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Abstract. The mechanism of radiative mass generation is discussed by means of
a simple model with spontaneously broken symmetry. We show how this
phenomenon induces an infrared breakdown of the usual perturbative ap-
proach and proceed to identify a set of renormalization prescriptions allowing
the construction of a new perturbation theory in which the Ward identities of
the model are maintained. The original pathologies are reflected in the
appearance of square roots and logarithms of the expansion parameter 7.

1. Introduction

In the last few years attention has been paid to the mechanism of mass generation
induced by radiative corrections [ 1]. The interest is largely due to the phenomeno-
logical insights this mechanism may provide such as, for instance, the nature of
electron’s [2] and pion’s mass [1] or the possibility of breaking the C.P. Symmetry
[3] at the quantum level.

The phenomenon typically arises when in a classical field model (tree
approximation) there are constraints which imply the “accidental” vanishing of
some particle masses. This is known to happen, due to the particular “repre-
sentation content” of the scalar multiplet and to the condition of renormalizability
by power counting, in some models with spontaneous symmetry breaking and in
gauge models exhibiting the Higgs Kibble [4] (H.K.) mechanism. For example in
some H.K. gauge models the classical potential energy of the scalar fields (where
no couplings with other fields are present) may be invariant with respect to a larger
symmetry group, i.e., one which contains the gauge group as a proper subgroup,
this larger symmetry being violated by the other terms of the Lagrangian. It
follows that there are “accidentally” more Goldstone bosons than those implied by
the symmetry of the model which are not reabsorbed by the H.K. mechanism.
These residual massless bosons are named pseudo Goldstone bosons (P.G.B.) [1].

Outside of the H.K. mechanism, some non-gauge models with spontaneous
symmetry breaking, may also show radiative mass generation when part of the
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lagrangian is invariant for a symmetry greater than the oririnal one and this larger
group is broken by couplings which do not provide, due to the particular choice of
the vacuum state, any mass term to the Goldstone bosons. If so there may be more
massless bosons than the number predicted by the Goldstone theorem [5].

Accidentally massless fermions may also appear in other models with sym-
metry breaking, when the “representation content” and the power counting
requirement impose that some fermion fields be decoupled, at the classical level,
from those boson fields which acquire a non-vanishing vacuum expectation value.

In all these cases the radiative corrections are expected to generate mass terms
for the particles which remain accidentally massless; when this happens the
perturbation theory breaks down since, as well shall see, the Feynman amplitudes
develop I.R. divergences.

Now, even if the phenomenological interest in these models is focused on the
mere existence of such a mechanism of radiative mass generation, we are still faced
with the academic-theoretical problem of interpreting and possibly solving the
perturbative breakdown, having in mind that a detailed description of this
phenomenon may give some general hints about the implications of the per-
turbative infrared pathologies.

Our task in this paper will be the construction of a new scheme allowing a full
perturbative treatment of the models with radiative mass generation and of their
symmetry properties hence solving the mentioned perturbative breakdown.

We shall adopt as a reference a very simple model with spontaneous symmetry
breaking (shown in Sect.2) by which we shall illustrate the construction of a
covariant perturbation theory taking into account, since the beginning (i.e., at the
propagator level), the radiatively generated masses. This perturbation theory will
be analyzed in the framework of an I.R. extension of the B.P.H.Z. renormalization
scheme, [6], [7] showing that its formal expansion parameter is the square root of
i and that it maintains the loop ordering of the Gell Mann-Low series (Sect. 3).

Finally we shall prove that our scheme also allows the implementing to the
quantum level of the Ward identities which characterize the symmetry properties
of the model (Sect. 4).

The appendix contains the more technical aspects and developments of our
approach.

2. Analysis of a Simple Model

The phenomenon of radiative mass generation may appear, as discussed in the
introduction, in many different ways both in models with spontaneous symmetry
breaking or in gauge models and may involve both boson or fermion fields. Out
of all these possibilities we shall select, and employ as our standard reference, a
simple Goldstone-type model where the spontaneous breaking of the symmetry
associated with the O(3) x U(1) group generates P.G.B. particles.

