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Abstract. We have calculated the exact factorised S-matrices of the adjoint
SU(N) representation in 1+1 space-time dimensions. Besides the trivial
solution the only realised solution exhibits an O(N?*— 1) symmetry.

1. Introduction

Recently a lot of work has been done [1-7] in calculating exact factorising S-
matrices in two dimensions and investigating their relationship to quantum field
theoretical models. In the present paper we calculate the factorising S-matrix for
particles which transform under the adjoint representation of SU(N).

Our interest in the S-matrix of the adjoint SU(N) representation was stimu-
lated by recent investigations [8-10] on CP¥~! models which were introduced by
Eichenherr [8]. These models are in their construction similar to the nonlinear o-
model in two dimensions. In the nonlinear o-model the interaction is introduced
by restricting the (classical) field to an orbit of O(N); in analogy the interaction of
the CPV~! models is introduced by the geometrical constraint of restricting the
classical field to an idempotency orbit of the adjoint representation of SU(N) [8&].
Much of the interest in the nonlinear g-model in two dimensions is motivated by
the analogies found with respect to the Yang-Mills theory in four dimensions. For
the CPY~ ! models this analogy goes even further. In particular the CP¥ ! models
possess instanton solutions for all N and the instanton effects can be investigated
within the 1/N expansion [10]. The theory can be rewritten as an abelian gauge
theory [9,10] and the fundamental fields are then confined by a topological
Coulomb force.

In complete analogy to the O(N) g-model the CP¥~! models exhibit higher
order local and non-local conservation laws. If the conservation laws survive
quantization and if the spectrum of outcoming particles has at the lowest level
only the adjoint SU(N) representation, then by arguments analogous to those first
worked out for the massive Thirring model [11] the S-matrix calculated in the
present paper describes the scattering of the mesons of the CPY~! models. Of
course more precise information concerning the spectrum — e.g. within the
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semiclassical approximation — is necessary for a complete specification and this is
currently under investigation.

We have obtained the (to us surprising) result that factorisation implies for the
S-matrix of the SU(N) adjoint representation an O(N? — 1) symmetry which goes
far beyong the assumed initial symmetry. The S-matrix in question is therefore
given by the result of Zamolodchikov and Zamolodchikov [2]. Our calculations
assume N = 6. Nevertheless we conjecture (from experience with prior calculations
[4]) the result to remain valid for some smaller N. Especially we like to mention
that for N=2 (but not for higher N) the classical CP¥~! model becomes
equivalent with the O(3) nonlinear g-model and a confinement discussion can also
be carried out on the S-matrix level [12].

For clarity our result is stated as a theorem in Sect. 2 where also the notation
is introduced. Section 3 is concerned with the proof. Some technical details
concerning unitarity and the factorisation equations are relegated to the
Appendices A and B.

2. Notation and Result

For a reason outlined in the introduction we are interested in elastic scattering of
the adjoint representation of SU(N). We introduce the matrix elements

C(PYUPY)IIP ) J(Po))" = -vSk,(G)é(pi —D04)0(25—D»)

k,(9)5@1 ) (pz P1)a 1
where
P.P
cho=—2.
For convenience we define:
i k
awzmﬁzswwz&x&z j'alazlﬁIBZ/{V:kyzlalﬁz ij
_ 1 k
/1;1012/1131!32/1?2?112251 ij (2)

The 2’s are the Hermitean traceless Gell-Mann A-matrices and * denotes complex

conjugation. , .., .S, s 5, fulfils the following properties:

a) Tracelessness:
N
Y N =0 etc. (3a)

aef1f2" 71720102
a=1

b) Symmetry:

= S 0182551920100 = B1paarasSs1629172 (3b)
¢) Crossing:

ijSkl(e) = ilSkj(in - 9)m¢z1a2ﬂ 1I32SY1}’25152(9) = /110(25251S? 172P28 1(in - 9) . (3C)
d) PT invariance: (follows also from c)

ijSkl = SU a;azﬁlﬁzsvwﬁléz '}’2}’1525180(2“1[32/71 . (3d)
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¢) Hermitean analyticity:

ijSkl(o)* = ijSkl( - 0*)wa1012/31/32871)'25152(0)* = aza1p28 1S)'2715251( - 0*) . (36)

Here we have used the completeness relation of the A-matrices.
i 1
Aughys =2 (5@67,} — ]—V—éaﬂéyé) ,
Tr A =26Y.

f) Elasticity unitarity: Assuming absence of other particles degenerate with the
adjoint representation under consideration

ijSkl(B)lemn( - 9) :5im5jn

S 0)

m“lazﬂ 182 Ylyzﬁléz(g)ywzﬁ 162881827( 1Kz( -

1 1 1
:1—6 (60(181501282_ Namazéslez) (5,3”(15[32,(2— Néﬂlﬁzémkz)' (3f)

