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Exponential Clustering for Long-Range
Integer-Spin Systems*
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Abstract. By using Kirkwood-Salsburg equations for classical spin systems
with unbounded integer values we prove exponential decay (resp. power law
decay) for exponential (resp. power law) decaying potentials. We use these
results to prove the mass gap in the two-dimensional Higgs-Villain model in
the weak coupling region.

1. Introduction

In a previous paper [1] we have worked out a Kirkwood-Salsburg equation for
unbounded integer spin systems whose Hamiltonians are positive definite qua-
dratic forms and investigated the conditions under which it led to a unique
equilibrium state expressed as a convergent series in powers of the “Kirkwood-
Salsburg” operator. We applied these results to the two-dimensional Higgs-Villain
model, which is reduced to such a system by duality transformations [2-6].

In the present paper we use the series expansion of the equilibrium state to
prove exponential (resp. power law) decay of truncated correlation functions when
the interaction potential decays exponentially (resp. with a power law). Similar
results for lattice gas and continuum systems are obtained in [7] and [8]. In fact,
our method, especially in Theorem 2, is very similar to that of [7]. The results of
[8] apply to very general systems, but only with finite range interactions.

We apply our results once more to the two-dimensional lattice Higgs-Villain
model to prove that in a certain range of parameters (g2/T large and g small)
truncated expectations of local observables exhibit exponential decay, i.e. there is a
mass gap. Moreover our lower bound on the mass approaches the “bare mass”
gqT~Y'* as T—0 with ¢g?/T fixed. There is some question whether this mass gap
should be interpreted as a Higgs mechanism. A massive photon would be
associated with a Yukawa type potential between external charges, contradicting
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confinement [9]. Previous results on the Higgs mechanism in general lattice Higgs
models were obtained in [10] using the cluster expansion. Further results are
announced [4] and proved in detail in [11].

We recall notations and results on the Kirkwood-Salsburg equation for
unbounded spin systems on the lattice [1]. The system has Hamiltonian
H,= Y s/V(x—y)s, with the spins s, belonging to Z and Gibbs measure e~ "4,

x,yed
The potential 1 is assumed to be real, symmetric, translation invariant (for the

sake of simplicity) and positive definite with ) s V(x—y)s,=¢ ), s2 for some
x,yed xed
constant ¢>0. Q denotes a configuration {s,},_, defined on X, with all s #0. ¢ is

the empty configuration. We write v(Qy)= ) sZ For any constant >0, a norm

xeX

on complex-valued functions on {Qy} is defined by ||, = sup lp(Q)le™ @), The

Banach space of functions ¢(Qy) with ||, < oo will be denoted by F,.
The Kirkwood-Salsburg equation can be expressed as g= 5+KQ where

(p)=1, 5(Q5)=0 for nonempty Q, and Ko(¢)=0

KQ(QX)=e~ﬁWX(QX) Z Zk(sxaQT)RxQ(QX’QT)? (1.1)

TCXe QO
where the activity z which appears in [1] is absorbed in V(0). Above

WX Q) =VO)s2+2 ) s Vix—y)s,; X' =X—{x};x=x(Qy)eX 1.2)
yeX’

ks, Qp)= [ (e 2=V 1)1 ks, )=1 (1.3)

yeT
R.0(Qy)=0(Qy)— :Z,O o(t,Qy). (L.4)

The proofs in this paper require the choice of the distinguished site x to be made in
such a way that if x, =x(Q,0y)eX, then also x,=x(Qy). It is not clear that our
method of choice in the previous paper [1], leading to the bound W¥(Q,)
=(2¢—V(0))s2, can satisfy the requirement. Instead, we choose x(Qy) to be the first
point of X in some consistent ordering (e.g., lexicographic) for which
Is.|=max{|s |:yeX}. This leads to the bound

WHQx)Z V(0)s2 —2[) s, V(x—)s,| Z(V(0) 28, )s? (1.5)
Therefore the following result is a slight modification of Theorem 2 in [1]:

Theorem 1. Let S, = ) |V(x)| and S,= Y, V(x)%. If r=1 and

x*O x*0
BV(0)—-28,) BZ 2ﬂ%>10g2, (L.6)

then K is an operator in Fr with norm || K|, <1. For 1 £v < f¢ the unique solution of
the K —S equation gives the correlation functions of the theory.

