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Abstract. By applying the theory of linear positive operators in a Banach
space we derive spectral properties of certain composition operators in the
Banach space A^(Ω) of holomorphic functions over some domain ΩQ(£n.
Examples of such operators are provided by the so called generalized transfer
matrices of classical one-dimensional lattice systems.

Introduction

It was shown in a series of papers [1-5] how one can define generalized transfer
matrices for one-dimensional classical lattice systems even if the interaction
between spins on different lattice sites is not of finite range. These transfer matrices
are given as abstract linear trace class operators acting in Banach spaces of
holomorphic functions of finite or infinite many complex variables. The general
form of such a transfer matrix T is given as follows

Tf(z)= Σ φk(z)foψk(z). (1)

In (1) the functions φk and/are holomorphic in the variable zeΩ, where Ω is some
open bounded region in <£n or in some complex Banach space B. The ψks are
holomorphic mappings of Ω into itself, such that T defines a linear operator in the
Banach space A^Ω) of holomorphic functions over Ω. It was shown in [5] that
under certain conditions on the mappings t/;k the operator T as defined in (1)
defines a nuclear operator of order zero which insures that T and all powers Tn,
n ^ 1, have a trace.

In statistical mechanics one knows that the physical properties of a system
which allows for a transfer matrix T are determined by the spectral properties of
this operator [6]. For the one-dimensional systems for which a transfer matrix as
in (1) exists one knows from different methods that all thermodynamic potentials
are analytic functions in all parameters of interest, like for instance the tempera-
ture. This reflects the fact that such a system does not have a phase transition.
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From this one expects that the highest eigenvalue of T is in fact analytic in such
parameters.

Now it is amusing to see how one can derive such spectral properties directly
for operators of the kind defined in (1). It should be clear that there is some
mathematical reason why this class of operators shows such a spectral behaviour.
This is the problem we want to discuss in this paper. We will show that there is a
wide class of what we shall call composition operators which show all the same
spectral behaviour.

The method which we shall apply is the theory of positive operators in a
Banach space which leave a cone invariant. This is a generalization of the well
known results of Perron-Frobenius [7] on positive and strictly positive matrices in
finite dimensional spaces and of Jentzsch [8] on integral operators with positive
kernel. The theory as we use it here was mainly developped by Krein and Rutman
[9] as well as by Krasnoselskii and Ladyzenskii [10]. The last mentioned authors
have studied the so called w0-positive operators which have properties similar to
those of strictly positive matrices in finite dimensional spaces.

The main part of this paper will in fact be to show that operators T as in (1) give
rise to such t/0-positive operators.

For the readers convenience we will repeat in a first section very briefly the
main definitions and results on positive and t/0-positive operators in a Banach
space B.

In a second section we will then show how our composition operators Tin (1)
fit into this scheme. We will discuss under what conditions on the φk and the ψk the
operator T defines an ti0-positive operator. For these operators then we get
immediately the spectral properties we expected.

We will restrict ourselves in this paper to the case where Ω is an open, bounded,
simply connected region in (Γn with n< oo. The case ΩcB with B some complex
Banach space can be treated in a similar way if one changes the arguments in the
appropriate way as we did already in [5].

I. Positive and w0-Positive Operators

Let B be a Banach space, complex or real, and let K be a proper cone in B. (For
more details see for instance [11] or [12].) The cone K is called reproducing if
B = K — K. The cone K defines a partial ordering ^ in B\ x^y iff y — xeK. A
linear operator T.B-+B is called a positive operator iff TKcK, that means T
leaves the cone invariant. Let uoeK, uoή=0. The positive operator T is called
wo-upper bounded if there exist for every x e X , x φ 0 a natural number p ^ 1 and a
strictly positive number a > 0 such that

T*x^αu 0 . (2)

In a similar way Tis called w0-lower bounded if there exist to every xeK, xφO a
natural number q ^ 1 and a strictly positive number β > 0 such that

β0. (3)

A very interesting class of positive operators were introduced in [10]. They are
the w0-positive operators and are defined as follows:



Spectral Properties in Statistical Mechanics 3

Let UQEK, M 0 ΦO. A positive operator Tis called ι/0-positive if there exist for
every xeK, x + 0 a natural number p ^ 1 and positive numbers α,/?>0 such that

