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Introduction

Consider the familiar principle that typically (or generically) a system of m scalar
equations in n variables where m>n has no solutions. This principle can be
reformulated geometrically as follows. If S is a submanifold of a manifold X with
codimension m (i.e. m = άimX — dimS) and iϊf:Rn-*X is a smooth mapping where
m>n, then usually - or generically - Image /nS is empty. One of the basic tenets
in the application of singularity theory is that this principle holds in a general way
in function spaces. In the next few paragraphs we shall try to explain this more
general situation as well as to explain its relevance to bifurcation problems.

First we describe an example through which these ideas may be understood.
Consider the buckling of an Euler column. Let λ denote the applied load and x
denote the maximum deflection of the column. After an application of the
Lyapunov-Schmidt procedure the potential energy function Ffor this system may
be written as a function of x and λ alone and hence the steady-state configurations
of the column may be found by solving

dV
(0.1) G(x9λ)=—(x9λ) = 0.

See for example [6, Sect. 6]. It is shown there that near the buckling point (which
we assume to be at λ = 0) we may write

(0.2) G(x,A) = x3-,lx+....

Moreover, the lowest order terms dominate so that the pitchfork x 3 — λx = 0
describes qualitatively the various steady-state configurations of the column near
the buckling point.
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The key word in the last paragraph is "qualitatively". This word is interpreted
- in singularity theory - to mean "up to an appropriate change of coordinates".
Our earlier paper [6] was devoted to the study of the machinery of singularity
theory in a context appropriate to steady state problems in bifurcation theory. In
particular, let Sn^m denote the space of germs of C°° mappings of (R",0)-^Rm. Then
a bifurcation problem is the solution to

(0.3) G(x,λ) = 0

where Ge<f π + 1 > m and (dxG)(Q) = Q. Here we assume that either G is obtained
directly or - as in the Euler column - as the result of the Lyapunov-Schmidt
procedure applied to some non-linear operator. In this context, we suggest that the
phrase "appropriate change of coordinates" be interpreted through the following
equivalence. Two bifurcation problems G1 and G2 are contact equivalent if

(0.4) G2(x,λ) = T(x9λ)-G1(X(x,λ\ Λ(λ}}

where X(0,0) = 0, Λ(0) = 0, det(dxX
r)(0)>0, ^(0)>0, and for each (x,λ\ T(x,λ) is

dλ
an invertible m x m matrix.

In [6] we showed that the bifurcation equation for the Euler column is contact
equivalent to x 3 — λx = 0.

It should be clear from the above example that the set

(0.5) &G = {He<£n+lfm\H is contact equivalent to G}

should play a role in the study of the bifurcation problem G. A crude measure for
the complexity of the bifurcation problem G is the codimension of ΘG in $n+1>m. In
[6] we gave a prescription for computing codim G. As a simple example, the
codimension of x3 — λx was shown to be two.

Now suppose one actually performs the e_xperiment of buckling columns. To
each column one assigns a potential function Fand a bifurcation problem G. Since
real columns tend to have imperfections one should not expect G to be equivalent
to the idealized problem G described above. Moreover, the principle ennunciated
in the first paragraph agrees with this comment. This principle also suggests that if
a pitchfork is to be observed experimentally - that is, a column found for which G
is in ΘG - then one must vary a two parameter family of columns. For example, one
could add arbitrarily a central load and put an arbitrary initial curvature in the
column.

In general, if we let αeR f c represent the various auxilliary or Jmperfection
parameters then for each α one obtains a bifurcation problem Gα. The total
experiment is then described by a mapping F :Rk^>$n + l>m defined by αt->Gα.

In this context, our stated principle is: the observation of a bifurcation
problem of codimension k by an experiment which varies fewer than k auxilliary
parameters is non-generic. This discussion suggests that contact codimension
measures the difficulty of observing a particular bifurcation problem.

In this paper we discuss several ways in which the contact codimension fails as
such a measure. These deficiencies are associated with both the way a particular
problem is idealized into a mathematical model and the mathematical assumption
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that the contact codimension is the relevant number. As the first deficiency is the
main topic of this paper, we illustrate it with a simple example.

As noted above the buckling of an Euler column yields a bifurcation problem
with contact codimension two yet, in the idealized model there are no auxilliary
parameters. Our question is simple. Why does a mathematical model of codimen-
sion two appear when no extra parameters are varied? The answer seems to be in
the way the Euler column is idealized. In this model it is assumed that the potential
energy associated to a given configuration of the column u is the same as that of
— M. This means that the bifurcation problem G associated to this model must
satisfy

(0.6) G(-x,λ)=-G(;U).

Clearly G(x, λ) = x3 — λx satisfies (0.6). We suggest that to apply the stated principle
to the idealized problem one must include the Z2 symmetry which has been
imposed in the problem. The appropriate question is "what is the codimension of
ΘG in the space of germs satisfying (0.6)?" Care must be taken that the contact
equivalences which are used to define &G be restricted to those equivalences which
preserve the symmetry condition (0.6). This will be formalized in Sect. 1. In Sect. 2
we compute this new codimension for x 3 — λx and find that it is zero. So the
principle is satisfied when the restrictions imposed by the idealization are present.

Many authors [3, 5, 13-15, 18, 20] have realized the significance of imposing a
group of symmetries on the mathematical model for a given physical problem. Our
purpose here is to integrate the presence of a symmetry group with our approach
to bifurcation problems. The necessary hard mathematics has already been
formulated in the case that the symmetry group is compact. We restrict to this
case.

With regard to the Euler column, we emphasize that the dichotomy is caused
by idealization. Experimentally one rarely observes the pitchfork one usually sees
perturbations which have contact codimension zero. The reader is referred to
discussions in [9] and [3].

In the preceding discussion we have concentrated mainly on the framework of
singularity theory; now we focus on one of the major theorems, the unfolding
theorem. It follows from this theorem (in the contexts where it has been proved)
that if a germ/has codimension fe then an arbitrary small perturbation of/may -
up to an appropriate change of coordinates - be written as

(0.7) f(x) + a1p1(x)+...+akpk(x)

where the p 's are fixed perturbation terms and the α 's are scalars which depend
smoothly on the particular perturbation. (0.7) is called a universal unfolding o f/
and the α/s are called the unfolding parameters.

The unfolding parameters themselves fall into two classes, modal and non-
modal The modal parameters may be characterized by the fact that they
parametrize the largest family M of perturbations of / in (0.7) such that no two
perturbations in this family are equivalent. To illustrate this point we briefly
describe an example which is considered in more detail in Sect. 3. Let

(0.8) G ( x 9 y 9 λ ) = (x2+
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We note that G satisfies the Z2 symmetry relation

(0.9) _

It is easy to check that as c varies none of the problems (0.8) are equivalent by a
contact equivalence which preserves the symmetry relation (0.9). We also show
that the universal unfolding for (0.8) is

(0. 10) F(x, y, λ, c, a,β) = (x2 + y2 + λx + α, cxy + (λ- 2β)y) .

We claim that c is a modal parameter and that α and β are non-modal parameters.
This will be shown in Sect. 3.

Given a bifurcation problem G, its universal unfolding F, and the modal family
M define the module packet of G to be

(0.11) @M = {He$n+1>m\H is contact equivalent to some member
of the family M} .