2. Exponential Clustering and the Kirkwood-Salsburg Equation

[e¢)
Our basic strategy is to use the expansion g= Y K"§ so that
n=0

0(050,) 0(@,)el@ Z [K"5(040) Z KI8(05)K"36(0,)] (2.1)
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and to bound inductively each term on the right. In pulling out a factor such as
e MED from each term (where d(X,Y)=inf{|x—y|:xeX, yeY}) we obtain a
quantity which can be bounded using the same estimates used in [1] to bound the
operator K, but with a “comparison potential” ¥ instead of V. For example, we
may take V(x)—e“'“'V(x)

Theorem 2. Suppose 8, V, and r satisfy (1.6) and |V(x)| Lconst. e~ "™ for some m >0
and |x| is some norm on RY. Then there exist constants C and p>0 such that

10(0x0y) — 0(Q)0(Qy)| £ Ce™M@xEV gmRaCLT) (22)
Proof. For m> p=0let V(x)=e"|V(x)| with S, = 3 |V(x) and §, = Y V(x)%. By

x*0 x*0
continuity we can take u>0 such that

L~=ﬂ(V(O)—2S~1)—r—[32%—2BS—VI >log2 (2.3)

so that B=2e¢~L<1. This is the condition on w1 that we need for the proof.
As indicated above, it is enough to show that

n—1

IK"6(QxQy)— >, KIS(Q )K" 16(Qy)| £ C e~ @XMk 1) 24)
j=1

with )  C,<oo. The proof will be by induction. For n=1 K§(Q,Q,)=0so C . =0.
n=1
Suppose (2.4) is true for n. Then (assuming x =x(Q,0y)eX)

n

K" 18(0,0,) — Z KIS(Q )K" 1 795(Qy)

— ¢~ BWX(QxQ¥) Z Y k(s Q)R K"6(0.Q70y)

TC(XuY)e Qr

_ Z e IO N N (s, QIR KIS(Q . Q)K" TIS(Qy)

TCXc Qr
=n+n+n

where

Ty=(e M@ —1)em @) %" % k(s Qr)RK"5(Qx Q1 Qy)

TC(XuY) Qr

(with W¥Qy)=2 ) s V(x—))s,)

yeY

T,=e M@0 % N (s, Q) [RK"S(Qy Q10y)

Tc(XuY)y Qr

- Z RKI5(Q, K" 13(0,)]

- Z e MO N Y kon QrIRKIS(Qx Q)K" TS(Qy).

TCcXc Qr
TnY+¢
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Using the inequality e” — 1] <o(e!! — 1) for 0o <1, we have
|e-,BWx(QY)__ 1[ ée_ud(x’y)emyg:}’ SxV(x = y)sy|
So from the estimate

Zﬂ’ T sV (x=p)sy
e VEY

o™ PWQx) < o= BV(0) - 2502

following the proof of Theorem 2 in [1] we get
Ty Bem - Nemr0xn kg,

If TC(XUY)" is nonempty, choose y,e T such that |x—y | +dXUT, V)= d(X, Y).
In the estimate of T,, we want to extract a factor e "=l from k(s,Q,) and
e WXV from

RK'5(Qy 010y~ ¥ R.KI(Qy 0)K"15(0y).
Jj=0

To do this we must consider together terms with s, positive and negative. Let Q/;
be Q, with the sign of 5 reversed. Then by the induction hypothesis (2.4), the
definition (1.4) and the inequality |sinhat| <olsinht| for 0< <1, it follows that

k(s Q) IR K"0(Q - O Z R KI3(Qx Q)K" '5(Q,)]

+same expression with QT
<4Cn!k(sx’ QT\{yo))l Slnhﬁl V(X - yO)Sx yol
<4C, k(s x’QT\{yo} ISmhﬂlV(X V)5, Vo'e (X, Y) o =ruQx'QTQy) (2.5)