The model is built with a five complex component field whose real and
imaginary parts separately transform according to the five dimensional irreducible
representation of the rotation group O(3) (angular momentum equal to two). The
U(1) transformation multiplies the field with a phase factor. In other words the
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components of the field can be organized in a traceless symmetric 3 x 3 matrix
whose elements are:

D(x)/@i(x) +ip;(x) i j=1,2,3 (1)
and which behave under infinitesimal transformation as

5, (%)= [t p(x)];; + 0 p(x), (2a)

Sy, (x) = [0', p(x)];;— 0 p;(x) (2b)

where ' (I=1, 2, 3), ° are respectively the parameters of the O(3) and U(1) groups
and ), =¢" is the totally antisymmetric tensor.

The most general renormalizable lagrangian invariant under the transfor-
mations in Egs. (2) contains terms quadratic and quartic in the fields components,
@,(x) and y, (x), the cubic contributions being excluded by the U(1) invariance. In
particular the potential energy of the model has only one quadratic invariant term
which is

Tr(@P)= (DT, A3)

while the contribution of the quartic invariants is limited to three linearly
independent terms since the four invariants

(PPTH2, (D) ((P1)), (P*(DT)), {(@PT)*) 4)
obey the relation [8]
DD +2{(@DT)) — (@) ((@7)*) —2(PD")? =0. )

Hence, in terms of the real components ¢,; and y;; of the field, the potential energy
V can be written as

_ a4, 5, .2 Lo, o,
V==5{0+v*)+ <0 +p?)?
_ A (@% + ) — h 2 6
arle™+y > ar Lo, w]*>. (6)

We shall investigate the model only for positive values of the parameters y, 4, 7;
with this constraint and making use of the inequalities

30? + 1) =(9* +9?)*) S5 p? +y?)? (7a)
—K@?+p??=Llo,v]*> =0 (7b)
the requirement that ¥ be bounded from below is easily seen to imply
A
z 8
w>3 8)

Of course the spontaneous symmetry breaking mechanism takes place only for
positive values of the parameter a and the fundamental state of the system
coincides with an absolute minimum of the potential energy. Setting

f=1<22") ©)
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is clearly seen by the inequalities (7), that the potential energy reaches a minimum,
for fixed f, when

Lo, p]>=0, (10a)
A+ =31* (10b)

and the absolute minimum is obtained for

(11)

The peculiar aspect of this model, and consequently its pathology, lies in the
fact that the solutions of Eqgs. (10) are not connected one to the other by the
symmetry group transformations. This property is shown explicitly by the choices

1 0 0
F
0o 0 -2
1 0 O
F
o,=—10 1 O (12b)

l/5000

which both solve Egs. (10).
The set of field configurations of minimal energy is individuated by the orbit
spanned by a linear superposition of ¢, and &,

1 0 0 . 1 0 0
=Fcos(90 ) 0+Fsm@0 1 0l for |9|§g_ (13)

l/800—2 l/2000

Therefore we can picture the situation as follows: while in the usual Goldstone
type models the equilibrium configurations of the system are located along valleys
which are covered by the symmetry group transformations, in our class of models
such valleys acquire some extra degree of freedom (one in the case at hand) to
which may be associated P.G.B. particles, i.c., massless particles which become
massive through the radiative corrections. To illustrate further the dynamical mass
generation we emphasize that the width of the valleys, which stays fixed along the
orbit, indeed varies with 6 in Eq. (13). Furthermore, forgetting for the time being
the space dependence of the field and taking it to be defined at a single space point,
we observe that the lowest energy eigenvalue associated with the transverse
motions in the valleys decreases when the width of the valley increases. Hence,
taking into account this quantum effect by means of a Born-Oppenheimer
approximation, we may conclude that the system will feel an attractive force
toward the widest region of the valley, and the elastic constants of this force will
play the role, in the full quantum model, of the masses of the P.G.B. particles.

Py(0)
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Going back to our model we notice that the zero point energy of the transverse
oscillations around the field configuration in Eq. (13) is given by

K(0)=2F {Vg cos?0+nsin?0 + 1/531— cos? <0+ 73[) +#sin? <9+ g)

+ ‘/%cosz (e— g) +ysin? (9— g)} (14)

from which we can conclude that the equilibrium point of the system is given by

oA A .
% <nand 0= i%lf§ >. F0r§ =, K(0) in Eq. (14)

is constant and hence we have a 6-indifferent equilibrium position. The expla-

the configuration with 6 =0 if

nation of this lies in the fact that for% = the symmetry group of the model is no

longer O(3) x U(1), but the potential energy has become invariant under the larger
group O(5) x U(1), and no P.G.B. phenomenon arises.

