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Abstract. We have calculated the exact factorised S-matrices of the adjoint
SU(ΛΓ) representation in 1 + 1 space-time dimensions. Besides the trivial
solution the only realised solution exhibits an 0(N2 — 1) symmetry.

1. Introduction

Recently a lot of work has been done [1-7] in calculating exact factorising S-
matrices in two dimensions and investigating their relationship to quantum field
theoretical models. In the present paper we calculate the factorising S-matrix for
particles which transform under the adjoint representation of SU(JV).

Our interest in the S-matrix of the adjoint SU(JV) representation was stimu-
lated by recent investigations [8-10] on CPN~1 models which were introduced by
Eichenherr [8]. These models are in their construction similar to the nonlinear σ-
model in two dimensions. In the nonlinear σ-model the interaction is introduced
by restricting the (classical) field to an orbit of 0(N) in analogy the interaction of
the CPN~1 models is introduced by the geometrical constraint of restricting the
classical field to an idempotency orbit of the adjoint representation of SU(ΛΓ) [8].
Much of the interest in the nonlinear σ-model in two dimensions is motivated by
the analogies found with respect to the Yang-Mills theory in four dimensions. For
the CPN~1 models this analogy goes even further. In particular the CPN~1 models
possess instanton solutions for all JV and the instanton effects can be investigated
within the ί/N expansion [10]. The theory can be rewritten as an abelian gauge
theory [9,10] and the fundamental fields are then confined by a topological
Coulomb force.

In complete analogy to the 0(N) σ-model the CPΉ~l models exhibit higher
order local and non-local conservation laws. If the conservation laws survive
quantization and if the spectrum of outcoming particles has at the lowest level
only the adjoint SU(A^) representation, then by arguments analogous to those first
worked out for the massive Thirring model [11] the S-matrix calculated in the
present paper describes the scattering of the mesons of the CPN-1 models. Of
course more precise information concerning the spectrum - e.g. within the
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semiclassical approximation - is necessary for a complete specification and this is
currently under investigation.

We have obtained the (to us surprising) result that factorisation implies for the
S-matrix of the SU(JV) adjoint representation an 0(N2 — 1) symmetry which goes
far beyong the assumed initial symmetry. The S-matrix in question is therefore
given by the result of Zamolodchikov and Zamolodchikov [2]. Our calculations
assume N ̂  6. Nevertheless we conjecture (from experience with prior calculations
[4]) the result to remain valid for some smaller N. Especially we like to mention
that for N = 2 (but not for higher JV) the classical CPN~l model becomes
equivalent with the 0(3) nonlinear σ-model and a confinement discussion can also
be carried out on the S-matrix level [12].

For clarity our result is stated as a theorem in Sect. 2 where also the notation
is introduced. Section 3 is concerned with the proof. Some technical details
concerning unitarity and the factorisation equations are relegated to the
Appendices A and B.

2. Notation and Result

For a reason outlined in the introduction we are interested in elastic scattering of
the adjoint representation of SU(JV). We introduce the matrix elements

where
^ *i)> (1)

chθ=i±L2.
wr

For convenience we define :

__ ι_;ί j fc z c n\
— \6Aaίa2Aβiβ2Λy2yιAδ2διίΓkl' V-)

The 1's are the Hermitean traceless Gell-Mann /l-matrices and * denotes complex
conjugation. ΛίΛ2βίβ2Syίy2δίδ2 fulfils the following properties:

a) Tracelessness :
N

Σ ««MAm^2 = ° etc (3a)
α = l

b) Symmetry:

c) Crossing:

ijSkl(θ) = A/™ - θ)^10ί2βlβ2Sγιγ2δlδ2(θ) = Λί«2δ2δlSγιγ2β2βί(ίπ - θ) . (3c)

d) PT in variance : (follows also from c)
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e) Hermitean analyticity :

ίjSkl(ty* = ίjSkl(~θ*^aίa2βιβ2Sylγ2διδ2(ty*=a2aιβ2ββy2yίδ2δι(~θ*)' V^6)

Here we have used the completeness relation of the /l-matrices.

