wave function
with variables different from i.

The previous scalar product is estimated as

V Σ (fl-H)

Σ <φi(PΦ2\i),Vij(ί-^AJ)-ίVijψi(PΦ2\i)yNγ'2 (3.27)

by Schwarz's inequality and where zlj is the Laplace operator in the variable j ,

PΦ2,Σ(Vy)J(ί-±ΔjΓ
1(Vy)jPΦ2\ \ m (3.28)

i / N — 1

1^! (3.29)
N

by inspection,

(3.30)

by Schwarz's inequality applied to the sum over JV.
We next consider the contribution of A3 to J3:

= Σ Σ <φκi)Φp VijPΦ2>N (3.31)

Therefore

<ΦO PK..(l-zl..)~1F. PΦ 9 > ; v l 1 / 2 (3.32)
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by Schwarz's inequality, and where Atj is the Laplace operator in the difference
variable Xf — Xj. Now — Atj^ — \(At + A^ and therefore

_i. (3.33)

On the other hand, the last bracket in the R.H.S. of (3.32) is simply

{.} = 2<Φ 2,PΓ 2(7 4)PΦ 2>N . (3.34)

Substituting (3.33) and (3.34) into (3.32) and applying Schwarz's inequality to the
sum over JV, we obtain

|<Φ 1 ,^3PΦ 2 >|^( | |Pφ | | 2 + 2 | |φ | | 2 ) 1 / 2 | |Φ 1 | | + <Φ 2 ,PΓ 2 (F 4 )PΦ 2 > 1 / 2 . (3.35)

(3.24) follows from (3.30) and (3.35).
estimate

/ \ (3.36)

We next consider J 4 . We have to estimate

By Schwarz's inequality

I < Φ 1 ; / / 4 P Φ 2 > I ^

2>P Σ viβ-Δijr
ivij

i<j /N J
/ | 1 / 2 . (3.37)

From this, (3.25) follows immediately. Q.E.D.
The next step is to estimate the two matrix elements that occur in the R.H.S. of

(3.24) and (3.25). Using the definition of P (cf. Sect. 3 of [2]), we obtain

2v<'F2(τ),Γ1©2K(τ))^2(τ)>? (3.38)

where

92R(τ) = Qj2(τ)Q*' (3-39)

The R.H.S. of (3.38) is then estimated exactly in the same way as in [2], (see
Lemmas 5.5 and 5.6 of [2]), with the only difference that g2 replaces gv We collect
the relevant results in the following lemma.

Lemma 3.4

τ ) 1 / 2 ρ Λ ( τ - τ 0 M τ 0 | | H s } . (3.40)

In order to estimate the second matrix element that occurs in (3.24), (3.25), we
fix an interval /ClR (possibly unbounded) and choose a constant c3 according to
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Corollary 2.1 such that (2.16) holds for all t in I. We let then s,tel and therefore
τel. From the definition of P, we obtain easily

2 A l 0 , ) - ' : , (3.41)

where

V4R = RV4R\^, (3.42)

y3 is the constant (depending on v and K) defined by

y2 = /SupiVσ(N + l)2VSup(C 3 + \ k2)ρ(kf\, (3.43)

so that

( 3 pρ() (3.44)

V k I
and the dots : : denote the normal product. More precisely, Γ2(V4_R) is for each N a
sum of two particle operators, and for each term of the sum the operator
(//0 + c3(JV+1))"1 acts on the (N — 2) remaining variables. Using (2.16), we obtain
for all τel

< Ψ2(τ\ PΓ2(V4(τ))PΨ2(φ g f γ2

3M5(τ, τ)2, (3.45)

where we have introduced the function

M5(τ,τ/) = <ϊ r

2(τ /), :Γ2(V^R(τ))A2(τ')-1' ^ 2 M > 1 / 2 , (3-46)

with

A2(τ)=U0{τ)*A2{τ)U0(τ), (3.47)

ΐ>4K(τ)=ί7o(τ)*F4RC/o(τ), (3.48)

and

^ 2 (τ) = H2(τ) + c3(N + l) . (3.49)