We follow Arnold [1] and take the view that the module packet ΘM and not &G

contains all the bifurcation problems which are qualitatively similar to G. (Note :
Perturbations of jF/eM may be different from perturbations of G as happens when
c = 2 in (0.8). However these differences occur on a subvariety and do not alter the
following discussion.) If this is the case then the codimension of ΘM that is, the
number / of non-modal parameters, is the appropriate number to be used with our
stated principle. We shall try to make this point more clearly in our discussion of
the application of (0.8) to the Brusselator model considered in [16].

There are two justifications for considering / rather than k as the relevant
number. First, if one considers an /-parameter family E :R/->^M + 1 w, then generi-
cally Image En(9G = 0. Yet it is clear that Image Er^ΘM may be non-empty in an
unavoidable manner. To avoid the module packet one must vary fewer than /
parameters. Second, the members of the modal family M although not equivalent
via smooth contact equivalences are topologically contact equivalent - at least in
the cases which have been analyzed. (More accurately, the module packet
decomposes into a finite union of semi-algebraic subsets which contain topologi-
cally equivalent problems.)

This behavior may be clarified by an analogy with systems of linear differential
equations, say

(0.12) x = Ax.

The topological behavior of solutions of (0.12) is determined by the number of
eigenvalues of A with negative real parts. Although the eigenvalues of a perturbed
matrix A + εB will be slightly different, there are large regions of the matrix space
where the topological behavior of (0.12) will be unaffected by such changes. In
addition, there are only a finite number of regions in this matrix space where the
topological behavior is distinct.

While pursuing this work we have benefited from the ideas of Sattinger
[13-15]. Sattinger makes the following two observations about bifurcation
problems with symmetry. First, the form of the Taylor expansion of such a
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problem is severely restricted making computations less difficult than the general
case. Second, the presence of a symmetry group often forces an eigenvalue of high
multiplicity in the bifurcation problem. (Note that in (0.3) n is the multiplicity and,
in practice, we only consider examples where n = m.) Generally the Taylor
expansions of problems with eigenvalues of high multiplicity (like 2 or 3) are
difficult to compute; the first observation states that the difficulties are perhaps
overstated.

We make a third observation namely, the presence of a symmetry group forces
an artificially high contact codimension. This observation should be compared
with Thorn's philosophy that only perturbations of problems with low codimen-
sion can be completely understood. We shall see that if one considers problems
with symmetry then there are many more problems which have low codimension -
at least in the symmetry class. For these problems, it is possible to describe
qualitatively all of the symmetry preserving perturbations that is, the unfolding
theorem is true in this context. This is the main result of the next section. Of course
the complete description of all symmetry breaking perturbations is much more
difficult as here one must come to grips with problems of high contact
codimension.

The structure of this paper is as follows. Section 1 contains the theory of Γ-
equivariant bifurcation problems where Γ is a compact group of symmetries.
Certain Z2-equivariant problems are described in Sects. 2 and 3. The results of
Sect. 3 are applied to the bifurcations of a model chemical reaction in [16].
Section 4 contains a Z2©Z2-equivariant bifurcation problem which appears in a
model for the buckling of a rectangular plate. The results of this application will
appear in [17]. Here we describe results of Bauer, Keller, and Reiss [2] in terms of
our theory. A non-linear eigenvalue problem for the Laplacian on the unit disk in
the plane is described in Sect. 5. We view this as a model problem with 0(2)
symmetry. In the last section we suggest an analysis for a bifurcation problem
associated with the buckling of an annular plate. Here the symmetry group is
0(2) x Z2.

1. Γ-Unfolding Theory

Let Γ be a compact group acting orthogonally on R" and Rm. We call a germ
/:(R",0)-+(Rm,0) Γ-equivarίant iff(γx) = γf(x) for all yeΓ and denote by δ^m the
space of Γ-equivariant germs. A function germ h : (R",0)->R is called Γ-invariant if
h(yx) = h(x) for all yeΓ. The space of Γ-invariant germs is denoted by $*. In what
follows it is assumed that Γ acts trivially on any factor except the given R" and Rm.

A bifurcation problem with symmetry group Γ is a germ G in <ίn

r

+ 1>m. We modify
the notion of contact equivalence given in [6] to include symmetry as follows. Two
bifurcation problems, Gί and G2, with symmetry group Γ, are Γ-equivalent if

(1.1) Gx(x, λ) = T(x, λ) - G2(X(x, Λ), Λ(λj)

where det(dxX)0>Q, /Γ(0)>0, and for each (x,λ), T(x,λ) is an invertίble m x m
matrix. Moreover, we require the symmetry conditions.

(1.2) X(γx,λ) = yX(x,λ) and

(1.3) γ-1T(yx,λ)y=T(x9λ)
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hold for all γeΓ where in (1.3) y is viewed as an orthogonal matrix acting on Rm. It
is easy to check that (1.2) and (1.3) imply that if G2 is in <^f+1>m then so is G1.

The usual definitions for unfolding theory can now be given in terms of
Γ-equivalence. An l-parameter Γ-unfolding of G is a germ Γ(x, λ, α)e^f+ 1+lm where
F(x,λ,Q) = G(x,λ). Let H(x9λ,β) in ^w

r

+ 1 + k f ϊ n be a ^-parameter Γ-unfolding of G.
Then H factors through F if for each βeRk,H( , , j8) is Γ-equivalent to F( -, , α) for
some α with the Γ-equivalence depending smoothly on β. More precisely, we have

(1.4) H(x, A, β) = T(x, λ, β) - F(X(x, λ, β\ Λ(λ, β\ α(j8))

with the appropriate equivariance conditions (1.2) and (1.3) holding. Finally, F in
^n+1 +1 m is a universal Γ-unfolding of G if every Γ-unfolding H of G factors through
Γ.

The motivation, statement, and method of proof of the unfolding theorem for
Γ-equivalence are the same as the unfolding theorem for contact equivalence given
in [6] with one difference. For the proof of this theorem, which we shall state, one
must use a Γ-equivariant version of the Malgrange Preparation Theorem. Such a
generalization has been proved by Poenaru [11] in the case where Γ is a compact
group with an orthogonal action. It is for this reason that we have imposed
restrictions on the type of symmetry group.

To state the unfolding theorem we must identify the tangent space ΓG to
(9G = {G1e^+ίfm\Gl is Γ-equivalent to G} at G. It is easy to check that

(1 5} ΓG( j ^ ̂ λ \dλ
where

(1.6) jΓG = {(dxG)(X:(x,A))H-T(x,λ)G}.

HereZ and Γ satisfy (1.2) and (1.3) respectively X is arbitrary in ^+ι,m and Γis a
(possibly singular) m x m matrix. It is clear that ΓG is a $£+ x-module whereas, in
general, ΓG is not. This fact is the cause of the inelegance in the following
definition.

Definition 1.7. Let G be a bifurcation problem with symmetry group Γ. Then
a) G has finite codimension if dim^f+ ί JΓG < GO, and
b) the Γ-codimension of G is dim<fn

r

+1 JΓG.
We now state the unfolding theorem.

Theorem 1.8. Let G(x, λ) be a finite codimension bifurcation problem with symmetry
group Γ. Let G^x,A), . . . ,Gj(x,λ) in $n + l m project onto a spanning set for
$n+im/ΓG. Then F(x,λ,α) = G(x,A) + α1G1(x,A)+ ... +α^Gz(x,λ) is a universal
Γ-unfolding for G.