ί) Elasticity unitarity : Assuming absence of other particles degenerate with the
adjoint representation under consideration

(3ί)

There are (for N ^4) 24 independent products of four (5-functions and the
associated amplitudes are related by (3a)-(3f). They are assumed to be meromor-
phic functions of θ and (3e) ensures the usual Hermitean analyticity. We define the
amplitudes by the following formulae; their graphical representation which is
often convenient to use is given in Fig. 1

Dl δaίa2

δyίy2

δβίδί

δβ2δ2+ D 2

In addition to (3a)-(3f) the requirement of factorisation gives the equation

,jSlm(θ)lkSpn(θ + θ')mnSqr(θ') = nlSM(θ\mSm(θ + θ')jkSlm(θ>) . (5a)

Using completeness and tracelessness of the A-matrices (5a) becomes equivalent to
(5b):

Λ\&2βlβ2 a\Cl2b\b2^ 'a\a2yij2 δ\δ2C\C2\ Jb\b2C\C2 μiμ2VlV2\ '
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The symmetry (3b), trace (3a) and crossing (3c) conditions imply (cf. Sect. 3)

Dί=D2 (D = D)

), B=-(NC + 2E)

(6)
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where we have introduced the notation : f(θ) =f(in — θ).
We are now ready to state our Result.

Theorem. For N^.6 the only solutions of Eq. (3a)-(3f) and the factorisation Eq. (5)
are the trivial solution,

C = E = F = 0 (7)

with

the Zamolodchikoυ [2] 0(N2 — 1) solution,

£ = F = 0

ySH = - N(Dδtkδfl + Cδtjδu + Cδuδjk) (8a)

with

(7V2-3)2

and the Hortacsu et al. [13] O(N2 — 1) solution,

E=F=D=Q

i f t) (8b)

3. The Proof

It is easily checked that (7) and (8) are solutions. We now prove that these are the
only solutions.

Symmetry (3b) yields for TV ̂ 4

D1=D2, D,=D4, F^F2, F3=F4.

Crossing (3c) implies

A = A,B = G2, Cγ=D^ C2=D4,D1=D1, D2=D2

(10)
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Contract a1 a2 Contract β1 β2

0=B*NC 1 *E 1 *E 3
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Contract γ γ Contract

0 = ND, *E1 +£5*6! J)^ 0 = N D 2 * E 2 + E 4 <

^ 0 = ND A *E 2 *E A *G 2

Fig. 2

The trace condition (3a) gives 24 (in part dependent) Eqs. (cf. Fig. 2). Putting
symmetry, crossing and trace equations together we are left with 4 independent
amplitudes

C,D,E,F with D = D,E = E

and the remaining amplitudes determined by (6).
From the unitarity Eq. (3f) we obtain six invariant amplitudes

θ) = l i=l, . . . ,6. (11)
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As shown in Appendix A they are (N^4 assumed):

Uί=NC-ND

(12)

Finally we have to make use of the factorization Eq. (5). This is the technically
most involved part of the proof. For N^6 the products of six (5-functions
remaining at the end of the calculation are all independent and we obtain 6 ! = 720
equations with 2 x 243 = 27,648 terms involved. Using an algebraic computer
program [14] we have calculated all these equations. Fortunately there are some
very simple equations involved which give serious restrictions on the amplitudes
leading immediately to the theorem. After sorting out the configurations of δ-
function indices of these equations by the computer they can be checked by hand.
Therefore we forget in the following presentation about the involved computer
work.

First consider the coefficient of

as shown in Appendix B this yields the simple equation,

H^G'ί + G^H'^O, (13)

where we have used the notation.

f=f(θ + θ') f"=f(θ').

It follows

#2=0 or G 1=0 or F 3=0.

Casel. Ή2 = 0 i.e. F = 0.

By the method of Appendix B the coefficient of

^Λίβ2^βίδι^ai2yi^μiμ2^vlδ2^y2V2

is calculated to give,

NEsF
t

1Dl+(H2+F2+F4)Fr

1Dl + E8F1(E£ +E;) + F4G'1E£ +F2BΈ'!, .