There are (for N=4) 24 independent products of four o-functions and the
associated amplitudes are related by (3a)-(3f). They are assumed to be meromor-
phic functions of 6 and (3e) ensures the usual Hermitean analyticity. We define the
amplitudes by the following formulae; their graphical representation which is
often convenient to use is given in Fig. 1

by nnSo = A 808,08 8,0 +B S, .0

210281825 71728102 a2 B1B2"y1y2 a1f2” a2

B
4 C18y005.5.005.0,5 4 Cyd, 18,05
s
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710277201

=
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=
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+ Gl 50!1?15azv25ﬁ151513262 + G25 0 0

2101722027 B1y1
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In addition to (3a)—~(3f) the requirement of factorisation gives the equation
ijSlm(B)lkSpn(e + 6/)mnSqr(B,) = nlSpq(e)imSnr(e + 9/)ijlm(9/) : (Sa)

Using completeness and tracelessness of the A-matrices (5a) becomes equivalent to
(5b):

amzﬂxﬁzsa 1a2b1b2(9)a 1a2y 172S6 1626162(9 + 01)b1b2€1czsu 1#2\’1\*2(0,)
(5b)

— /- A
- Clcza1a2S5152111#2(9)a1a2b1bzsc102v1v2(9 +0 )ﬂlﬂzh}’zsawzhbz(e ) .
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The symmetry (3b), trace (3a) and crossing (3c) conditions imply (cf. Sect. 3)

1 .
A== (C+C+D),  B=—(NC+2E)

F,=F,=—(NE+F+F)
G,=—(ND+2E), G,=—(NC+2E), (6)
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where we have introduced the notation: f(6)=f(in —6).
We are now ready to state our Result.

Theorem. For N =6 the only solutions of Eq. (3a)~(3f) and the factorisation Eq. (5)
are the trivial solution,

C=E=F=0 (7)
ijSkl = _ND(Sikéjl
with

DO)D(—0)= %

the Zamolodchikov [2] O(N?—1) solution,

E=F=0
ijSkl: _N(Déikajl+C5ij5kl+ééi15jk) (8a)
with
& 2mi 1 R 0>
b= N3 NPOPEO=
(N7 =3
and the Hortagsu et al. [13] O(N? —1) solution,
E=F=D=0
Siu=—N(C3,0,,+C5,8,) (8b)
with
shv—
C in N2 — 5 v A
N — . C - = 1 .
¢ si—gim M= MO

3. The Proof

It is easily checked that (7) and (8) are solutions. We now prove that these are the
only solutions.
Symmetry (3b) yields for N >4

E,=E, E,=E, E,=E, E.=E,

D,=D,, D,=D, F,=F, F,=F,. ®)
Crossing (3¢) implies
A=A4,B=G,, C,=D,, C,=D,, D,=D,, D,=D,
\=E, E,=E E,=E4 E,=E, (10)
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Fig. 2

The trace condition (3a) gives 24 (in part dependent) Egs. (cf. Fig.2). Putting
symmetry, crossing and trace equations together we are left with 4 independent
amplitudes
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and the remaining amplitudes determined by (6).
From the unitarity Eq. (3f) we obtain six invariant amplitudes

UO)U(-0)=1

i=1,...,6.

0=NA+C 4Dy +D,

0=B+NC,y+Eg +E,

0= NDy +Ep +E4 +Gy

0= ND3+E +E5+Gy

0= NEg+Fy +Fa+H,

0 = NEg +Fp +Fj, +Hy
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As shown in Appendix A they are (N =4 assumed):

U,=NC—ND

U,=NC—ND+N?E+NF+2NF

U,=NC+ND+4E+2F

U,=NC+ND+4E—2F

U;=NC+ND+N?E+NF

U,=NC+ND+4N’E+2NF+N(N>—1)C. (12)
Finally we have to make use of the factorization Eq. (5). This is the technically
most involved part of the proof. For N=6 the products of six J-functions
remaining at the end of the calculation are all independent and we obtain 6!=720
equations with 2x 24%=27,648 terms involved. Using an algebraic computer
program [147] we have calculated all these equations. Fortunately there are some
very simple equations involved which give serious restrictions on the amplitudes
leading immediately to the theorem. After sorting out the configurations of -
function indices of these equations by the computer they can be checked by hand.
Therefore we forget in the following presentation about the involved computer

work.
First consider the coefficient of

8Oy uersOsvaOpansd

a10198191%271961v29B212%7282

as shown in Appendix B this yields the simple equation,

H,F,G;+G,F;H}3=0, (13)
where we have used the notation.