The proof of this theorem requires nothing more than checking that the proof
of Theorem 2.4 [6] holds in the presence of a symmetry group Γ thus we leave the
details to the reader.
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For the remainder of this section we outline how one might actually compute
universal Γ-unfoldings for a given G. These computations break naturally into two
parts one involves the group Γ and the other the specific bifurcation problem G.
As all of the examples considered in this paper satisfy m = n, we restrict to this case.
The reader may wish to continue with the examples in the subsequent sections and
return to the remainder of this section later.

The point of these calculations is the computation of ΓG. First we describe a
theorem due to Schwarz [19]. Let σ1 ? ...,σp be a finite set of polynomials which
generate - as a ring - the ring of polynomials in g*. Such a set exists by Hubert's
Basis Theorem. Let σ :(R",0)-»(RP,0) be defined by

(1.9) σ(x) = ( σ i ( x ) 9 . . . 9 σ p ( x ) ) .

Schwarz's Theorem states that under the condition that Γ is a compact group
acting orthogonally on R" any invariant function / in $„ may be written as f(x)
= h(σ(x)) where h :(RP,0)->R is a smooth germ. For example an even function

/:(R,0)-»R may be written as f(x) = h(x2).
Next one considers the ^-modules δ^n and M^n where

(1.10) .̂ m = {T:(Rn,0)-> space of mxm matrices | T satisfies
the equivariance condition (1.3)}.

In the example these modules are finitely generated and the first computation is to
find an explicit set of generators X19.. .,Xq for S^n and Γ1? ...9Tr for Jt^n. Since Γ
acts trivially on the /l-factor of R" x R these generators also generate $£+1>n and
^n+ι,n as modules over S^+l. One now observes that ΓG is generated as a module
over $£+ ί by the (q + regenerators

(1.11) ( d x G ) ( X ί \ . . . , ( d x G ) ( X q ) ' , T^G,...,Tr G.

The next step is to determine whether $£+1 n/ΓG is a finite dimensional vector
space and then to find a spanning set for $£+1 JΓG. We describe an algorithm
which - at least in the examples considered in the later sections - gives a method
for reducing these computations to Taylor Theorem arguments of the type found
in [6] for bifurcation problems without symmetry.

We assume that G is in $£+1 n hence G has the form

G(x, λ) = a,(a(x\ λ)X1(x) + ... + aq(σ(x\ λ)Xq(x),

sinceX^ .. .,Xq generate $£+1 „ over $$. Note that the α/s are uniquely determined
if ^n+ι,n is a free module over <^Γ

+ ί with ordered b a s i s X ί 9 . . . , X q . This we assume
while noting that all of the examples considered in this paper satisfy this
hypothesis.

We may now identify <ίn

r

+1 n with S'p+ί q as follows: define φ ' $n+ι,n^$P+ι,q
by φ(G) = (a1(u,λ), ....a^u.λ)) where w = (w l 5 ...,wp) denotes the coordinates on Rp.
It is clear that ΦG = φ(ΓG) is an ^+1-submodule of <?p+1 Λ and that φ induces an
isomorphism between <fn

r

+1 JΓG and S'p+1 JΦG. The calculations for finding a
spanning set oϊ$p+1 JΦG are very much the same as the calculations performed in
[6]. One remark remains, ΦG is generated as a module over <fp + 1 by the image
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under φ of the generators of ΓG listed in (1.11). Moreover, the computation of
these generators in any given case is perhaps tedious but certainly straightforward.

We now turn to another aspect of the singularity theory approach to
applications namely the notion of determinancy. In most applications one is
rarely given the bifurcation problem G explicitly rather one usually has G defined
implicitly along with methods for computing the Taylor expansion of G at the
bifurcation point. Thus it would be useful to know when one has enough terms of
this expansion - at least qualitatively. This is reflected in the following: the
bifurcation problem G with symmetry group Γ is Γk-determined if for every
#E<Cί+ ι,m where H vanishes up to order k+1, G + H is Γ-equivalent to G. We use
the method outlined above for finding the Γ-codimension of G to compute the
Γ-determinacy of G.

For bifurcation problems Ge$n+1 m the condition Jίk$n+1>mcJΐTG implies
that G is /c-determined. Here Jί is the maximal ideal m&n+1 and TG is the module
part of the tangent space to the orbit of G formed by contact equivalence. One
major step of this proof is the demonstration that TGt = TG for O^ί^l where
Gt = G + tH. (See the proof of Proposition 3.11 of [6].) The proof for
ΓA -determinacy works in exactly the same way the details are left to the reader.

Proposition 1.12. Let G and H be inδ*+ltm and let Gt = G + tH. Assume that for all
t with O^ί^l, ΓGt = ΓG. Then G + H is Γ-equivalent to G.

A necessary condition that the assumption ΓGt = ΓG is that the generators
(1.11) with G replaced by Gt be in ΓG. The validity of this condition is more easily
computed in $p+ίiS. Once it has been determined that ΦG,CΦG, one expands the
q + r generators φ((dxGt) (X.)) and φ(Tj Gt) in terms of the same generators for t = 0.
This yields a (q -f r) x (q + r) matrix whose invertibility at u = 0 guarantees the
hypothesis of Proposition 1.12.

It is sometimes useful to use Nakayama's Lemma in these calculations, so we
state it here.

Lemma 1.13. Let B be an $p+l-submodule of $p+1 q generated by bl9...9bt. Let
c1,...,cl be in ME where Jί is the maximal ideal in $p+ί. Then bί + cl9 ...,bl + cl

form a set of generators for B.

2. Z2 Actions on the Line

We consider now several bifurcation problems with Γ = Z2 = {±1} symmetry
where n = m = l and Z2 acts by multiplication on R. The bifurcation problems
along with their universal Z2 unfoldings are given in Table 1.

Table 1

G(v. /,) Γ-codim Universal Γ-unfolding Contact codim

a)
b)
c)

v3

v3

v5

— λ\
-Λ2\

— λ\

0
1
1

V 3

Y 3

v5

— λ\
-(/2 + α)\-
— αv 3 — λ\

2

5
4
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Note that the contact codimension of these problems were computed in Sect. 4
of [6].

We follow the notation and computational rules described in Sect. 1. The
invariant functions (ff form the space of even functions; thus p= 1 and σ(x) = x2.
The equivariant mappings <ff 1 consist of odd functions thus q = 1 and X i ( x ) = x.
The module .M\ 1 consists of even functions; thus r=l and Tί(x) = l.

Let G(x,A) be in δ{Λ, then

(11)

where a(u,λ) is a smooth germ. The generators (dxG)(X1) and T^G for ΓG are just

(2.2) (2au(x2

9λ)x2 + a(x2

9λ))X1 and a(x2,λ)X1.

Thus the S2 -module ΦG is generated by

(2.3) uau and a.

For the three cases listed in Table 1, the module ΦG is

(2.4) £2{u,λ}9 <ί2{M
2}, and £2{u2,λ}

respectively. Spanning sets for $2 JΦG are

(2.5) {!},{!, A}, and {!,«}

respectively. Therefore spanning sets for ĵ[ X/ΓG are

(2.6) {x}? {x,Λx}, and {x,x3}
O /"»

respectively. Finally — - is, in the three cases, —x, — 2/bc, —x; hence bases for

are given by

(2.7) 0, {x},{x3}

respectively. The universal Γ-unfoldings in Table 1 follow from Theorem 1.8.