S A . )
Considering from now on only the values 3 <M and performing the field

translation
@ij(x)_’(/’ij(x)"‘(pij (15a)
(%)= (X) (15b)
where
F 1 0 0
p=2,00=—{0 1 0 (16)

1/60 0 -2

we obtain the lagrangian of the system, in pseudoeuclidean metric

1
L = = 50,008 @(x) + 0, (x)0"p(x))

SO+ B 1)~ o) + B ()
A
+ 20 + BP0+ o)+ 5,101 — C
and
H@oo= 5| =0, 17
P lo=0

Due to the choice in Eq. (16), the lagrangian in Eq. (17) is still invariant under
the rotations around the ¢3 axis; it is therefore natural to choose a new basis for
the fields on which the generator of the ¢ rotation is diagonal.
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Defining the matrices

1 1 0 0 { 0 0 1 i 0 0 1
lo=—=|0 1 O; /11_=§O 0 —il; /1;’=§O 0 if;
I/g 0 0 -2 1 —-i 0 1 i 0
i 1 —-i O { 1 i 0
/lz_zz —i 1 0f l;:ii 1 0 (18)
0 0 O 0 0 0
the field components can be written
@)= po(x) 2o +¢F (X)A; +o1 ()A] +¢3 ()15 +¢; (X)15 (19a)
W) =o(x) Ao + 17 (A7 +7 (AT +3 ()15 +py ()45 - (19b)
We further notice that the lagrangian in Eq. (17) is invariant under the inversion
P(x)—p(x), (20a)
W(x)= —p(x) (20b)

which excludes the presence of couplings with an odd number of y fields.
The mass spectrum of the particles in the theory is now easily computed from
Eq. (17) and Eq. (11); we summarize the result in the following formulae:

0*¥ F? A
2 _ — (== 21
Moo 090090 lo=0 3 (,u 2>7 (212)
02 F2 (]
2 R , 21
= ot oo 516 1) 210)
0’ F?
2 - 21
Mo 03 0W3 lo=o 18/13 @)
M. =m(/2,§ =m} =0. (21d)

Since the vacuum expectation value of the scalar fields in Eq. (15a) is along 4,
the field components ¢; are the Goldstone bosons relative to the O(3) group and
P, is the one associated with U(1), while the fields @5, ¢5, Eq. (21a), appear as
possible pseudo Goldstone bosons.

Having thus described the classical model and shown the possibility of the
appearance of radiative mass generation, we devote the rest of this section to show
how this phenomenon manifests itself in standard perturbation theory. A con-
venient way of compactifying this analysis is provided by the functional language,
which we now briefly summarize. We indicate by

1

()= n;2 o fdx,..dx,®,; (x))...®, (x,)G;, ;(X;...x,) (22)
the generating functional of the proper amplitudes G;, ;(x;...x,) ie., those
associated with diagrams having n amputated external legs and which cannot be
separated into two disconnected pieces by cutting a single line. We recall also that
in general I'(®) is a formal power series in % [9] whose first term (ie., the #=0
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contribution which defines the classical limit) coincides with the classical action
I°}(®) of the theory. The symmetry properties of the model at the classical level
can be translated into functional form as

! el _ 4 =\ £l 6 1 6 c —
WIrND)=[d x[<((p(x)+go)t 5 (x)> +<1p(x)t 5w(X)>JF $)=0 (23a)

<((p(><)+qo)(s e )> <w( ) ;( )>

The standard procedure is to verify if the model admits a vertex functional I'(®)
satifying the W.I. in Eq. (23) to all order of perturbation theory; however in
models with spontaneously broken symmetry it is convenient to rewrite the W.L. in
a non integrated form in order to avoid amplitudes with external legs at zero
momentum.