βuo^Tpx^auo. (4)

One can show [13] that every positive operator which is wo-upper and lower
bounded is u0-positive. For these operators the Perron-Frobenius and Jentzsch
Theorems have a natural generalization:

Theorem A. Let K be a reproducing cone in the real Banach space B. Let T.B-+B
be a u0-positiυe compact operator in B. Choose p and β>0 such that Tpu0^.βu0.
Then

a) there exists exactly one eigenvector x0 of Tin K, Txo=λoxo with λ0 strictly

positive and λ0 Ξ> \fβ.
b) λ0 is a simple eigenvalue and all other eigenvalues of T are in absolute value

strictly smaller than λ0.

The proof of this theorem can be found in the book of Krasnoselskii [14].

II. The Spectrum of Some Composition Operators

Let Ω be some open, bounded, simply connected domain in <C". We denote by
A^Ω) the Banach space of holomorphic functions on Ω which are continuous on
Ω together with the sup norm. Let zoeΩ. Then we denote by ΩR(z0) the set

ΩR(z0): = (zo+W)nΩ. (5)

We remark that ΩR(z0) is a set of uniqueness for every feAΎj{Ω) [15]. Furthermore
we define the following real subspace AJ^lR{z^) of the space AJ^Ϊ)\

ΛJΩ^z0)): = {feAJΩ) :f(z)eWzeΩR(z0)}. (6)

Clearly A^Ω^ZQ)) is a real Banach space with the induced sup norm.
We define next an open set A^{ΩR(z0)) in A^R(z0)):

)}. (7)

Finally we denote by Hin(Ω) the set of all holomorphic mappings ψ :Ωί-+Ω where
Ωx is some open neighbourhood of the closure Ω of Ω.

Let ψeHin(Ω). Denote by z* the unique fixed point of ψ [16]. Let ΩR(z*) be
defined as in (5). In what follows we are mostly interested in the following subset
HS(β)ofthesetH i π (Ω):

Hfn(Ω): =

Let φ k , ίc=l, . . . ,mbe elements in the set Hfn(Ω) such that there exists a k0 with the
property that for all k = 1,..., m we have zf e ΩR(z%o). We then denote this set simply
by ΩR.

00

Let α = (α l 5 α2,...), α e N, be a multiindex such that |α| = ^] αfc < oo. We denote
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then by ψΛ> 'α™ the following holomorphic mapping of Ω into Ω:

Under the above assumptions it is clear that ψ;αi' 'α m is an element of the space

Let feArJΩ). Let H be some region with HcΩ. Let G l 5 . . . , Gr be the (2n-2)-
dimensional analytic nullsets of / in H [17]. We call the mappings
φ 1 ? ...,ψmeHfo(Ω\ such that z*eΏR for all k, separating if the following is true:

There exists for every H a natural number N0<co such that for N^N0 and

every zeίϊnΩ^ with ψ*ι--*m(z)e (J G^nΩ^ for some α l 9 . . . 9αO T with ]Γ |a f | = N5

ί=l

m

there exists another mapping ψβl βm, £ |β.| = JV, such that ψβu-'βrn(z)φGinΩR for
ί==1

After all these definitions we can now formulate our main theorem.

Theorem B. Let ΩcC" be an open, bounded, simply connected domain. Let
ψί,...1xpmeHfn(Ω) such that z*eΩR for all fe = l w. Let φ^A^Ω^rλAJΩ^
with ΩcΩv Define the linear operator T'.A^Ω^A^Ω) by

(TT)(z):= Σ<Pi(z)f°ΨiW (9)
ί= 1

Assume that the mappings ψk are separating in the sense explained above. Then the
m

highest eigenvalue λ0 of T is strictly positive and simple. We have λ0 ^ min £ Ψki2)-
zeΩu k= 1

All other eigenvalues of T are in absolute value strictly smaller than λ0.

We are going to prove Theorem B in several steps which we formulate as
lemmas.