Lemma 2.8. Let G(x,λ) be one of the bifurcation problems listed in Table 1. Let
H(x, λ) be in S2 ι consist of higher order terms for G, then G + H is Γ -equivalent to G.
Specifically H has the form

a) H(x, λ) = x5a(x2, λ) + λ2xb(x2, λ) + λx3c(x2, λ)

b) H(x9 λ) = x5a(x2, λ) + λ*xb(x2, λ) + λ2x3c(x2, λ)

c) H(x, λ) = xΊa(x2, λ) + λ2xb(x2, λ) + λx3c(x2, λ)

in the three cases.

Proof. We proceed as outlined at the end of Sect. 1. Let Gt = G + tH. For example
in (a),

(2.9) Gt = (h + t(x4a + λ2b + λx2c})Xί

where h(x, λ) = x2 — λ. Then ΦGt is generated by

(2. 10) h + t(u2a + λ2b + λuc) , uhu + t(2u2a + λuc] .
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L

Fig. 1

QUADRATIC
CONTACT

α<0 α=0 α>0

Fig. 2

As ΦG is generated by u and λ (see (2.4)) we have that generators for ΦGt are

(2.11) h + m^ and uhu

where m x and m2 are in JίΦG. We now apply Nakayama's Lemma to see that
ΦGt = ΦG and Proposition 1.12 implies this lemma. The proofs for the other two
cases are similar.

We next describe the effects of the symmetric imperfections on the bifurcation
diagrams. The pitchfork x 3 — λx = 0 is Z2-stable. The other two examples have
bifurcation diagrams represented in Figs. 1 and 2 respectively.

A few comments are in order. We have now shown - as promised in the
Introduction - that the Γ-codimension of x3 — λx is zero. As suggested this may
explain why the pitchfork appears in many idealized bifurcation problems whereas
the fact that its contact codimension is two explains why it is difficult to observe
experimentally. The other two problems offer more evidence for this dichotomy. In
Sect. 7 of [6] we described a spring problem considered by Poston and Stewart
[12] in which both of the other problems appear. This we found most surprising
given the contact codimensions of these problems since only one spring constant
was being varied. The computations above indicate that the appearance of these
problems was in no way an accident.

3. Quadratic Bifurcation Problems in Two Variables

In [6], Sect. 5, we considered the following class of bifurcation problems

(3.1) G(x, y, λ) = (p(x, y) + λx, q(x, y) + λy)

where p and q are homogeneous polynomials of degree two. Using an observation
of McLeod and Sattinger [10] we defined a class of non-degenerate problems as
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those satisfying

(3.2) (a) p and q have no common factors
(b) the surfaces p(x, y) + λx = 0 and q(x, y) + λy = Q

are tangent only at the origin.

A normal form was found for non-degenerate G and the contact codimension was
computed to be seven. It was noted that non-degenerate G appear in a reaction-
diffusion equation known as the Brussellator model. The application of our theory
to this model will be given in [16] here we note that there is a natural Z2

symmetry in the Brussellator. We describe this symmetry below as it appears in
(3.1). We also note that the number of non-modal parameters in a universal
unfolding of a non-degenerate problem (3.1) is five and of those, only three
preserve the trivial solution χ = j; = 0. We shall show that the corresponding
numbers for the Z2-unfoldings are two and one.

First we describe the Z2 action on R2 and then determine the general non-
degenerate Z2-equivariant problem (3.1). In the action of Z2 = {+ 1} on R2 under

consideration, — 1 acts as the matrix that is, (x, y} H»(X, — y). It is easy to

check that the Γ-equivariant mappings ^2 consist of those maps whose first
component is even in y and whose second component is odd in y. So the general
quadratic Γ-equivariant problem (3.1) has the form

(3.3) G(x, y9 λ) = (ax2 + by2 + λx, cxy + λy).

Note that if (3.3) satisfies (3.2) (a), then αφO, bφO, and cφO. Also note that
-G(-x, -y,λ) is both Z2-equivalent to G, and of the form (3.3). So in (3.3) we
may assume that α>0. Next by scaling (3.3) we may assume that a = \b\ = l,
yielding the normal form

(3.4) G ± (x, y, λ) = (x2 ± y2 4- λx, cxy + λy).

Finally (3.4) must satisfy (3.2) (b) which implies cψ 1 and c=f=0.
Having determined the non-degenerate Z2-equivariant problems (3.1) we will

compute their universal Z2-unfoldings to be

(3.5) Γ ± (x, y, λ, α, /?, c) = (x2 ± y2 + λx + α, cxy + (λ — 2β)y).

Note that the computation of (3.4) shows that c is a modal parameter with cφO
and cφl. Also the trivial solution is maintained when α = 0.

We use the methods and notations from Sect. 1 to compute (3.5). The module
<££„ is generated by X1 =(1,0) &ndX2 = (Q,y) over &ζ. Note that &ζ consists of
those germs /(x, j;) which are even in y so /(x, y) = h(x, y2) for some smooth germ
h. A computation shows that the module .M^>2 - consisting of those matrix valued
functions satisfying (1.4) - is generated by

r-ί1 °\ τ-ί° ή r - f ° °) τ- f ° °
Γ.-L Qj, Γ 2 _^ Q Qj, 73-^ Qj, 74-^Q j
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Let G(x, y, λ) = a(x, y2, λ)Xl + b(x, y2, λ)X2 be the general bifurcation problem in
S^2. One computes the generators of the module ΦG to be

(3.6) (α,0), (ι*,0), (0,α), (0,6), (au,bu), (vav,vbυ).

Here we view a and b as functions of u, v, and λ.

In the case of interest a = u2 ±v + λ and b = cu-\-λ. It is easy to check that (3.6)
implies that ΦG is generated by

(3.7) (u2 + λu^\ (Q,u2 + v + λu\ (0,CMH-λ), (2w + λ5c), (u,0).

Observe that (0, ι;) = - (2u + A, c) (^,0). Hence an equivalent set of gene-
c c

rators is

(3.8) (u\cu\ (0,w2), (0,cw + λ), (2u + λ,c), M), (0,ι;).

One may use the middle two generators to eliminate λ from the problem of
computing <f3 2/ΦG. Since (w3,0) is in ΦG it is easy to check that

(3.9) (1,0), (0,1), (M,0), (0,w)

form a spanning set for S'3 2/ΦG. Hence

(3.10) (1,0), (0,3;), (x,0), (0,xj;)

is a spanning set in $£ 2/ΓG. Now -—- =(x,j;), hence
uλ

(3.11) (1,0), (0,j;), (0,xy)

is a spanning set for ̂  2/ΓG and the universal Γ-unfolding is as indicated in (3.5).

Lemma 3.12. The non-degenerate Z2 equiυariant bifurcation problems (3.4) are Z2

2-determined.

Proof. First consider a special perturbation term

(3.13) H(x^λ) = (Q(x,y

where K is a constant, L is linear, C is cubic, and Q is quartic. We claim that G + H
is Z2-equivalent to G. As in Sect. 1, let Gt = G + tH. It is a straightforward
computation to show that the generators for ΦG prescribed by (3.6) also generate
ΦGr Now apply Proposition 1.12.

The general perturbation of third order includes terms of the form

(3.14) (Ax3 + Bxλ2 + Cx2λ, Dx2y + Eλ2y + Fλxy)

for constants A, ...,F. To complete the proof observe that if H is a general
perturbation then a Z2 equivalence of G + H given by

1+ax + by 0

0
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2h 2h 4h 4eQ 4eω 2e
- o - o - c - o - o - c

0 I

G+

Fig. 3

is of the form G + H where H is as in (3.13) - for appropriate choices of the
constants α, . . ., g. In fact, it is not hard to show that the constants A, . . ., F in (3. 14)
depend linearly on α, ...,g and that the associated 6 x 6 matrix is invertible.