To be able to translate the W.1. in local form we have to define an extension of
the lagrangian in Eq. (17) which is invariant for (local) gauge transformations. To
this purpose we introduce a multiplet of classical gauge vector fields o/
(2=0,1,2,3) corresponding to the infinitesimal generators of the O(3) (x=1,2,3)
and U(1) (#=0) groups. The local gauge transformations for the @ fields are given
in Eq. (2) with the {&', ©°}={w*} parameters depending upon the space-time
point x, while the fields .o/ transform accordingly to

S, (x)=0,0"(x) + [*" oL (x) P(x) (24)

where f*7 =¢7 when restricted to O(3) and f*#7=0 if it involves at least a U(1)
index.

The gauge invariant extension of the lagrangian is then obtained substituting
the space-time derivatives with the corresponding covariant derivatives

WO @)= [ d*x ri@)=0.  (23b)

0,:/X)>D, 0, (x)=0,0,{(x) + [ 1, @1, (x) + o, (x) (%), (25a)

0,:%) =D,y ()= 0,0, x) + [ ', (%) — 7 (%) @ (x) (25b)
and by adding terms depending upon the covariant tensors built from the .o/
fields. The corresponding classical action I'(.«/%, @) satisfies the following non
integrated W.L

0
W00 {0, e+ L)
al 1 1 0 >}
3|+ 55 ) + (v s 9

a0 __ v elf oy )
5 = (o505 + (W) et

It is straightforward to verify that the #*(x) operators obey the commutation
relations.

[W72(x), WP ()] = 0(x = y) f*27 W7 (x). (27)
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The functional apparatus we have introduced (at the price of being rather
tedious) allows a standard discussion of the possible quantum extension of the
model within the scheme of Ref. [10]. In theories involving only massive particles
the W.I. of the type shown in Eq. (26) turn out to be renormalizable with the only
exception of models containing the Adler Bardeen anomaly [11], whose unique-
ness can be algebraically proved by means of the commutation relations Eq. (27).
However this result cannot be directly transferred to our model which is affected
by a new kind of anomaly of I.R. origin®.

We will now show how this anomaly is brought about by the radiative mass
generation, trying to be as non technical as possible. To this purpose consider the
one loop vertex amplitude G,,; with external legs 3 ¢ ¢ [in the basis given in
Egs. (19)] and the difference G,, —G,, between the one loop propagator
corrections of the fields 5 and @3 respectively.

It is easy to show that these amplitudes, vanishing at the classical level, are
connected by the W.I. and are not affected by either L.R. or U.V. singularities. An
explicit one loop computation at zero external momenta yields

]ﬁ w21 /2 (A 2 [l+9q
F—l/g(Gn—Gll)—Gzll—zE\/%F(g—n) m( - ) (28)

Now this non-vanishing result originates the I.R. anomaly of our model.

Indeed in order to extend the theory to two or more loops it is necessary to
introduce suitable counterterms which compensate the value at zero momentum
of the amplitudes G, ,, G,, and G, otherwise, the Feynman integrals with two or
more loops become L.R. divergent; for example the propagators of the massless
fields (@i or ¢3) develop poles of arbitrarily high order at zero momentum.
However these counterterms break the W.I. since they are not invariant under the
symmetry group of the model. Hence we can only conclude that our model is not
straightforwardly renormalizable.

Nevertheless, from a heuristic point of view, such a phenomenon may be
interpreted as a perturbative accident. By this we mean that the ¢, field, which
after all is not a Goldstone boson, will become massive in the “true” model (i.e., we
were able to sum the perturbation series). A

It may be useful to recall that the vanishing of the anomaly at” 3 =1 was to be

expected since at this value the @3 fields become true Goldstone bosons.

3. The New Perturbative Development

We have just seen that the mass generation due to radiative corrections manifests
itself as an L.R. anomaly in the usual perturbation theory and that it can be
physically interpreted only in view of a summation of the perturbative series
generating a mass term in the propagators of the P.G.B. particles.

We approach now the main problem of this paper, namely whether the
summation can be embedded in a new covariant perturbation expansion which
maintains, order by order, the symmetry of the theory itself. The first important

1 An analogous phenomenon is discussed in [12] in the framework of the supersymmetric
O’Raifertaigh model
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difference between such a perturbative approach and the usual one should arise in
the construction of the Fock space as a consequence of the finite mass re-
normalization of the P.G.B. particles, which in a formal non-covariant language,
could be carried out by a singular Bogoliubov transformation [13].