Following again [1], we obtain

e HIX VT, Y) - rv(Qx QTQY)

|T,| < BC,e™ "X Ve r@x0v),

Similarly we can extract a factor e ** ! with ye TnY from k(s,, Q) in each term
of T, obtaining

|T3| é(n_ 1)Be_ud(x’ Y)e_""(QXQY) HKn5“

Thus we have (2.4) with C,, , <B(n|K||" + C,). Since IK|,<B<1, it is easily seen
that ) C, <

The short distance behavior of V(x) will have a strong influence on the
allowable values of p in Theorem 2. For example, in section 4 we will have

—m|x|

Vix)=(—4+m*)"(x) which has the asymptotic form const.

. However,
mix|

V(H)x~m™*~m™2V(0) for large m, so in order to have V(0)>2S 1» s is necessary for
(2.3) to hold, we will need u<2logm. We would instead like to have y (the lower
bound on the “physical mass”) of the same order of magnitude as m (the “bare
mass”). In fact, we will show that (2.2) holds with any u<m if § is sufficiently large.
The strategy is to modify the definition of ¥ at short distances. This will make it
necessary to have B small enough, which will be achieved for large enough f.
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Theorem 3. Suppose Y |[V(x)le*™ < co and V(0)—2S,>2]/S,. Then there are some
B, and v, such that for >, and r=fr, (2.2) holds (with C—0 as f—c0).

Proof. The proof of this theorem is a combination of the proof above and that of
the Corollary in [1]. Let us take r=pfr,. Then

L=B(V(0)—28, —ry—S,/ro)—2S,/r.

For any u satisfying ) [V(x) )" < o0, we define V(x)=|V(x)| if [x] <R and V(x X)
=|V(x)le“™! if [x|> R, where R is chosen so that the condition ¥(0)—2S,>2}/S,
holds. Then there exists r, such that V(0)— 28, —ry—S,/ry>0and therefore af,

such that, for > f,, B= 2¢ L<e "R Now we imitate the proof of Theorem 2. If
dX,Y)<R we use

n

K" 16(0,0y) = Y. KIS(Q, K™ ! (0, < (n+ K7+t e™r@xe

Jj=1
S+ DK LetRemm@x0n pmudX, 1)

If d(X, Y)> R we have the same estimate on T; and T; as in Theorem 2. If there is
yo€ T with |x—y,| > R, we again have the estimate (2.5). If [x—y,| <R for all y,e T,
then dXuUT, Y)=2d(X,Y)—R so

IR,K"3(Qx Q1Qy)— Y. RKIS(Qx Q)K" 5(Qy)|
j=0
<2, o™ MK ) iR o= rV(Qx Q1 0y)
This leads to the estimate |T,| < BC,eRe ™" @x0r)p=#dX.9) Thys

C,, 1 Smax {B(n| K[! +eEC,), (n+ D K[ e*®}.

It is easily seen that CngDB’"e"“R for some D independent of f. So C= ) C, is
n=2

finite if B<e "k, and as f—co we have B—0 and so C—0.

Similar results to Theorems 2 and 3 can be obtained for power law, rather than
exponential, decays by using the metric d(x, y)=log(l +[x—y|) instead of |x—y|.
Thus if V(0)—2S >2]/S_ and ) |V(x)||x|"<oo, then for B sufficiently large
10(Qx0y) - (Qx)@(Qy)l<Cd(X Y) e m@x2¥ for some C and r.