For the remainder of this section we describe the effects of the unfolding
parameters on the bifurcation diagrams. To understand this we must first analyze
how the bifurcation diagrams G ± = 0 depend on the modal parameter c. The
degeneracies c = 0 and c=l divide the real line into three regions for each of G +

and G~. The type of bifurcation is described in Fig. 3 the nomenclature is as in [6,
Sect. 5]. Here the numbers 2 and 4 denote the number of solutions for l = /l0=j=0,
the letters e and h denote whether the singularity of (x,y)-^(x2±y2,cxy) is elliptic
or hyperbolic, and the subscripts 0 and oo denote whether or not the trivial
solution is in the convex hull of the three non-trivial solutions.

The solution branches are all straight lines given by

(1) x = y = Q

(2) x=-λ;y = 0

λ=-cx;y=±]/\c-l\x.

Solutions (1) and (2) occur in all cases while (3) and (4) occur for c> 1 in G+ and for
c < 1 in G". The solutions - as must be the case - are symmetric with respect to the
plane y = 0 the first two actually lie in this plane.

We now consider the effects of the non-modal parameters. Only α effects the
first two solutions; i.e. those in the plane y = 0. The equations defining the
perturbed solutions are:

(3.16) y = Q;x2+λx + u = Q.

It is clear that the second equation in (3.16) defines a hyperbola with asymptotes
x = 0 and x = — λ. The sign of α determines in which quadrants the hyperbola lies.

Observe that the other solutions satisfy the equations

where ε=±l according to whether G+ or G~ is under analysis. So these solutions
- if they exist - lie in the plane λ + ex = 2β which is perpendicular to the plane y = 0.
It is also clear that these solutions form a hyperbola if ε(c — 1)>0. This hyperbola
intersects the plane y = 0 only if β2+a(c — 1)>0. If ε(c— 1)<0, then the solutions
form an ellipse when β2 + α(c — 1)>0 and do not exist otherwise.

To obtain the qualitative nature of the bifurcation diagrams, one should make
two further observations. First, when the conic (3.17) intersects the plane y = 0
bifurcation must occur, as (3.17) with y set to 0 satisfies (3.16). Second, it is clear
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β = α ( l - c )

Fig. 4. The division of the αβ-plane by Σ

that when the conic (3.17) intersects y = 0 it does so at a vertex. However, the
intersection point on (3.16) is not necessarily a vertex, f;>r that conic. When both
conies intersect at their vertices, a hill-top bifurcatip; ,,-^curs (see [6, Sect. 5] or
[21]). Points (α, β, c) where such behavior occurs are easily computed as both F = 0
and dxF = 0 must be satisfied. Elimination of x, y, λ yields

(3.18) α>0.

putative mature of the
^ αβ-plane with the
v^es is called Σ and is

entical when c = 0. The
also that c = 2 yields a

From the above discussion one sees that the
bifurcation diagrams are found for fixed c by sectn
curves α = 0, β2=a(l — c), and (3.18). The union of i,
shown in Fig. 4. Note that the last two equations
bifurcation diagrams are given in Figs. 5-12. NO
degeneration of the parabola (3.18) into a ray. This ^eneracy is not observable in
(3.4) but is observable in the perturbations considered in (3.5). This information is
also contained in the figures.

Observe that the parabolas and line defining Σ art all tangent at a = β = 0, this
point corresponding to one of the unperturbed pro' !ems enumerated by Fig. 3.
Let A be a connected component of the complemen to Σ in the α — β plane. We

consider A = Lim area(v4nft )/area(B ) where B is tf ball of radius r centered at
r->0

the origin as a measure of the likelihood of oh, ving bifurcation diagrams
represented by parameters in the region A. With thi lotion of "generic imperfec-
tions" the complete description of all the likely bifurcation diagrams is straightfor-
ward; namely, only those regions A which includr portions of the α-axis are
generic.

Finally a degree may be assigned to each solution branch of F±=0. This
degree is just the sign of det^^F*) and is represented on the figures by +'s and
— 's. In practice, this degree is computed by computing the degrees for the solution
branches for the unperturbed problem G± =0 (these degrees were listed in Fig. 5.6
of [6]), and then matching the degree assigment on the perturbed diagrams at oo.
Since only simple eigenvalues occur in the perturbed diagrams, the principle of
"exchange of stability" may be used to complete the assignment of degrees.
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4. The Double Cusp with Symmetry

In this section we consider

(4.1) G(x9y9λ) = (p(x9y)-λx9 q(x9y)-λy)

where p and q are homogeneous polynomials of degree three. Such bifurcation
problems occur in the Von Karman equations model for the buckling of a
rectangular plate [4,7] and in a finite element analogue for this problem
considered by Bauer, Keller, and Reiss [2]. As in Sect. 3, we consider only those
problems (4.1) which satisfy the non-degeneracy conditions (3.2). As shown in [17]
there is a natural Z2©Z2 symmetry group for problems of type (4.1) which occur

in these physical models. In particular ( — 1,0) acts as in R2 and (0, — 1)
\o -

acts as . We assume that Γ = Z2©Z2 acts the same way on both the

domain and range of C ^he equivariant bifurcation problems (4.1) are those
for which p is odd on x arm *ven in y while q is odd in y and even in x. The most
general such problem is

(4.2) G(x, y, λ) = (ax3 + bxy2 - λx9 cx2y + dy3 - λy) .

Note that p and q in (4.2; have common factors iff α = 0, d = 0, or ad — bc = 0.
Thus the non-degenerate pioblems (4.2) may be rescaled by a Γ-equivalence so
that \a\ = \d\ = Γ; the rescalim; is accomplished by setting x = x/\a\1/2 and y = y/\d\1/2

and then multiplying the first coordinate of G by |α|1/2 and the second coordinate
by \b\l/2. If it assumed that tfi$ physically interesting problems are those for which
the trivial solution x = y = Q 12 die only solution when λ <0, then we will show that
both a and d are positive. In "any case we may assume, at the expense of letting

λ that α= 1. So non-df^merate equivariant problems (4.2) have the form

(4.3) G±(x9y9λ) = (x^ + bxy^-λx9 cx2y±y3-λy)

where be φ ε. Here ε = 1 for C + and ε = — 1 for G ~ . Finally the surfaces p(x9 y) = λx
and q(x, y) = λy in (4.2) have ϊibn-zero points of tangency when b = d or a = c. Thus
we assume that cφ 1 and bΨ?. in (4.3). No further simplifications of (4.3) can be
made by Γ-equivalences so έv and c are modal parameters for these problems.

We shall show that the ^ odimension of the non-degenerate problems (4.3) is
three. This should be compar Crwith the contact codimension which was shown to
be 16. (See [6, Sect. 5]). The Universal Γ-unfolding is

(4.4) F ± (x, y9 A, fe, c, α) = G ' ί(x, y, λ, b9 c) + (0, ay) .

