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Introduction

Consider the familiar principle that typically (or generically) a system of m scalar
equations in n variables where m>n has no solutions. This principle can be
reformulated geometrically as follows. If S is a submanifold of a manifold X with
codimension m (i.e. m=dimX —dimS) and if f: R"—X is a smooth mapping where
m > n, then usually — or generically — Image fnS is empty. One of the basic tenets
in the application of singularity theory is that this principle holds in a general way
in function spaces. In the next few paragraphs we shall try to explain this more
general situation as well as to explain its relevance to bifurcation problems.

First we describe an example through which these ideas may be understood.
Consider the buckling of an Euler column. Let 4 denote the applied load and x
denote the maximum deflection of the column. After an application of the
Lyapunov-Schmidt procedure the potential energy function V for this system may
be written as a function of x and / alone and hence the steady-state configurations
of the column may be found by solving

av
0.1) G(x,A)=—(x,4)=0.
o0x
See for example [6, Sect. 6]. It is shown there that near the buckling point (which
we assume to be at 1=0) we may write
02) G(x,2)=x>—Ax+....

Moreover, the lowest order terms dominate so that the pitchfork x®—Ax=0
describes qualitatively the various steady-state configurations of the column near
the buckling point.
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The key word in the last paragraph is “qualitatively”. This word is interpreted
— in singularity theory — to mean “up to an appropriate change of coordinates”.
Our earlier paper [6] was devoted to the study of the machinery of singularity
theory in a context appropriate to steady state problems in bifurcation theory. In
particular, let &, ,, denote the space of germs of C* mappings of (R",0)—>R™. Then
a bifurcation problem is the solution to

0.3) G(x,4)=0

where Geé,,, , and (d,G)(0)=0. Here we assume that either G is obtained
directly or — as in the Euler column — as the result of the Lyapunov-Schmidt
procedure applied to some non-linear operator. In this context, we suggest that the
phrase “appropriate change of coordinates” be interpreted through the following
equivalence. Two bifurcation problems G, and G, are contact equivalent if,

(04) G,(x,)=T(x,1)-G,(X(x, 1), A1)

where X(0,0)=0, 4(0)=0, det(d,X)(0)>0, (2—11(0) >0, and for each (x, A), T(x, 4) is

an invertible m x m matrix.

In [6] we showed that the bifurcation equation for the Euler column is contact
equivalent to x> —Ax=0.

It should be clear from the above example that the set

(0.5) 0g={Heé,,, ,|H is contact equivalent to G}

should play a role in the study of the bifurcation problem G. A crude measure for
the complexity of the bifurcation problem G is the codimension of 0 in &, , ; .. In
[6] we gave a prescription for computing codim G. As a simple example, the
codimension of x*—/Ax was shown to be two.

Now suppose one actually performs the experiment of buckling columns. To
each column one assigns a potential function ¥ and a bifurcation problem G. Since
real columns tend to have imperfections one should not expect G to be equivalent
to the idealized problem G described above. Moreover, the principle ennunciated
in the first paragraph agrees with this comment. This principle also suggests that if
a pitchfork is to be observed experimentally — that is, a column found for which G
isin O — then one must vary a two parameter family of columns. For example, one
could add arbitrarily a central load and put an arbitrary initial curvature in the
column.

In general, if we let acR* represent the various auxilliary or imperfection
parameters then for each o one obtains a bifurcation problem G,. The total
experiment is then described by a mapping F :R*—¢, , , ,, defined by ar—~G,.

In this context, our stated principle is: the observation of a bifurcation
problem of codimension k by an experiment which varies fewer than k auxilliary
parameters is non-generic. This discussion suggests that contact codimension
measures the difficulty of observing a particular bifurcation problem.

In this paper we discuss several ways in which the contact codimension fails as
such a measure. These deficiencies are associated with both the way a particular
problem is idealized into a mathematical model and the mathematical assumption
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that the contact codimension is the relevant number. As the first deficiency is the
main topic of this paper, we illustrate it with a simple example.

As noted above the buckling of an Euler column yields a bifurcation problem
with contact codimension two; yet, in the idealized model there are no auxilliary
parameters. Our question is simple. Why does a mathematical model of codimen-
sion two appear when no extra parameters are varied? The answer seems to be in
the way the Euler column is idealized. In this model it is assumed that the potential
energy associated to a given configuration of the column u is the same as that of
—u. This means that the bifurcation problem G associated to this model must
satisfy

0.6) G(—x,4)=—G(x,4).