From a covariant point of view, this is equivalent to adding to the free
lagrangian the mass terms generated by the radiative corrections at least order and
then define the Green functions by the well-known Gell-Mann Low formula
endowed with suitable subtraction rules. Of course we still have to investigate
whether the new theory fits into a perturbative scheme and if, within this scheme,
the W.I. which characterize the symmetry of the system are maintained.

The rest of this section is devoted to the analysis of the new perturbative series
while the questions concerning the W.I. will be treated in the next one.

In order to discuss the first point we recall that in the usual perturbative
approach the #" corrections to a given Green function correspond to a finite
number of diagrams with at most N loops. This is not guaranteed in the new
theory where the square of the masses of the P.G.B. particles are proportional to A.
Indeed the behaviour of any amplitude for vanishing # will in general be affected
by the mass singularities introduced in the Feynman integrals by the P.G.B.
propagators.

A complete analysis of the nature of these mass singularities is quite involved
and depends strongly on the momenta carried by the external vertices of the
diagram ; we will limit ourselves, as it is usual in models with massless particles, to
external momenta which are Euclidean and non-exceptional in the sense of
Symanzik [14], and where a given amplitude behaves, when the propagator mass
u vanishes, like [15]

2 WColpys - p) (N0 (29)

ngmfﬁ
Hence in our theory the Feynman integral corresponding to a generic N loop
graph will depend on # as:
LA InA\™
Yo h? Co(Prs-D) (T) . (30)

nz—n

v

It is apparent from Eq. (30) that if the P.G.B. mass singularities completely hide the
loop factor A", we have to give up the possibility that the Green functions, built
according to the new Feynman rules, have a formal perturbative expansion whose
terms, ordered with the increasing powers of #, correspond to a finite number of
diagrams. We shall show in the following that this catastrophic event can only be
avoided by a suitable set of renormalization conditions.

Consider, for example, the amplitude G corresponding the one loop diagram in
Fig. 1, where a cross stands for a # independent mass insertion and the dotted lines
indicate the P.G.B. propagators.

A simple computation yields for the leading power

Goch™"+2 31)
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where n counts the crosses. Hence in this example, the singularity in % increases
with the number of the mass insertions.

We notice that, even excluding these mass counterterms, the diagram G’ in
Fig.2

Fig. 1 Fig.2

behaves like
G och? (32)

independently of the number of loops and provided there are at least two bubble
insertions.

These simple examples already point out that all mass counterterms of the
P.G.B. particles which do not vanish with a power greater than #, must be
excluded and likewise all P.G.B. propagator corrections at least order and zero
momentum must be compensated with suitable mass counterterms. We shall show
in the following that these prescriptions are sufficient to insure the existence of a
suitable perturbation theory.

The translation of these qualitative considerations into precise renormalization
conditions requires a few technical specifications, which we will now illustrate.

We shall renormalize our theory according to the B.P.H.Z. method in the
extension given by Lowenstein and Zimmerman [6,7] to include massless
particles. The idea is to subtract the amplitudes at zero external momenta while
keeping at a non zero value the masses in all the propagators of the subtracted
diagram. Technically the procedure is to introduce, in all the propagators, a mass
term depending upon a real parameter “s”, 0<s<1, and such that for s=1 the
mass acquires its physical value, while it stays always positive when 0 <s<1.

In this framework the unsubtracted integral I; of any Feynman diagram G
assumes the form

Io(p. k,s)= [] Py({ly},5) [ ] 401, 5) (33)

VeG LeG

where the products run over the vertices V and the lines L of G respectively. We
have denoted by {I,} the set of momenta entering the vertex V' and by [; the
momentum of the line L; of course both [, and [, are functions of the external {p}
and internal {k} momenta of G. Furthermore P, is a polynomial in [, and the
parameter s, and 4,(/;, s), which is the product of the propagators associated of the
line L, is of the form

1

34
I}, +(6—1)°M} +m}, (34)

Ay, 8)=P(ly,s) H

i
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where m,i_ >0 may be proportional to / and M7 is independent from # and strictly
positive for the massless and P.G.B. particles.