The computation of F1 .,, similar to those in previous sections; we sketch the
results. For the action of Γ = Z2©Z2 described above, £*% consists of function
germs f ( x , y ) which are even in both x and y separately; so σ l ( x , y ) = x2 and
(j2(x^y] = y2. The ^-module ^2>2 was described above; its generators are
X1=(x,Q) and X2 = (0, 3;). The $ζ -module -^2,2 consists of those matrix- valued

functions T= I 1 2\ where tl and ί4 are even in both x and y and ί2 and ί3 are
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o/tvv / o
/y=0 / y=0 y = 0

o
y=0

Fig. 5. G+,e<0, 2/ϊ

y=0

O
y=0

Fig. 6. G + ,0<c< l,

y=0

-y=0 y=0

Fig. 7. G + , l<c<2, 4/ι Fig. 8. G + , 2<c, 4/ι
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y=0 y=0

Fig. 9. G~, c<0, 4e0 Fig. 10. G~, 0<c<l , -

y=0 y=0

o

Fig. 11. G~, l<c<2, Fig. 12. G ~ , 2 < c , 2e
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odd in both x and y. Thus T1= , Ta= T3= and T4
(J °), Ta=(J ̂  T3=(χ°}; °

= I are generators for Jί^ 2

 over ί̂

Let G be in «ίf 2. We may write

(4.5)

A computation shows that <f£2/ΓG ^<f3 2/ΦG where ΦG is the <f3 -module
generated by

(4.6) (α, 0), (t ft, 0), (0, ua\ (0, fe), (ufl|l, ubu\ (υav9 vbv) .

Here we denote the coordinates on the domain of $3 2 by u, v, and λ. For the
bifurcation problem (4.3), we have that

(4.7) a(u, v,λ) = u + bv — λ, fo(w, v,λ) = t

The generators for ΦG then reduce to

(4.8) (u + bv- λ, 0), (0, cu + εv - λ\ (0, (1 - φ2 + (b- ε)uυ),

((c- l)uv-(b-φ2,0),(M,CM),(bt;,εϋ).

Using the non-degeneracy assumptions it is not hard to show that

(4.9) (u + bv- λ, 0), (0, cu + εv - λ\ (v2,0), (0, u2\ (u, cu), (εbυ, v)

generate ΦG and that all quadratic terms are in ΦG. Thus $3 2/ΦG is generated by

(4.10) (l,0),(0,l),(0,w),M).

This implies that

(4.11) (x90)9(Q9y)9(09x
2y)9(xy2

90)

generate ^f2/ΓG. Since — = —(x9y) we see that
OA,

(4.12) ( 0 9 y ) 9 ( 0 9 x 2 y ) 9 ( x y 2

9 0 )

form a set of generators for S\\2/ΓG. Thus (4.4) is a universal Γ-unfolding for (4.3).

Lemma 4.13. The non-degenerate bifurcation problems (4.3) are Γ ^-determined.

Proof. Let Gt = G + tH where H(x9 y9 λ) is equivariant beginning with terms of order
4. It is clear from (4.9) that ΦG,CΦG for all t. A calculation which involves
showing that a 6 x 6 matrix is invertible shows that ΦG, = ΦG. Apply Proposition
1.12.

We next describe the bifurcation diagrams associated to (4.3) as the modal
parameters b and c are varied. This information is summarized in Fig. 13. First
note the degeneracy conditions c=l, b = ε, bc = ε divide the foe-plane into seven
regions. The number of solutions to G* =0 for fixed λ is constant over each region.
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bc = -l

bc=-l

Fig. 13

In fact, the number of solutions depends only on the sign of λ. For λ φO a degree
may be assigned to each solution that degree being " —" when the number of
eigenvalues of dxG with positive real parts is one and " + " otherwise. The number
of solutions for λ>0 and λ<0 along with the degrees and relative positions of the
solutions in the λ= ± 1 planes are shown in Fig. 13.

As mentioned after (4.2) the physically interesting regions occur for G +

excluding region 3.
The computations to produce Fig. 13 are straightforward. We outline the case

G + . After factoring, the equation G + = 0 divides into four pairs of equations,
grouped vertically

(4.14) "

The first pair of equations yields the line of trivial solutions. The second and third
pairs yield parabolas in the planes x = 0 and j; = 0 respectively when A>0. On
elimination of λ from the last pair of equations in (4.14) we obtain

(4.15) (c-l)x2 = (b-l)y2.

Since b — 1 and c ~ 1 must have the same signs, these solutions can only occur in
regions 1, 2, and 3. One then checks that two parabolas of solutions occur when
λ>0 in regions 1 and 2 for λ<0 in region 3. The degree assignments are obtained
by computing dxG

+ when G+ — 0. For the four cases defined by (4.14) one has the
following formulas for dxG

+ :

(4.16)
-λ

0
OW(&-1)3>2

-λ\ 0

0

2y2

'2x2

0

0

(c-l)x2

2x2

2cxy

2bxy

The degrees are obvious for the first three cases. For the last case note that
det(^G + ) = 4x23;2(l— be). This information is sufficient to complete Fig. 13.
Finally note that the modal parameters have no effect on the line of trivial
solutions and the parabolas which are in the planes x = 0 and y = 0. The modal
parameters do affect the planes and focal lengths of the other two parabolas. The
effect on the planes is given by (4.15).
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Fig. 14

For each of the fourteen regions in Fig. 13, the effect of the unfolding
parameter α in (4.4) may be computed. Some of these effects were explored in the
paper of Bauer, Keller, and Reiss [2]. They observed that secondary bifurcations
occur in the bifurcation diagrams associated to regions 1, 7, and 6 if α is non-zero.
We add to this observation by noting that secondary bifurcation may be
understood just from the degree considerations alone. Note that the equations
F+ = 0 divide into four cases upon factoring

x = Q χ = Q x2 = λ f

( ' } ' 2 ; '

The degree assignments are given for the first three cases by the eigenvalues of the
matrices dF + .

0 -λ\ 0 2(A-

Examining for example region 1, given by b> 1 and c> 1, we see that when α<0
the degree of the third case is " — " when λ is small and positive. For λ large the
degree of that branch is " + "; the change in degree is effected by a secondary
bifurcation. Similarly if α > 0 then the second pair of equations yields a solution if

λ>oί. However for λ< - — -α that solution has degree " — ". Again for λ large that
0—1

degree is " + ", so a secondary bifurcation occurs. We also point out that secondary
bifurcation fails to occur when symmetry breaking perturbations are added to this
system.

For the remainder of this section we describe a rod and spring problem
considered by Bauer, Keller, and Reiss. Aside from providing an example for our
theory this analysis will add two points. First the fact that (4.4) is a universal
F-unfolding implies that B — K — R had indeed found all of the relevant symmetry
preserving parameters. Second, the determinacy result (4.13) proves that nothing
qualitative would be gained by analyzing higher order terms - at least in the
interior of the regions of the modal plane (Fig. 13).

The configuration of the rod and spring system is given in Fig. 14. The springs
F1 and F2 are non-linear with restoring forces F^^α^w + ̂ w3 (i = l,2) for a
displacement w. In the figure, P is an applied force, /1 and 12 are rod lengths, and
w1 and w2 describe the states of the system. Spring F± is attached at the midpoint
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of rod 11. It is assumed that with P = 0 the state wί = w2 = 0 is the rest state of the
system.

We note that there are two natural symmetries in the problem; namely, if
(w 1 ?w 2) is a solution for a given load P then so are (w2, w1) and ( — w1 ? — w2).

The analysis in [2] leads to the following bifurcation problem - after neglecting
higher order terms -

(
,-x

τ V + 3auv2 + (τ2 - μτ)u, v3 + — u2v + (1 - μτ)v
σa

where μ is proportional to P, u is proportional to \v1 +w2,. v is proportional to
vv1 — vv2, a is 1 +2/2//1 ? σ is a(2 + βί/β2)/6, and τ is a composite variable depending
on all of the parameters in the problem except P.