Lemma 1. Let the assumptions of Theorem B be valid. Then the operator T defines a
nuclear operator TR of order zero in the real Banach space A^Ω^) whose trace is

m

given by trace TR= £ ^(z^det ί l-^*))" 1 -
fc=l

Proof The proof follows immediately from the proofs of the same statements
about the operator T in the space A^Ω) [5]. We have shown that T can be
represented in A^Ω) as

Σ\Qi\Λ<ϋ0 f° r a u < α > 0 a n d ffeA^Ω)*, feA^Ω) can be chosen such that

\\f*\\ = WfiW = l Now under the assumptions of Theorem B it is fairly easy to see
that in fact the ρ. can be chosen real, the f.eA^Ω^) and the /f* real valued on
^OO(^IR)- Therefore we have for the operator 7^ exactly the same representation.
This shows immediately that the trace of 7^ is equal to the trace of T which was
shown to be just the expression given in the lemma.
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We want to show next that the spectra of the operators Tand 7^ are the same.
First remember, that the spectrum of the operator 7^ in the real space Λ^Ω^) is by
definition the spectrum of the operator 7^ in the complexification A^Ω^)
+ L400(ΩR) of the space A^Ω^). It is clear that Tκ is also a nuclear operator of
order zero in this complex space which is trivially a subspace of the Banach space
AJΩ).

So every eigenvalue of the operator TR is also an eigenvalue of the operator Tin
AJΩ).

Denote by A the set of eigenvalues of T different from zero which are not
contained in the spectrum σ(TR) of TR. Because both operators are nuclear of order
zero we have

trace T,5= £ λn and trace T " - £ λn+ £ λn. (10)
λeσ(TR) λeσiT^) λeΛ

Because of Lemma 1 we then get for every n ̂  1

λeΛ

We show next

Lemma 2. Let A be a set of complex numbers such that Σ W < °° and Σ λn = 0

for all n^l. Then λ = 0 for all λεΛ.

Proof Because Σ W < °° w e know that for z small enough the following function
λeΛ

g is holomorphic:

y 1 v xn n

Because Σ λn = 0 for all n we have trivially g(z)=l. On the other hand we can
λeΛ

calculate for small enough z the right hand side and get
00 1

e x P Σ ~ Σ λnzn= Π (1-λz) *. (12)
« = 1 Π λe/1 λeτl

Because the left hand side is an entire function in the whole z-plane also the right
hand side must be entire. But this is possible only for 2 = 0 for all λeA. This shows
that the following lemma is true.

Lemma 3. The spectra of the operators T and TR are the same.

The discussion of the spectrum of the operator Tis therefore reduced to that of
the operator 7^ which we will do next.

Lemma 4. The operator TR :Aao(Ω1R)-+Aao(ΩjR) is u0-positive.

Proof We first define a cone K in the space A^Ω^):

for zeΩR}.
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It is clear that K is a proper reproducing cone in the space Λ^Ω^). Because
φk(z)>0 for zeΩR and ιpk(Ωκ)cΩR for all fc = 1, ...5m it follows also that 7^ leaves
the cone K invariant and is therefore positive. Let be wo = l the holomorphic
function constant one. Then clearly uoeK and w0Φθ. Let be feK and / φ θ .

Denote further by Mf:= sup\Tf(z)\. Then we have
zeΩ

T R / ^ M / M o , (13)

which shows that 7^ is wo-upper bounded. We want to show that 7^ is also
w0-lower bounded. For this we use the fact that for any holomorphic function / of
n complex variables z = (zv ...,zw) the set N(f)\ = {zEΩ :/(z) = 0} consists in every
region within its domain of holomorphy of a finite number r of (2n — 2)-
dimensional analytic sets Gl9...,Gr which do not have an accumulation point
within this bounded region [17]. Therefore also in every region H strictly
contained in ΩR there can be only a finite number r of analytic sets Gi: = GinΩR,
which are the intersection of the analytic sets G l 5 . . . , Gr of / in a set H in Ω such
that H

From the properties of the functions ψk it follows then that the function TRf(z)
has in the region Ω a finite number r of analytic sets Gt, i=l...r as its nullsets.
[Assuming that the functions φk(z) can also be analytically continued to a certain
neighbourhood Ω1 containing strictly Ω.] Therefore also in ΩR there are a finite
number r(f) of analytic sets G^G^Ω^ on which T^f{z) vanishes. We claim that
under the assumptions of the Theorem B there exists a p e N such that T&f has no
zero at all in ΩR. Let us assume that this is not the case. Then there exists to every
Ne N an analytic set G in Ω such that G = GnΩR is not empty and T^f(z) = 0 for
ZEG. Let us write explicitly the expression for T£f(z) which looks like this