= EsBΉ'ί. (14)

Then:

F = 0=>F4G
/

1E5=0=>EG/

1E
// = 0

=>E = 0 or G=O
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E = F = Q implies the solutions (8) or trivial (7) solution. F = Gl = 0 through
unitarity =>E = Q = D = F which implies the Hortaςsu et al. [13] solution.

Case 2. 0^=0.

The coefficient of δaιμιδβιy2δnvιδδlV2δΛ2μ2δβ202 yields

'1Fi'. (15)

Then [via (6)] G1 =0=>F = Q, i.e. reduces to a subcase of 1.

Case 3. F 3=0.

The coefficient of δΛιμιδΛ2βίδβ2yιδδιμ2δVlδ2δy2V2 yields

Then

F3=0=>EFΈ"=0.

Now

F = 0 = F3=>E = 0=>solution (7) or (8),

and

£ = 0, F= — F φ 0 contradicts unitarity.

This concludes the proof.

Acknowledgement. We thank M. Karowski, V. Kurak, and B. Schroer for discussions.

Appendix A

Starting from unitarity (3f) we prove Eqs. (10) and (11) for the invariant
amplitudes. We have

..S = λl λj λk λl S (A.I)

Using

λWλ1 = δtjδu + 2 (dijn + ifίjn) (dkln + ifkln) (A.2)

and (2), (4), and (6) we obtain

ijski = sιδίjδki + S22(δikδji + δjkδu)

+ S3(dikndβn + djkndiln) + S4 dίι/πdfc/w

! ϊ(δikδβ - δjkδu) + ̂ 2 fίjnfkln (A.3)
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with

S = -NC-4E-^-F
N

S --NC-ND-4E+ — F2 N
S3=F

(A.4)
S4=-NE-2F

A^NC-ND

The unitarity relation (5a) together with the identities

N

T
f f f = — — f.

J pίqJ qjrJ rkp -Λ Jijk

, f f _ _ _ ,
apίqJqjrJrkp ^ lJk

(A.5)
(JV2-4)

A A f _ !_ JZ f
piq qjrJrkp Γ J lJk

N

' N

JίjkJljk ~ ̂  ^iZ> dijkdljk ~~ '

dίkmdjlm ~ dίlmdjkm = JίjmJklm ~ T7 (°ίk°jl ~ δίl(

- 4)
dikpdjlp(dkmqdlnq + dknqdlmq) = - 2 - (δijδmn + 2 tδimδjn + δinδjm\

-16)
^jmq) "̂  ^V ίJQ m»q

now yields the invariant amplitudes (1 1) [/., i = 1, . . ., 6 corresponding to the SU(ΛΓ)
representations occuring in the product of two adjoints :

±(N2 -1) (N2 - 4)0 ±(N2 -1) (N2 - 4), ΛΓ2 -1 (antisymmetric)

iΛΓ 2(ΛΓ-3)(JV+l), iΛΓ2(ΛΓ + 3)(N-l), ΛΓ2-1 (symmetric), (singlet)

respectively.
To make sure that we have done no algebraic error we have checked the final

result with the algebraic computer program [14].

Appendix B

We demonstrate the calculation of simple <5-function coefficients from the
factorisation Eq. (5b) for
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Fig. 3

Let us choose the indices to be (N Ξ> 6)

a1=μ1 = l, βί=v1=2, γί=ot2 = 3, δ1=v2= 4, β2 =

The Eq. (5b) reads

o/ n// o o/

Inspection of the first and last factors shows that contributions to the left hand
side can only come when simultaneously {al9bί} = { ί ί 2 } , {α2,b2} = {3, 5}, {i^,^}
= {1,2}, {fo2,c2} = {4, 5}. This implies b2 = 5, a2 = 3, c 2 =4and b1 = l,al=cl=2 or
&!=2, a1=cl = l.

Thus the left hand side is given by

o rr/ o// _|_ C C" C"
132 5° 2315 2336°4624 1 524°1 524 ~r 1325°1325 1336°4614 25 14° 1 524

or diagramatically by Fig. 3. Similarly the rhs can only give non-zero contributions
if simultaneously

has solutions, which is obviously not the case. Hence we obtain the restrictive Eq.
(12).
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