The symmetry described above translates in the (u9v) coordinates to the
following if (M, v) is a solution to H = 0, then so are (u, — v) and (— w, —1;). Thus H
is a bifurcation problem with the symmetry group Γ = Z20Z2.

We next scale H to the form of the unfolding (4.4) by setting x = u, y = v/τ,

λ= 1, α = 1 — 1/τ2, and premultiplying the resulting equations by the matrix

Λ2 or1 , , . .
3 thus obtaining

(4.20) F(x, y, λ) = I x3 + laxy2 - λx, — x2y + y3 - (λ +
\ σa

Note that this is a bifurcation problem of type G+ moreover, the modal
parameter b = 3a is always greater than 1, so that only regions 1, 7, and 6 in Fig. 13
are accessible. B — K — R make the observation that the qualitative nature of the
problem is independent of a - which is confirmed by our theory - and then they set
a = 2. Thus the modal parameters are b = 6 and c = 1/σ. As was noted by B — K — R
the problems for σ<l, l<σ<6, and 6<σ are qualitatively different. These
restrictions correspond to problems from regions 1, 7, and 6. Qualitatively only the
sign of α matters. This corresponds to the regions τ > 1, τ = 1, and τ < 1 studied by
β-K-R.

We shall apply the results of this section in [17] to give a mathematical
explanation for the phenomenon of mode jumping observed in the buckling of a
rectangular plate near a double eigenvalue.

5. An Example with O(2) Symmetry

We consider as a model the bifurcation problem

(5.1) Nλu = Au + (λ + λQ)h(u) = 0 on D

u = Q on dD
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where D is the unit disk in the plane, A is the Laplace operator, h(u) = u + h(u) where
) = au3 + ... with #ΦO, and λ0 is an eigenvalue for the linearized problem

(5.2) Lφ = Aφ + λ0φ = Q on D

φ = Q on dD

at λ = Q. For definiteness we assume that Nλ: ffl -*L2(D) where ffl is the Hubert
space J^7

2(D)nJf7

1(D) consisting of those functions which vanish on dD and whose
derivatives of order :g 2 are all in L2(D). We consider L2(D) with the standard inner
product <X ι/> = j wiλ

D

Note that the eigenvalues and eigenfunctions for A with Dirichlet boundary
conditions on D may be computed by separation of variables in polar coordinates.

The eigenvalues are λm π>0 where ]/Am n is the m-th root of the Bessel function
Jn(r) the corresponding eigenfunctions are

(5.3) [Jn(]/Xf π r)cos(Hθ), Jn(]/λm^nr)sm(nθ)}.

Note that λm n is a double eigenvalue for A when n g; 1. As a simple example of our
techniques, we analyze the bifurcation of (5.1) from the trivial solution u = Q, near
A = 0, when λ0=λm^n for some m, n with n^l.

It is clear that (5.1) is invariant under the group of rotations in the plane SO(2)
and, in fact, invariant under 0(2) - the group of 2 x 2 orthogonal matrices. As
observed by Sattinger [14] the Lyapunov-Schmidt reduction of (5.1) yields a
bifurcation problem G: (R2 x R, 0)-»(R2,0) of the form

(5.4) G(x9y,λ) = Q

where G is equivariant with respect to O(2). We shall produce this reduction, but
first we discuss the algebraic properties of O(2).

Let Γ = O(2); the action of Γ on R2 is the standard one given by matrix
multiplication. The ring of invariant functions <ff consists of smooth germs
f(x2 + y2) where / is arbitrary.

Lemma 5.5. The module $ζ 2 is generated by the one element (x, y) over $ζ.

Proof. Let g be a polynomial mapping in <^2. We write g in the complex
coordinates z, z as

(5.6) g(z9z) = Σ(ajk + ibj&Φ

where ajίk and bjth are real. The action of SO(2) on (5.6) is easy to describe, being
given by complex multiplication by elθ. The equivariance of g may be written as

(5.7) e-ίθg(eiθz,e-iθz) = g(z,Έ).

The identity (5.7) holds for (5.6) only if the summation is over pairs (j, k) with
j = k + l. So (5.6) may be written as

(5.8) g(Z,z)^^(
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As zz = x2 + y2, we have that g is in the module generated by z and iz over S\ that
is, the module generated by (x, y) and (— y, x). A quick check shows that (— y, x) is
not invariant under O(2); thus proving the lemma for polynomials. We now apply
Schwarz's Theorem [19] described in Sect. 1.

In the language of Sect. 1, we have that Xί =(x,y). We now compute a set of
generators for ̂ £2

(
\ Γ\\ I 2 2 o

0 l ' T2

/O —1\ / — 2xv x —'
T^=\ , and TΛ = ( ~ ~ Λ

 y \ as a module over <fT when Γ = SO(2).
J \ 1 (\ I ^ I -v έ 11-^ O-.^,, / -̂  x '

Moreover, T± and T2 generate ^f>2 when Γ = O(2).

Proof. The last statement follows from the first as T3 and T4 do not satisfy the

equivariance condition (1.3) when 7 = 1 , while 7^ and T2 do satisfy this
1,

condition. The proof of the first statement again uses complex notation.
Let T(z,z) be in .Jfζ 2. Then T(z,z) is a linear mapping on R2 satisfying (1.3).

We write T in terms of the complex coordinates w, w. So

(5.10) T(z, z, w, w) = ί^z, z) w + ί2(z, z)w

where each ί . is real-valued. Rotation through angle Θ is obtained by multiplying
by eίθ. So condition (1.3) becomes

(5.11) e~ίθT(eίθz, e~ίθz, eίθw, e~ίθw) = T(z,z,w,w).

Applying (5.11) to the form of T given in (5.10) yields

(5.12) tί(eiθz,e-ίθz) = t ί ( z , z ) ; t3(ewz,e-wz) = t 3 ( z , z )

t2(eiθz, e ~ iθz) = e2iθt2(z, z) t4(eiθz, e ~ wz) = e2ίθt4(z, z) .

Hence .J^2 2 when Γ = SO(2) is generated by w, zw, z2w, and iz2vv as a module over
$2- Translation of these generators into matrix form proves the lemma.

From Lemma 5.5 we observe that any bifurcation problem (5.4) with symmetry
group O(2) has the form

(5.13) G(x,y,λ) = (g(x2+y2,λ)(x,y)

where g(z, λ) is a smooth germ.
Using the methods of Sect. 1, one computes that

(5.14) £^2/fG^<ί2Λ/ΦG where ΦG = (g,zgzy.

Remark. Any bifurcation problem (5.13) has infinite Γ-codimension when
Γ = SO(2). Note that in the proof of Lemma 5.59X1=(x,y) andX2=(-j;,.x) were
shown to be generators for ^2>2 when Γ = SO(2). It follows that

(5.15)
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Fig. 15

So G has infinite codimension whenever #(0) = 0 since at least four generators are
needed for ΦG if G were to have finite codimension. For universal Γ-unfoldings the
difference between using O(2) and SO(2) symmetry is dramatic.

This dichotomy can be observed on the diagram level. The bifurcation diagram
G = 0 for (5.13) has two parts. The first is the trivial solution x = y = 0 and the
second is the hypersurface g(x2 +y2,λ) = ΰ. Consider the perturbed problem

(5.16) Gε(x,y,λ) = g(x2 + y 2 , λ ) ( x , y ) + ε(-y,x).