3. Exponential Clustering of Observables

Once we have obtained exponential clustering of the correlation functions ¢(Qy)
by Theorem 2 or 3, we may look at cluster properties of more general observables.
Suppose f is a function on the configuration space Z* for a region X on the lattice,
with the property that

f{s,})=0 ifany s,=0 for xeX. (3.1)
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Then {f)=Y f(Qx)o(Qy) (assuming that the sum converges absolutely; since

Q .. . .-
p€eF, for some 1 <r< e, this is a very mild condition on the grouth of f). For two
such functions f and g on Z* and Z" respectively, with X and Y disjoint,

o> —LH<ev= éz gf@xsg@m@xq P88 PG
so that if g satisfies (2.2) we obtain
1< fg> = <f><{a)] gc(z f(Qx)e"”‘Q’”)(Z g(Qy)e*MQﬂ)e‘W "
Qx QY

If f does not have the property (3.1) we can write f=Y Pyf where P.f
TCX
depends only on the spins in 7, and vanishes if any of these is zero. In fact

Prf({s})= Z (_1)!T\S|f({()}x\s, {5} ,cs) For T=¢, P¢f is the constant f({0}).
scT
From the clustering of Py f and Py g, we obtain that of fandg.

A pasticularly  important  erample s where f =em(i Y, axsx> and
xeX

g=exp (i Y bysy). Then Prf= [] (¢/**—1),and similarly forg. Thusifgsatisfies (2.2)

yeY xeT

K> =<f><)]
Y oY X ¥ I Il E=DeEnr-1)

TiCX T2CY Qr, Qr, x¢T1 VeT2

0Qr,Qr,)— 0(Q1,)0Qr,)
S (HIef“x*—ue-"%)(ﬂlefbySy_1|e~rs%)

TiT2 Qr, QT \*eTy yeT2
=Ce DT 14 Dl —e T (14 T 1 = e
xeX s¥0 )YEY( sF0 )
< CevZlax] grEibyl o= ud(X: Y) (32)

where =2 ) [sle """,
s=1
We can accomodate sums and integrals of such functions. Suppose
f=[dv,(@)e> and g= [dv,(b)e™* for complex measures dv, and dv, on
[—n,7]* and [ —n,=]? respectively. Then if ¢ satisfies (2.2)

1< fg> — < <gdl < CJ vy (@)=l ([dv,(b)ersl)e D).

Finally, we note a further refinement that will be useful in the application to the
Higgs-Villain model, Suppose again f=exp(iY.a,s,) and g=exp(i} b,s,). but

instead of being strictly local they satisfy conditions Ylaer ¥ <o and

X

Yo"V < oo, Let x,€ Ty, yoe T, with d(T}, Ty)=|x, — Yol- Then
y

Z H |eiaxSx_1|e*r5§§e~ud(xogx) Z n |axeud(x,X)Sx|e’VS%.
Qr, xeT) Qr, xeTy
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Since d(Y,X)<d(xq,X)+d(yo, Y) +|xy— yol we obtain
[<fg) =< <1 S Cexply ) la e ™™ +y ) |b Jerd® D)e w1, (3.3)

4. The Mass Gap in the Higgs-Villain Model

We want to use the results of the previous sections to prove exponential clustering
of localized observables in the two-dimensional Higgs-Villain model. This model
has angle variables ¢, and A,, associated with sites in Z* and nearest-neighbor
bonds respectively (xu is the bond between x and x+ &, u=1 or 2, where 1=(1,0)
and 2=(0,1)). The partition function and Gibbs equilibrium states are Z= [do
and {fy=2""{fdo respectively, with

— _ 2
do= 1;[ m,§el exp 2T (0,0, —qA,,—2mm,)
d
I_.[ Z CXp 2 2 (Suv ntxv 27Em )ZH ¢ H
X myxel 7'C xp

Here 0, is the finite difference operator 0, f(x)=f(x+ )~ f(x), ¢,, is the anti-

u wy

. 0 1 o
symmetric tensor ( { O)’ and repeated Greek indices are summed. Thus

€,,0,A4,, 1s the plaquette variable 4 ; + A4, 1), — Ax+3),, —A4,,. We start with a
finite lattice and assume periodic boundary conditions, in order to ensure
translation invariance. As in the above sections, our results hold as well in the
thermodynamic limit. We will actually work not with € -, but with a 8 vacuum
& - Yy, where 0 is an integer from 0 to g—1 [1].