The corresponding renormalized integrand R is defined by the well known
forest formula

Rs(p k,s)=Sg 3 (—7,8)I6(U) (35)

UeZFg

where % is the set of forests of G (families of non-trivial, non overlapping one
particle irreducible (1P.I.) subgraphs of G), I4(U) is the unsubtracted integrand
parametrized with the variables of the smallest element 2 of U and §, is a
substitution operator which shifts from the variables of Ae U to those of ye U, y D A.
The details of this definition can be found in ref. [6].

Finally 7, is the subtraction operator which, for all the subdiagrams 7 different
from the propagator corrections of the P.G.B. y,, is defined by

L=, ==t ) (=150 (36a)
while for these cérrections we set
L=z, ==ty ) A =13) (36b)
and
Taylor polynomial about x;=0 of degree d
tilmhz{when d=0 (36¢c)

0 otherwise.

The indices ¢(y) and 6(y) in the Eq. (36a) are given by:

o) =4~ ; di+ VZ(@VV —4), (37a)
S(y)=4— ;Jk+ VZ(&,,V —4) (37b)

where the sum over k refers to the external lines, V, are the vertices of y and the
following definitions have been used: _
i) to each field of the theory are assigned U.V. dimensions d; and LR.

dimensions d; satisfying

deg,,4,,,+4=D, +4=d,+d, (38a)
deg, 14, +4=D, +42d,+d, (38b)
where, for a generic function F(x;...X,, V;..- V)
degy, o F(X1 Xy V1Y) =7
if ,1111?0 ATVF(AX .. AXp Yy V) E0, 00 (39a)

%xlm,‘"F(x1 X Vi V) =Y
if /llin% ATEF(AX, .. A% V1Y) E0, 00 (39b)
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for almost all values of x, ...x, at fixed y, ...y,,. Now, according to Egs. (38), we can
choose d;=1 and d;=2 for a massive boson, while for a massless one the LR.
dimension is d,=1 and the U.V. stays unchanged ; we remark that the P.G.B. fields
have d,=2 due to our choice of their propagators.

i) To each vertex are associated the indices g,, and J,, satisfying

8y 2 vi(V)d, +deg, Py(p, k, s)
Kk
=Y vV, +D, (40a)
x

(S ;vk(V)dk +deg, - 1) Py(p k. 5)
=) v(V)d,+D,, (40b)
3

where v,(V) counts the number of lines of the k-th type entering the vertex ¥ and
0y =0, except at must one vertex in the diagram for which ¢, =4, +1 is allowed.

In particular the internal vertices of the diagrams, corresponding to the
interaction lagrangian, will be assigned ¢, =4,,=4. This condition will also hold
for the couplings of the external gauge fields .+7;, which have been introduced in
Sect. 2 in order to define the W.I. Eq. (26). These fields which appear only as
external lines in the diagrams, are given the LR. and U.V. dimension d,=d, =12
The subtraction indices ¢,, and §,, of other possible external vertices corresponding
to composite local operators (here after denoted with C.E.V.) will be specified
when needed.

In the framework of these subtraction rules the interaction lagrangian £ will
be chosen as a formal power series [16] in the parameter #'/?

w ntl ©

L=Lrt Y h 2 L (nh) =L+ Y L (41)
n=1 n=2

where Zi™ is deduced from the classical lagrangian of the theory by dropping the
bilinear (free) part, and #'™ is constrained from the following supplementary
conditions:

A) Assigning to the fields a new LR. dimension d? by:

d’=1 for the P.G.B. (42a)

d?=d, otherwise (42b)
which implies

degyirzys- )AL, =P, 24 +dj —4 (43)
and setting

Py =degyzps-1) By (44)

2 Note that, e.g, the derivative bilinear coupling of a gauge field and a spinless boson field needs no
subtraction at all
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the vertices of #™™ obey also the inequality

Py+ 2 v(V)dy —420; (43)
k

B) Denoting by P, the coupling of 2P.G.B. fields, the condition
ge_gh”zp(s—l)PVzEﬂpvz >2 (46)

must be satisfied.

A few comments are now appropriate : the subtraction rules introduced in Eq.
(36a) are identical to those given in [6], while the one given in Eq. (36b) ensures
that the P.G.B. propagator corrections of order # vanish at p=0 and s=1. Notice
that the integrand of a P.G.B. propagator correction y, depends on % according to

LI+ 3 11 @
n=2

where I'? is built only with the vertices of ™.