In order to estimate M5(τ,τ), we estimate first M5(τ,s) and

M5(τ,τ') = dMs{τ,τ')/dτ'. (3.50)

Clearly

M5(τ,s) = (Ψ, •.Γ2(V4R(τ))A2(SΓ
1:Ψ>1<2. (3.51)

This quantity is readily estimated by the following obvious lemma (cf. Lemma 5.7
of [2]):

Lemma 3.5. M5(τ, s) satisfies the estimate

(3.52)
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We now estimate M5(τ,τ') We recall (see the proof of Proposition 2.2) that A2(τ)
satisfies the following inequality, in the sense of quadratic forms on Q(H0 + N):

± {Λ2(τ) + i[H2(τ), A2{τ)]} ^ 2c(τ)A2(τ), (3.53)

where c(τ) is defined by (2.36), (2.27), and (2.32).

Lemma 3.6. M5(τ5τ') satisfies the estimate

Φ ( 3 5 4 )

where w2(τ,τ') = w2 is the positive one-particle operator, the square of which has

integral kernel

• LQMτ ~ T ' )%')] (*2> y) lQMτ ~ τ')fe(τ')] Pi, y) (3 5 5 )

with V4 defined by (3.19).

Proof. We start from the identity

2ΐM5(τ, τ')M5(τ, τ') = ( Ψ2(τ'\ [ :Γ 2 (7 4 Λ (τ)M 2 (τ')" 1 : , H2(τ') - fl0]

(3.56)

τ'), :Γ 2(F 4 K(τ)){i 2(τr 1 ( ^

1 : !P2(τ')>

H : r 2 ( F 4 Λ ( τ ) μ 2 ( τ ' ) " 1 : !P2(τ')> , (3.57)

where we have classified the various terms in the commutator with H2(τ') — H0

according to their connectedness with V4R{τ). In particular in the last two terms,
the notation ^ means that L and L* should be contracted with F 4 K , namely that
the operator F4 j R acts on one or both particles created by Z* or annihilated by L
[1], The two contributions thereby obtained will be referred to as having one or
two contractions respectively and will be written with -f- or -^.

Using (3.53), we estimate the first matrix element in (3.57) by

τ,τ') 2 . (3.58)
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By Schwarz's inequality, the second matrix element is estimated as

|< >| = 2|Im<Ψ2{τ\ :Γ2(74 Λ(τ)(£(τ') + G(τ')))i 2 (τ'Γ x : Ψ2(τ')>\

S2M5(τ,τ'KΨ2(τ'l :Γ2((K(τ') + G(τ'))F4i,(τ)(K(τ')

(3.59)

where we have used the definitions of F 4 Λ , K, and G and the inequality (2.16) with
c 3 ^ l , and the factor Λ2(τ/y1 has been used to cancel one power of N coming
from Γ2. By further use of Schwarz's inequality (see the proof of (5.60) in [2]), the
contribution of K is estimated by

τ-τ0X(τ0ll|2g2|||w2(τ,τ0ρJ||1 (3.60)

with w2(τ,τ') defined by (3.55).
The last two matrix elements in the last member of (3.57) are complex

conjugate to each other. We consider the term with L*. By Schwarz's inequality,
we first obtain for z = l,2,

τ'), :Γ2(V4R(τ))A2(τTί:-fL^τ')Ψ2(τ')}\

Z ( τ / ) r ^ 2 ( ^ W M 2 ^ ) ~ 1 : -fL*(τ>)Ψ2(τ')}1/2.

The term with two contractions (i = 2) is further estimated by

. . . : g M 5 ( τ , τ 0 < ^ 2 ( τ 0 , i 2 ^

g2 1 ' 2 M 5 (τ , τ') || Ψ\\\\(i-Λ Φ ) " 1 / 2 VRU0(τ- τ')L*{τ')Ψ0\\ (3.61)

in a similar way as in (3.59). In order to estimate the term with one contraction
(i=l), we first use (2.16) to replace A2(τ')~ι by (iV + l ) " 1 , apply once more
Schwarz's inequality to the summation over the uncontracted leg of L* and Z,
thereby obtaining