The functions φα i !... j αjX) are certain products of the functions φk,k=l,...,m with
arguments \p^u-^m(z\ where β 1 ? . . . ? β m depend on α 1 ? . . . , α m in a certain way the
explicite form of which we are not interested. We only need that the functions
φ α i ? α m are all strictly positive on ΩR. Therefore on ΩR we find

T»f(z) = 0^(TRf)(ψ«- ^(z)) = 0, (15)

where the mappings ψ*i>->a™ had been defined in (8). Therefore 7^/vanishes on all
ψau-^m(G). Because the ψk,k=l,..., m, have been chosen as separating we can find
for zeG a p>0 with ψ^u-^m(z)φGi for all l^i^r with some β1? . . . ,β w with
|β j + ... + | β j =p. But this is in contradiction to our assumption that the function
TRf(z) vanishes in ΩR just only on Gί5 z = l, ...,r(f). Therefore there must exist a

such that T£f(z) does not vanish on ΩR. Let be β:= min T£f(z). Because of

the above discussion we know β>0. Therefore we get
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This together with (13) shows that 7̂  is w0-positive in Λ^Ω^). Especially for/=w0

we get

m

V o ^ m i n £ Ψiiz)

Combining Lemmas 1, 3, and 4 we have proven Theorem B.

III. An Example from Statistical Mechanics

Consider a one-dimensional spin lattice system where the spin variable σ can take
on a discrete set σt , ie I of values. Assume that the interaction V of two spins σh σ}

at lattice sites separated a distance le N is given by

ί l (17)

and λk + λs for s + fc, c r eR
Then the transfer matrix L of this system has the following form [2]

L/(z1,...,zπ)= Σf({λkσj + λkzk})Qxp-σj £ crzΓ. (18)
jel r=ί

If one choses the open set Ω C (Cπ in an appropriate way [2] this L defines a nuclear
operator in AJ^Ω).

I £ \
lί we set φ,(z): = exp — σ, ) α l and wΛz) = ({λrσh + λ z }) for /CEJ we see

V r=i 7
that the assumptions of Theorem B are fulfilled. (We use λt φ/L̂  for at least one pair
of indices ijel to show that the ψk are separating.)

Our Theorem B shows therefore that the highest eigenvalue λ0 of L is simple
and in absolute value bigger than all other eigenvalues. Therefore λ0 is in fact
analytic in the constants cr which are the interesting physical parameters.

Let us finally add some comments. It is clear that one can handle in exactly the
same way as above also operators of the form

00

Tf(z)= £ φk(z)foψk(z), (19)
fc= 1

as long as this defines a reasonable compact operator. Another interesting case
arises if z is not any more in a finite dimensional complex space but varies instead
in some open bounded domain of some complex Banach space B. As we said in the
introduction also this case can be treated by the method explained above. One
only has to replace the statements about functions holomorphic in finitely many
variables by the analogous facts for holomorphic functions in Banach spaces, as
long as they are known. Otherwise one has to add to the formulation of Theorem B
the relevant assumptions which enable us to carry out the proof in a similar
way [5]. (We have in mind there especially the problem of sets of uniqueness
in Banach spaces.)
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That the property of the ψfc's of being separating is indeed necessary for
Theorem B to hold can be seen from the following example: Take the operator L
in (18) with n = 2 and cr = 0 for all r. Let λι =λ2 = λ. Then the mappings ψk are not
any more separating as can easily be seen. The operator L for this case looks like
follows:

(Lf)(Zl,z2)= Σfiλσj + λz^λσj + λzJ. (20)

There exist infinitely many eigenfunctions in the cone K which are given by the
functions fn{zι,z2) = {zί—z2)

2n. The corresponding eigenvalues are just λn = \I\λ2n.
So the unicity of the positive eigenvector is lost. What presumably is still true is

the fact that the highest eigenvalue is still simple. But this we can not show by our
method.
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