Clearly G(x, 1)= x> — Ax satisfies (0.6). We suggest that to apply the stated principle
to the idealized problem one must include the Z, symmetry which has been
imposed in the problem. The appropriate question is “what is the codimension of
0, in the space of germs satisfying (0.6)?” Care must be taken that the contact
equivalences which are used to define ¢, be restricted to those equivalences which
preserve the symmetry condition (0.6). This will be formalized in Sect. 1. In Sect. 2
we compute this new codimension for x*—/Ax and find that it is zero. So the
principle is satisfied when the restrictions imposed by the idealization are present.

Many authors [3, 5, 13-15, 18, 20] have realized the significance of imposing a
group of symmetries on the mathematical model for a given physical problem. Our
purpose here is to integrate the presence of a symmetry group with our approach
to bifurcation problems. The necessary hard mathematics has already been
formulated in the case that the symmetry group is compact. We restrict to this
case.

With regard to the Euler column, we emphasize that the dichotomy is caused
by idealization. Experimentally one rarely observes the pitchfork ; one usually sees
perturbations which have contact codimension zero. The reader is referred to
discussions in [9] and [3].

In the preceding discussion we have concentrated mainly on the framework of
singularity theory; now we focus on one of the major theorems, the unfolding
theorem. It follows from this theorem (in the contexts where it has been proved)
that if a germ f has codimension k then an arbitrary small perturbation of f may —
up to an appropriate change of coordinates — be written as

0.7)  f(xX)+a,p,(x)+ ... +ap(x)

where the p;’s are fixed perturbation terms and the g;’s are scalars which depend
smoothly on the particular perturbation. (0.7) is called a universal unfolding of f
and the a;’s are called the unfolding parameters.

The unfolding parameters themselves fall into two classes, modal and non-
modal. The modal parameters may be characterized by the fact that they
parametrize the largest family M of perturbations of f in (0.7) such that no two
perturbations in this family are equivalent. To illustrate this point we briefly
describe an example which is considered in more detail in Sect. 3. Let

(0.8) G(x,y,A)=(x>+y?+Ax,cxy+1y).
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We note that G satisfies the Z, symmetry relation

1 0

(0.9) (O 4

J- 6t =)= G232,
It is easy to check that as ¢ varies none of the problems (0.8) are equivalent by a
contact equivalence which preserves the symmetry relation (0.9). We also show
that the universal unfolding for (0.8) is

(0.10) F(x,y, A c, o, f)=(x*+y* + Ax +a,cxy +(A—2B)y).

We claim that ¢ is a modal parameter and that « and f are non-modal parameters.
This will be shown in Sect. 3.

Given a bifurcation problem G, its universal unfolding F, and the modal family
M define the module packet of G to be

(0.11) 0y ={Heé, , ,|H is contact equivalent to some member
of the family M}.

We follow Arnold [1] and take the view that the module packet @,, and not O,
contains all the bifurcation problems which are qualitatively similar to G. (Note:
Perturbations of He M may be different from perturbations of G as happens when
c¢=21n (0.8). However these differences occur on a subvariety and do not alter the
following discussion.) If this is the case then the codimension of @,,; that is, the
number [ of non-modal parameters, is the appropriate number to be used with our
stated principle. We shall try to make this point more clearly in our discussion of
the application of (0.8) to the Brusselator model considered in [16].

There are two justifications for considering [ rather than k as the relevant
number. First, if one considers an I-parameter family E :R'—¢&,, , . then generi-
cally Image ENn0,=0. Yet it is clear that Image En(,, may be non-empty in an
unavoidable manner. To avoid the module packet one must vary fewer than [
parameters. Second, the members of the modal family M although not equivalent
via smooth contact equivalences are topologically contact equivalent — at least in
the cases which have been analyzed. (More accurately, the module packet
decomposes into a finite union of semi-algebraic subsets which contain topologi-
cally equivalent problems.)

This behavior may be clarified by an analogy with systems of linear differential
equations, say

0.12) x=Ax.

The topological behavior of solutions of (0.12) is determined by the number of
eigenvalues of 4 with negative real parts. Although the eigenvalues of a perturbed
matrix A +¢B will be slightly different, there are large regions of the matrix space
where the topological behavior of (0.12) will be unaffected by such changes. In
addition, there are only a finite number of regions in this matrix space where the
topological behavior is distinct.