^2 1 / 2 M 5 (τ , τ>)<Ψ2{τ'\ L(τ') -f :Γ2(V4R(τ))(N + 1)"':*L*(τ')Ψ2{τ f)}1/2

^ 21/2M5(τ, τ')< Ψ2(τ'\ 2Γ,(ρ^jρ^) Ψ2(τ')}1/2 , (3.62)

where w2 is defined by (3.55).
Collecting (3.58)-(3.62), we obtain (3.54). Q.E.D.
Lemma 3.6 provides an estimate of the form

|M5(τ, τ')| S c(τ')M5(τ, τ') + /(τ, τ') (3.54')

which we shall use in the integrated form

M5(τ,τ)^M5(τ,s)expΠdτ /c(τ /)
\s /

+ {£/τ7(τ,τ')exp(jdτ//c(τ//)l. (3.63)

In order to complete the estimation of J3 and J 4 , we proceed as in [2], making
essential use of the dispersive properties of the free evolution expressed by
Lemma 5.9 of [2]. We recall that V and φ satisfy the assumptions (3.1) and (3.2),
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and that fe. (i = 1,2) are defined by (5.3) and (5.4) of [2] with β> 1. We shall write
V=Vι + V2 with V^U\ z=l,2. The following two lemmas are the analogues of
Lemmas 5.11 and 5.12 of [2].

Lemma 3.7. Let l>2, l^n/β, and l^pv Define ζ, a and λt(τ) by

/p i-l//-lΛι) for ί = l , 2 , (3.64)

α = Sup | | ( l- iz l )- 1 / 2 | | ^ 2 (^Max(l ,2 1 / 2 α M )) , (3.65)

where || ||β<_?' denotes the norm of an operator from Lq to Lq and an is the constant
in the Sobolev inequality (5.68) of [2], and

λί(τ) = α α I | τ Γ Λ / / Σ l l ρ | l r ί l l ^ l l l , I . (3-66)
i

Then

, (3.67)

Φ ; ( τ ) . (3.68)

Proof. We first note that for suitably regular ψ

^ | | . (3.69)

From there on, the proof of (3.67) follows by the use of Lemma 5.9 of [2], part 2),
of Holder's and Young's inequalities, and of Sobolev's inequality in the form (3.65).

The proof of (3.68) is first reduced to an estimate of a one-particle operator by
the use of Lemma 5.10 of [2], and then proceeds along the same lines. Q.E.D.

Lemma 3.8. Let 1^2, l^px and l/l^l/p2- 1/2, define l\ by (3.64) and q[ by

l-2/q\=l/Pi-l/l for i = l , 2 , (3.70)

and let

Σ WiWJφiτ'ψΛ. (3.71)
i = l , 2 /

Then

(3.72)

, (3.73)

τ'), (3.74)

/2-"' ίμ;(τ,τ'), (3.75)

IIIw2(τ, τ')ρ J | | 1 g |||w2(τ, τ') | | |, ύφ, τ'), (3.76)

where w2(τ, τ') is defined by (3.55).
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Proof. The proof of (3.72) and (3.73) proceeds as that of (5.79) and (5.81) of [2],
with the additional use of (3.69) and Sobolev's inequality in the form (3.65).

In order to prove (3.74), we note that for i = l,2,

^ | | | ( l - z l ) - 1 / 2 | t ; ; h | | 1 2 S u p | | | | F i y r ^ U o ( τ - τ ' ) ί ? ( τ ' ) | | | 1 (3.77)

with (1 — (5 )/p = 1//+1//J, and where v{i) is the operator of multiplication by F( ί) in

In the last member of (3.77), the first factor is estimated by the use of Holder's
inequality and Sobolev's inequality in the form (3.65), while the last factor is
estimated in the same way as in the proof of (5.80) of [2]. The proof of (3.75)
proceeds as that of (5.83) of [2], with an additional use of (3.65).