[=f0+6) f=£0).
It follows

H,=0 or G,=0 or F;=0.
Case!. H,=0 ie. F=0.
By the method of Appendix B the coefficient of

0y.5:98:6:007:0u12:0v.5,0

a1f2” f101%a2y1Y uip2Yvi62Y yava
is calculated to give,
NE F\D|+(H,+F,+F,)F\D|+E4F|(E{+E})+F,G\E{+F,BE7.
=FE.B'H. (14)
Then:
F=0=F,G\E;=0=EG,E"=0
=E=0 or G,=0
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E=F=0 implies the solutions (8) or trivial (7) solution. F=G,= 0 through
unitarity =E =0=D =F which implies the Hortagsu et al. [13] solution.

Case2. G,=0.
The coefficient of 6, 6, , 0, 0

a1yl vivy

S, 8, yields

d1vaYasuz f202

G,F,G{=H,F,F,+G,G\F;. (15)
Then [via (6)] G, =0=F=0, i.e. reduces to a subcase of 1.
Case3. F;=0.

The coefficient of 6, 6

aipr’ozfy

8, 8, 8 5 yields

Bav1¥o112”v162%y2v2
F,F\G|+F,BH|=F,G\F|+F,BF,+NE,F\E:
+(F,+H,+F,)F\E;+E,F|(F| +H,+F%). (16)
Then
F,=0=EF'E"=0.
Now
F=0=F,=E=0=-solution (7) or (8),
and
E=0, F=—F+0 contradicts unitarity.

This concludes the proof.

Acknowledgement. We thank M. Karowski, V. Kurak, and B. Schroer for discussions.

Appendix A

Starting from unitarity (3f) we prove Egs. (10) and (11) for the invariant
amplitudes. We have

510 = Koo Mo Ay S (A1)

201" B2B17 17270102 122182 y1720162 ¢
Using
- 4
(A = 20,00+ 2+ 1fi) Aoy + i) (A2)
and (2), (4), and (6) we obtain
ijSkl:S15ij5kl+S2%(5ik5jl+5jk5il)
+ S3(dikndjln + djkndiln) + S4 dijndkln
+A1%(5ik5jl_5jk5il)+A2fijnf;cln (A~3)
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with
S, = —NC—4E— 2 F
b N

N 4 .
S,=—-NC—-ND—4E+ F
S,=F
S,=—NE—2F
A, =NC—ND
A,=NE+2F+F.

(A4)

The unitarity relation (5a) together with the identities

N
fplq.f;l]r-f;'kp - f;jk

N
dpiqqurfrkp == Tdi jk
A5
(N 4) (A.5)
ptq qufrkp 2N fijk

(N 2 12)
dpiqdqudrkp = —2N— dijk
(N?—4)

N
2
dikmdjlm - dilmdjkm =fijmfklm - N

( 4)
lkp le(dkmq Ing + dknq lmq) N7 (5116mn +3 [51m jn + 51n51m])

o1
TN i

now ylelds the invariant amplitudes (11) U, i=1, ..., 6 corresponding to the SU(N)
representations occuring in the product of two adjoints:

LNZ=D)(N*—4)PL(N*—1)(N*—4), N?*-—1 (antisymmetric)
IN?2(N=3)(N+1), #N* N+3)(N—1), N?*—1 (symmetric), (singlet)

fijkfljk Nézl?dukdljk 5il’6ii=N2_1

(5ik5 jl “?ilé jk)

(dd+dd)

mmg " jnq tng ~" ymq

respectively.
To make sure that we have done no algebraic error we have checked the final
result with the algebraic computer program [14].

Appendix B

We demonstrate the calculation of simple J-function coefficients from the
factorisation Eq. (5b) for

0141058:5:04..05 5,0

a1 frviraryi Y d1va ﬂzuzavzéz‘
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XOXE) X X

Let us choose the indices to be (N =6)

Fig. 3

wy=p =1, By=v,=2, y,=0,=3, 6,=v,=4, B,=p,=5, y,=06,=6.
The Eq. (5b) reads

' " _ ' "
1325Sa1a2b1bza1a236 46¢c1cabibacic2¥ 1524 —clczalazs4615 13b1b280102242536Sa1azb1bz .

Inspection of the first and last factors shows that contributions to the left hand
side can only come when simultaneously {a,,b,}=1{1,2}, {a,,b,} ={3,5}, {b;,c,}
={1,2}, {b,,c,} ={4,5}. This implies b, =5,a,=3,c,=4and b, =1,a,=c, =2 or
b;=2,a,=c,=1.

Thus the left hand side is given by

’ " 7 "
1325S2315 233654624 1524S1524 + 1325S1325 1336S46142514S1524

or diagramatically by Fig. 3. Similarly the rhs can only give non-zero contributions
if simultaneously

{a;,c.}=1{1,4}, {ayc,}=1{5,6}
{a;,b,1=1{23}, {a,,b,}={5,6}

has solutions, which is obviously not the case. Hence we obtain the restrictive Eq.
(12).
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