While pursuing this work we have benefited from the ideas of Sattinger
[13-15]. Sattinger makes the following two observations about bifurcation
problems with symmetry. First, the form of the Taylor expansion of such a
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problem is severely restricted making computations less difficult than the general
case. Second, the presence of a symmetry group often forces an eigenvalue of high
multiplicity in the bifurcation problem. (Note that in (0.3) n is the multiplicity and,
in practice, we only consider examples where n=m.) Generally the Taylor
expansions of problems with eigenvalues of high multiplicity (like 2 or 3) are
difficult to compute; the first observation states that the difficulties are perhaps
overstated.

We make a third observation ; namely, the presence of a symmetry group forces
an artificially high contact codimension. This observation should be compared
with Thom’s philosophy that only perturbations of problems with low codimen-
sion can be completely understood. We shall see that if one considers problems
with symmetry then there are many more problems which have low codimension —
at least in the symmetry class. For these problems, it is possible to describe
qualitatively all of the symmetry preserving perturbations; that is, the unfolding
theorem is true in this context. This is the main result of the next section. Of course
the complete description of all symmetry breaking perturbations is much more
difficult as here one must come to grips with problems of high contact
codimension.

The structure of this paper is as follows. Section 1 contains the theory of I'-
equivariant bifurcation problems where I' is a compact group of symmetries.
Certain Z,-equivariant problems are described in Sects. 2 and 3. The results of
Sect. 3 are applied to the bifurcations of a model chemical reaction in [16].
Section 4 contains a Z,®Z,-equivariant bifurcation problem which appears in a
model for the buckling of a rectangular plate. The results of this application will
appear in [17]. Here we describe results of Bauer, Keller, and Reiss [2] in terms of
our theory. A non-linear eigenvalue problem for the Laplacian on the unit disk in
the plane is described in Sect. 5. We view this as a model problem with 0(2)
symmetry. In the last section we suggest an analysis for a bifurcation problem
associated with the buckling of an annular plate. Here the symmetry group is
0(2)x Z,.

1. I'-Unfolding Theory

Let I' be a compact group acting orthogonally on R” and R™. We call a germ
f:(R",0)—(R™,0) I'equivariant if f(yx)=7yf(x) for all yeI" and denote by &, , the
space of I'-equivariant germs. A function germ 4 : (R”,0)—R is called I"-invariant if
h(yx)=h(x) for all yeI'. The space of I'-invariant germs is denoted by &7. In what
follows it is assumed that I" acts trivially on any factor except the given R" and R™.
A bifurcation problem with symmetry group I is a germ G in &, ; .. We modify
the notion of contact equivalence given in [6] to include symmetry as follows. Two
bifurcation problems, G, and G,, with symmetry group I', are I'-equivalent if

(1.1) G (x,)=TI(x, ) G,(X(x, 4), A(A)

where det(d X),>0, 4'(0)>0, and for each (x,4), T(x,4) is an invertible m xm
matrix. Moreover, we require the symmetry conditions.

(1.2) X(yx,A)=7X(x,4) and
(1.3) y 'Tx, Ay=T(x, )
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hold for all ye I where in (1.3) y is viewed as an orthogonal matrix acting on R™. It
is easy to check that (1.2) and (1.3) imply that if G, is in &/, , ,, then so is G.
The usual definitions for unfolding theory can now be given in terms of
I'-equivalence. An l-parameter I'-unfolding of G is a germ F(x, A, 0)€ &, , ,, ,, where
F(x,1,0)=G(x, ). Let H(x, 4,f) in 5f+1+k,m be a k-parameter I'-unfolding of G.
Then H factors through F if for each feR¥, H(-, -, B) is [-equivalent to F(-, -, o) for
some o with the I'-equivalence depending smoothly on 5. More precisely, we have

(1.4) H(x,4,p)=T(x, 4 B)-FX(x, 4, B), A(4, p), ()

with the appropriate equivariance conditions (1.2) and (1.3) holding. Finally, F in
8L+ 1 1 1.m 18 @ universal I'-unfolding of G if every I'-unfolding H of G factors through

The motivation, statement, and method of proof of the unfolding theorem for
I'-equivalence are the same as the unfolding theorem for contact equivalence given
in [6] with one difference. For the proof of this theorem, which we shall state, one
must use a I'-equivariant version of the Malgrange Preparation Theorem. Such a
generalization has been proved by Poenaru [11] in the case where I is a compact
group with an orthogonal action. It is for this reason that we have imposed
restrictions on the type of symmetry group.