Let X be a bounded region in IR?, and f a function of the variables ¢, and A,
for xeX and xuCX respectively. We will assume that f has an absolutely
convergent Fourier series ) ¢, expi((s, ¢)+(t,, 4,)). Here s, and t,, are integer-
valued functions on sites and bonds respectlvely, and we wrlte (g,h) for
the I* inner product ) g(x)h(x). Unless (s,¢)+(t,,4,) is gauge-invariant,
Kexpi((s, ) +(t,, 4,))»=0. Now the gauge-invariant terms (s, ) +(t,, 4,) are the
linear combinations with integer coefficients of 0,¢, — g4, and ¢,,0,4,,. This may
involve terms with x¢X unless we assume X is simply connected, and thus contains
any site enclosed by a path in X. Discarding all but gauge-invariant terms, we may
write f= )" a,e,, where e, =expi((u,,,0,4,)+(v,, 0,0 —qA,)). We let || |,
=> la,,lexpl((u, u)—i—(vu,v )) for {>0. We will prove the followmg theorem:

2
Theorem 4. Suppose (1.6) holds with V(x)=(—A4+m?*)~Yx), f= 2% and m?

2,2
= g;? . Then there are positive numbers p, {, C such that, for any functions fy and

[y of the variables in two disjoint simply-connected regions X and Y,

K S SyDo— L Sx Do Ky Dol S C”fx”g ||fy|lge_ud(x’y)~ 4.1)

Moreover as T—0 with m fixed, we may take y—m.
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Proof. It is sufficient to show that, for u and v, (resp. u’ and v;,) supported in X (resp.

Y)
|<<euv v >>0_ <<e,w>>9 <<eu,v,>>9| < Ceé((u,u)ﬂu’,u’)+(vu»vu)+(Lr"u’v2¢))—ud(X,Y) . (4.2)

Using the duality transformations of {1} we obtain

2
Cewdo=exp 3r0n(= 4402 )= T 0,00~ ) +60 3

'<exp%;i~i(s,(—A +m2)_1w)>0

and similar expressions for {e,e,..», and <e,,», where —A=0%0

[
2
w=Te, 0%, +9g"qu, and

Zf(s)exp(g;i(s,(—d +m?) ")+ ”—192 )
<f>e:

21 2
Sexp s a4y 1>+"—‘92 J
The imaginary “external field” in this model can be dealt with by a slight

modification of the definition of K, as in {1}, leaving unchanged all the estimates of
the preceding sections. Thus by (3.3) we have

'<ei(s,l+i')>0 _ <ei(s,A)>0 <ei(s,/l')>0| é Ce—ud(X,Y) eA(Elwxl +Zwi) (43)
. 2 2n .
with Zz?n(—z]—}—m ) lw, M= T( A+m?)~w, C and u as in Theorem 2 or

2ny & :
Theorem 3, and A= —;ZT/S 1, hoting that

2n B 27T ~
1A Jerd=H < T Yw, V(x—y)let= —T“Sl 2w
x xy x
Moreover, we can use the inequality |e* — 1] <wel!! for 0Sa =1 to prove
|eT— Yw,(—d4+m2)~ 1wy _ 1| ée_”d(X’Y) prl Z V(x_y)eulx—yl IWxW;l

xy
so that

1
expﬁ(w+w’,(—A+m2)‘1(w+w'))

1
—exp 5 (w, (— 4 +m*) I w)+ (W, (— A +m?) "1 w)

gexp%((w,(—zl +m2) " Iw)+ (W, (=4 +m?) " Iw)

428, (w, w) 2 (W, W) /2) e~ HiX D)

<expB((w, w) + (W', w'))e HX.T) 4.4)
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. 1 ~
with B= ﬁ(m‘ 2+5,). Putting together (4.3), (4.4) and easy bounds on w and w’

in terms of u, v, ¥’ and v/, and noting that Y lu,| <(u, u) because the u, are integers
(and similarly for ', v, and v,), we obtain (4.2).

For this model the condition (10.6) is true if m*>10.4 (so that V(0)—2S,

>2]/§; holds) and g~ 2 is sufficiently large (with a bound approaching 0.2 as
m— o).
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