Moreover the extrasubtraction for y, does not affect the absolute convergence
of the Feynman integrals since the integral of I ‘;j) is free from LR. singularities. It is
also important to realize, for the future, that the extra subtraction for y, is
completely equivalent to the introduction of a counterterm in the effective
lagrangian, and hence it does not invalidate the quantum action principle as
extended by Clark and Lowenstein to theories with massless particles [17].

Once specified the renormalization prescription for our model, we are able to
evaluate the leading power in # for any subtracted Feynman amplitude. The
detailed analysis is given in the Appendix; we here summarize the results in the
following :

Theorem 1. Let J, be the amplitude corresponding to a proper Feynman diagram
with N loops and non exceptional, Euclidean external momenta; if A contains no
C.E.V. we have

degy] ;2N +1 (48)
otherwise
deginJ ;2N +2—14, (49)
where 1, is defined by
— _ Oy
b= S dy= [7 (50)
(CEVy (CEV)

and the symbol [x] stands for the least integer nearest to x.

Let us notice that possible # powers in the vertex constant of the C.E.V. have
not been considered in the evaluation of Eq. (49) and hence their contribution,
should be added to the r.h.s. of Eq. (49). Concerning the internal vertices, their %
degree has been taken into account in Eq. (45); however, should it be greater than
the one necessary to verify Eq. (45), the excess contribution is also added to the
r.h.s. of Egs. (48), (49).
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From these considerations we deduce that the substitution, in a diagram A, of a
vertex constant with one of its higher order corrections in # or else the
introduction of mass counterterms satisfying Eq. (46), increases the # degree of the
graph itself. Thus the #'/? degree of an amplitude J , with N loops containing a
vertex correction of degree y >0 is greater than or equal to y—1+N or y+N
depending on whether the vertex is a P.G.B. mass correction or not. It is however
shown in the Appendix that when N =1 the #'/? degree of A, will be at least y + 1
in both cases. Hence we have the following

Corollary. A generic proper Green function G is a formal power series [16] in h*/? of
the type?

n+1

G=Gy+ Y. h 2 Glnh) (51)
n=1

where G, has contributions from a finite number of diagrams with at most n loops.
Moreover the term G, (Inh) does not depend upon % ,.(Inh) in Eq. (42) for n' >n and
the only contributions from %, (Inh) are tree approximation terms.

In the following Section we shall reword the result of this corollary and in
particular Eq. (51) saying that the functional I', defined in Sect. 2 Eq. (22), is a
formal power series in h'/2.

We conclude this section with a brief summary of the results; we have shown a
way of interpreting the dynamical mass generation in a new perturbative
framework, which maintains the usual feature of linking the perturbation series to
the loop expansion.

The L.R. singularities due to the radiative mass generation manifest themselves
through the appearance of non integer power of # and of In% terms in the
coefficients of Eq. (51)*. The peculiar dependence on # of diagrams with composite
external vertices is due to the fact that such vertices may enhance the LR.
singularities of the corresponding graph.

4. Discussion of the Ward Identities

In this Section we discuss the possibility of building, in agreement with our
perturbation theory, a quantum vertex functional I satisfying the W.I. in Eq. (26).
The renormalizability of our model will be analyzed by means of quite general
techniques whose applicability to broken symmetry or gauge models is widely
discussed in the literature [10]. This will also give hints about a possible
renormalization scheme for the whole class of theories mentioned in the
Introduction.

We shall base our analysis on an extension to theories with massless particles
[17] of the Lam-Lowenstein Q.A.P. [19] which we now recall in a simplified
version suitable for linear symmetry transformations of the fields [20].

3 For what concerns the external momenta dependence of G we note that, since these are
Euclidean non exceptional, the expression in Eq. (51) is meant to hold almost everywhere for the
Fourier transform of G

4 This phenomenon is somewhat analogous to the one discussed by K. Symanzik in [18]
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Consider the local field transformations
()~ B,(x) + A(x) [, B ,(x)+ F )]
=(x)+ Ax)5,P(x) (52)

where @,(x) stands collectively for the quantized fields ¢, , and the external gauge
fields of;; the corresponding variation of the connected Green function

n
< I1 @i(x,.)> can be expressed in terms of the insertion of suitable normal product
+

operators as

<ijnlq>(x>5x w0 11 o)

= <; ckN(Z)’; [Q(x)] 1:[1 ¢i(xi)> . (53)

Here Q,(x) is a generic polynomial in the fields @, their derivatives and the s
parameter and the symbol N indicates the insertion into the Green function of
the vertex corresponding to Q,(x) equipped with I.R. and U.V. subtraction indices
0, and 6,. These indices are related to the dimensionality of the naive variations of
the vertices of the lagrangian and are constrained by Egs. 40) and the condition
0, =0, + 1. In our case the index g, may assume the values 3, 4, 5 and J, the values
3 and 4.