Note that the symmetry group for Gε is SO(2) not O(2). It is easy to check that only
the trivial solution remains as a solution to Gε = 0. This problem has been
considered from another point of view by Dancer [5].

Next consider the sample problem

(5.17) G(x,y,λ) = (x2+y2-λ)(x,y),

From (5.14) we see that dim^f 2/ΓG= 1. (We are now using Γ = O(2).) In fact,
s-\f~*

&][t2/ΓG is spanned by {(x, y)}. Next note that —- = -(x, y) so that Γ-codim G = 0.
UΛ

Thus (5.17) is a Γ-(infinitesimally) stable bifurcation problem whose universal
Γ-unfolding is itself. The bifurcation diagram associated with (5.17) is given in
Fig. 15.

Note that (5.17) is a degenerate double cusp problem (4.3) which has infinite
contact codimension.

Lemma 5.18. Let H(x, y, λ) be a bifurcation problem with symmetry group O(2). Let
H(x,y,λ) = h(x2 + y2,λ)(x,y) where h(z,λ) = az-bλ +... with α>0 and b>0. Then
H is O(2)-equivalent to (5.17).

Proof. First rescale z and λ so that a = b = l. Observe that now His a perturbation
of G and that the perturbation term H — G when viewed in S2 1/ΦG via (5.14) is
actually in JfΦG. Apply Lemma 1.13 and Proposition 1.12.

We are now in a position to perform the Lyapunov-Schmidt reduction of (5.1).

Proposition 5.19. The reduced bifurcation equations associated to (5.1) are O(2)-
equivalent to (5.17).

The Lyapunov-Schmidt procedure is an elementary application of the Implicit
Function Theorem. Let φ1 and φ2 be an orthonormal basis for KerL relative to

the inner product </,#> = \fg. Thus φ1 and φ2 are the eigenfunctions (5.3) scaled
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to have norm 1. Define E :L2(D)-»KerL by

(5.20) E(φ) = (

Let V be the orthogonal complement to KerL in ffl. Define W\ KerLx R— »F
implicitly by

(5.21) E'Nλ(l + W(l A)) = 0 W(0) = 0

for all /eKerL where E' = ίd — E. Since L|Fis non-singular the Implicit Function
Theorem guarantees the existence of W. Observe that

(5.22) Nλ(l+W(l,λ)) = Q iff ENλ(l+W(l,λ)) = Q

by (5.21) and define

(5.23) H(x, y, A) = ENλ(xφ ,+yφ2 + W(x, y, A))

where W(x, y, λ)= W(xφί + yφ2, A) Expand Nλ by its definition (5.1) and use φί9φ2

as coordinates on the range of H to obtain

(5.24) H(x,y,λ) = λ(

Since h(0) = h'(0) = ft"(0) = 0 we have that

(5.25) H(x, y, A) = A(x, y) + terms of order 3 + . . . .

Since H must be equivariant with respect to O(2) there is only one possible term of
order 3 namely,

(5.26) K(x2 + y 2 ) ( x , y )

for some constant K. If we can show that J£ΦO then we may apply Lemma 5.18
and prove the proposition. To compute K we need only compute the first

coordinate of —-^-(O). From (5.24) we see that this coordinate is

(5.27) A0/z'"(0)

We claim that

(5.28)

Assuming this, it is clear that <φ3, φ^) = J φ\ >0 which along with the assumption
D

that /z;//(0)φO proves the proposition. To prove (5.28) we use (5.21) in the form

(5.29) H(x9y,

which implies

(5.30)
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where h = h(xφl +yφ2 + W). Using the fact that ft'(0) = 0, we have that LWX(Q) = Q.
Since the range of Wis in Fso is Wx(ty. Since L|Fis an isomorphism we see that
(5.28) holds.

6. Buckling of an Annular Plate

It is generally known that when a clamped circular plate is subjected to a uniform
compressive force the plate will first buckle into a radially symmetric mode. In [8]
Majumdar observes that this is not necessarily the case when the plate is annular
rather than circular, the inner edge being free. The appropriate parameter is the
ratio, τ, of the inner to the outer radius of the annulus. When τ is small the annular
plate behaves like a circular plate. For τ^0.42 both a radially symmetric and a
radially non-symmetric mode occur simultaneously as the first buckling mode.
This is clearly a bifurcation problem with a multiple eigenvalue.

Before describing the model for this problem note that any idealization will
include an O(2) x Z2 symmetry group. The action of O(2) comes from the circular
symmetry of the problem while the action of Z2 is induced by the fact that
buckling up is assumed to be the same as buckling down. The inclusion of O(2)
symmetry implies that the non-radially symmetric mode must itself be a double
eigenvalue similar to the problem considered in the last section. In fact, the
simplest situation for τ set at this critical ratio is that the resulting eigenvalue is
triple. This is in fact what occurs and we analyze this situation first in the abstract.

Let Γ = O(2)xZ2 act on R 2 x R in the following way: O(2) acts by matrix
multiplication on the first factor and Z2 acts by scalar multiplication on the
second factor. The invariant functions f(x,y,z)e^ are clearly of the form
h(x2 + y2,z2). In the notation of Sect. 1 we let σ1(x, y, z) = x2+y2 and σ2 — z2. The
δ%_ module <?£3 is generated byX 1 = (χ, y,0) and X2 = (0,0,z). The computation of
a set of generators for Jί^ 3 is similar to the computations for Jί^ 2 in Sect. 5.
There are five generators namely,

10 0 0'

(6.1) Γ1= 0 0 0

\0 0 1

10 0 xz\ / O 0

T4= 0 0 yz\ T5= 0 0 0

\0 0 O / \xz yz O /

The general Γ-equivariant bifurcation problem in ̂  3 has the form

(6.2) G(x, y, z, λ) = a^σ^ σ2, λ)X1 + a2(σί9 σ2, λ)X2 .

A straightforward calculation shows that the $% module ΦG is generated by

(6.3) (α, 0), (0, ua\ (vb, 0), (0, ft), (uau, ubu\ (υaΰ, vbv)

where a and b are functions of u, v, and λ. The similarity of this result with (4.6) is
apparant.
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As the buckling of the annular plate has only one extra parameter, τ, we should
expect - if the philosophy outlined in the Introduction is to be satisfied - that the
analysis of the bifurcation equations of the plate should yield a singularity with
codimension (excluding modal parameters) equal to one. Moreover, the role of τ is
to split the multiple eigenvalue into simple eigenvalues. The simplest such case is
the problem with two modal parameters considered in Sect. 4. In particular

(6.4) a(u, υ,λ) = u + bv — λ b(u, v,λ) =

In terms of x, y, z, λ we have

(6.5) a = x2 + y2 + bz2-λ; b = c(x2 + y2) + εz2 -λ.

Again, for a physically motivated problem, ε should equal + 1. A good guess for
the form of the universal unfolding for the plate problem is

(6.6) F(x, y, z, λ, τ) = (x3 + xy2 + bxz2 - /be, x2y + y3 + byz2 - λy,

where b and c are modal parameters depending on the various constants in the
problem. As mentioned in Sect. 4, the qualitative nature of the perturbed
bifurcation equations depends on the specific values of the modal parameters. We
hope to treat in the future the Lyapunov-Schmidt reduction, either explicitly or
numerically, to determine the specific values of a and b for this problem, as we
have done for the rectangular plate in [17].
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