To state the unfolding theorem we must identify the tangent space I'G to
Og=1{G,€é,, G, is I'-equivalent to G} at G. It is easy to check that

N oG
(1.5) FG_FG+(5;-{§}

where
(L.6) I'G= {d,.G)X(x, A))+T(x,1)G}.

Here X and T'satisfy (1.2) and (1.3) respectively ; X is arbitrary in &, ; ,,and Tis a
(possibly singular) m x m matrix. It is clear that I'G is a &', ,-module whereas, in
general, I'G is not. This fact is the cause of the inelegance in the following
definition.

Definition 1.7. Let G be a bifurcation problem with symmetry group I'. Then
a) G has finite codimension if dimé), | ,/I'G < oo, and
b) the I'-codimension of G is dimé), , ,/T'G.
We now state the unfolding theorem.

Theorem 1.8. Let G(x, A) be a finite codimension bifurcation problem with symmetry
group I'. Let G(x,4),...,G(x,4) in é’,ﬂl’m project onto a spanning set for
gnrﬂ’m/FG. Then F(x,A,0)=G(x,A)+0o,G(x,)+... +o,G(x,4) is a universal
I'-unfolding for G.

The proof of this theorem requires nothing more than checking that the proof
of Theorem 2.4 [6] holds in the presence of a symmetry group I'; thus we leave the
details to the reader.
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For the remainder of this section we outline how one might actually compute
universal I'-unfoldings for a given G. These computations break naturally into two
parts; one involves the group I" and the other the specific bifurcation problem G.
As all of the examples considered in this paper satisfy m = n, we restrict to this case.
The reader may wish to continue with the examples in the subsequent sections and
return to the remainder of this section later.

The point of these calculations is the computation of I'G. First we describe a
theorem due to Schwarz [19]. Let o4, ...,0, be a finite set of polynomials which
generate — as a ring — the ring of polynomlals in &7, Such a set exists by Hilbert’s
Basis Theorem. Let ¢ : (R",0)—(R?,0) be defined by

(1.9) o(x)=(0,(x),...,0,(x)).

Schwarz’s Theorem states that under the condition that I" is a compact group
acting orthogonally on R" any invariant function f in &' may be written as f(x)
=h(o(x)) where h:(R?,0)—R is a smooth germ. For example an even function
£f:(R,0)—R may be written as f(x)=h(x?).

Next one considers the &/ -modules &, and ./, where

(1.10) %nrm ={T:(R",0)—>space of m x m matrices| T satisfies
the equivariance condition (1.3)}.

In the example these modules are finitely generated and the first computation is to
find an explicit set of generators X, ..., X for &/, and T,,..., T, for .} . Since I
acts trivially on the A-factor of R” x R these generators also generate éan +1., and
M X as modules over &7, ,. One now observes that I'G is generated as a module

n

over éa,, +1 by the (g +r)-generators
(L.11) d,6)X,),....(d,6)X); T,-G, ..., T,-G.

The next step is to determine whether &, 1, /TG is a finite dimensional vector
space and then to find a spanning set for é; +1../I'G. We describe an algorithm
which — at least in the examples considered in the later sections — gives a method
for reducing these computations to Taylor Theorem arguments of the type found
in [6] for bifurcation problems without symmetry.

We assume that G is in &, ; ,; hence G has the form

G(x,2)=a,(a(x), YX ;(x) + ... + a,(a(x), HX (%),

since X, ..., X, generate &, , , over &,. Note that the a;’s are uniquely determined
if&,, ,isa free module over &7, , w1th ordered basis X 1> -+»X - This we assume
while noting that all of the examples considered in this paper satisfy this
hypothesis.
We may now identify &, ; , with &,,, , as follows: define ¢ : &,,, ,—&,,,,

by o(G)=(a,(u, 1), ..., a,(u, 1)) where u= (uy,...,u,) denotes the coordinates on R’J
It is clear that @G = (p(F G)is an &,, ;-submodule of &,, ; , and that ¢ induces an
1somorph1sm between &, ;. JIG and & ' +1.4/PG. The calculations for finding a
spanning set of &, q/t:DG are very much the same as the calculations performed in

[6]. One remark remains, @G is generated as a module over &, ; by the image