We finally turn to (3.76). The first inequality is obvious. To prove the second,
we write for ψeL2

where

and || || 2 denotes the norm in L2(JR" x R"),

. ^ Σ
ί = 1,2

μηhdξ
2\si/2-j2/sίϊ 1/2

> 1/2

i = 1,2

Σ \\Vi\\PMτ,τ'), (3.78)
ί = 1,2

where sj is defined by 1/SJ = 1/2 — 1/Z — 1//J and ys ί(τ,O is defined by (5.86) of [2].
Now (3.76) follows from (3.78) and (5.89) of [2]/ Q.E.D.

Collecting the estimates contained in Lemmas 3.3-3.8 and neglecting a few
numerical factors to simplify the final expression, we obtain

{2vh l2

exp j dτ"c(τ") (3.79)
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where we have used the fact that ||φ(τ)|| = | |φ| | is actually independent of τ, || | |Hi
denotes the norm in the Sobolev space H1, and the Infimum is taken over the
values of / allowed in Lemma 3.7 for λ[ and in Lemma 3.8 for μ[.

We now state our main result. Since it is an extension of Theorem 5.1 of [2] to
the present case, we refer to [2] for the complete statements, and indicate here only
the necessary changes in the assumptions.

Theorem 3.1. Let n^3 and let V satisfy

with

[V_eLn/2.

Let r and r' satisfy the (compatible) conditions

1 1 1 1 1 1

2 n r r 2 2n

- < i + - - τ - (3 82)
r 2 n 2p2

LetXkr, %a{-) and %0{ ) be defined by (2.1), (2.2), and (2.11) of [2]. Then parts 1) and
2) of Theorem 5.1 of [2] hold.

Let in addition kg: 3. Then part 3) o/ Theorem 5.1 of [2] ZioZds, wiί/i however
W(t,s) and U2(t,s) now satisfying Propositions 2.1 and 2.2 respectively.

Let in addition k ^ 3 and let Condition 2.1 hold with ^ιnQ(NB1) dense in ffl.
Then parts 4) and 5) of Theorem 5.1 of [2] hold.

Proof. We refer to the various statements by their numbering in Theorem 5.1 of
[2]. The proof is almost identical with that of the latter and we indicate only the
necessary changes. Parts 1) and 2) require no change. In order to prove the first
statement in part 3), which refers to finite times, it suffices to prove that φ satisfies
(3.2). This follows immediately from the definition of iFα(IR), from the classical Eq.
(2.9) of [2] and the condition kg:3. The second statement in part 3) is obvious as
far as W(t, s) is concerned. In order to prove it for U2(t, s) it is sufficient to prove
that in addition to (3.2), φ satisfies the assumptions of Proposition 2.3, namely the
integrability at + oo (resp. at — oo, resp. in HI) of the quantities c (ί) and cj(ί) for
i = 0,1,2, or equivalent^ the integrability of ||φ(£)ll£ and \\φ(ή\\q\\φ(t)\\q for q = 2pi

and q = q.,i=l92. Since the time decay of ||φ(ί)llq> as expressed in the definition of
5ΓO(1R), improves with increasing q, we choose α ^ M i n ^ — 1,1) in (2.7) so as to
make qt as large as possible. Since qι^q2 and q{ fg 2pf, it is sufficient to consider the
case q = q1 =Min(2p1,4). The previous integrability condition then follows from
the time decay of \\φ(ή\\qί and ||φ(ί)llqi which in turn follow from the definition of
5Γ0(IR), directly for | |φ(ί)| | g i and through the use of the Eq. (1.67) of [2] for |]φ(ί)ll€l

This condition reduces to l — 2/q1 > 1/n and is satisfied since pί <n.
The proof of parts 4) and 5) proceeds in the same manner as in Theorem 5.1 of

[2]. By Proposition 2.3 and Condition 2.1 respectively, the factors
\\(N + l)ll2Ψ2(τ')\\ and | | ι F 1 (τ) | | + in (3.79) are bounded uniformly in h and
uniformly in τ, τ\ s in the relevant intervals. It is then sufficient to prove the
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integrability at + oo (resp. at — oo, resp. in IR) of ||<p(τ')||J for i= 1,2, with #[• =
defined by (3.70), both for l = n + ε and l — n — ε for some £>0. By the definition of
$ΓO(1R), the integrability condition reduces to l/pt— l//> 1/n and is satisfied because

Q.E.D.
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