By means of the Zimmermann identities [21, 16], establishing linear relations
among the N.P.O. with different indices, the r.h.s. of Eq. (53) can be expressed in
terms of a unique insertion with infrared index ¢ equal to the smallest of the g,’s
and U.V. one J equal to the largest of the J,’s. Furthermore any s—1 dependent
term in this insertion can be isolated into a special vertex which does not
contribute to the Green functions at s=1°,

These considerations applied to the vertex functional of our model yield:

WHx)[ = N[ A%(x)][ ]~ + O(s— 1) (54)

where the symbol O(s — 1) stands for the insertion of the N.P.O. vanishing at s=1.

At this point we open a short parenthesys to clarify a few questions. First of all
the coefficients appearing in the operator #*(x) will be in general formal power
series in /% ; in spite of this, to avoid unessential complications we shall consider
#*x) as independent from #. Secondly the functional #™*(x)I" (i.e., its Fourier
transform) is a formal power series in #!/2 in the sense discussed at the end of Sect.
3, and, due to the simplifying assumption for #"%x), its n-th order term is directly
obtained by the application of the operator #"*(x) to the corresponding term of I'.
Notice that this is the main reason to discuss the local W.I instead of the
integrated ones.

Going back to Eq. (54), we see that substituting on the Lh.s. the tree
approximation expression of I" yields on the r.h.s. contributions which either are
proportional to A, as those coming from the masses introduced in the P.G.B.

5 These N.P.O. are described by Clark and Lowenstein [16] introducing the symbol N3[ ], where
the presence of the positive integer w indicate that the contribution vanishes at least as (s —1)©
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propagators, or vanish at s=1 as those originated from the mass terms introduced
to disentangle I.R. from U.V. singularities. Now, while the # proportional terms
will hopefully compensate analogous contributions from the one loop diagrams
(which requires a suitable choice of the P.G.B. masses), the s—1 dependent terms
survive even in the limit #—0 and are not compensable by the radiative
corrections. It follows that the W.I. in Eq. (26) may only hold at the point s=1
where the original symmetry is restored. For these reasons our analysis will
concern only the compensability of the first term on the r.h.s. of Eq. (54). In other
words the renormalizability of the W.I. will be insured by proving the following
theorem:

Theorem 2. The equation N5 [A%(x)]I" =0 can be solved in terms of the formal power
series for L™ given in Eq. (41).

To arrive at this result we proceed by induction, i.e.:
a) we first show that

N4[A4%x)]T =O(h)° (55)

is solved at s=1 by a choice of ¥, corresponding to a classical invariant
lagrangian.
b) By the inductive hypothesis that

N
N3[4"()1 = O(hf) (56)
is solvable in terms of the coefficients of #'™ up to the power —— we shall prove
that
N+1
N3[A* ()T =0(h 2 ) (57

. . . N
has solutions in terms of the coefficients of #™ up to the power 5

To check the step (a) of our procedure we isolate in the Lh.s. of Eq. (54) the tree
approximation contributions from the ones with at least one loop and observe
that the former give a term O(h) provided the theory is built at s=1 from a
symmetric %, while the latter are themselves O(#).

Concerning step (b), we first analyze in more detail the structure of the r.h.s. of
Eq. (54) to exploit all the consequences of the validity of the induction hypothesis
Eq. (56) and then proceed to a reformulation more suitable to our purposes. From
Eq. (54) it follows that N3[4,(x)]T is a formal power series in ]/f_z which by the
inductive hypothesis in Eq. (56) has the form

N3 [A*x)]T = i hgdﬁ(lnh, X). (58)
n=N

Taking into account the result of Theorem 1, we have that the lowest order terms
on the r.hs. of Eq. (58), i.e.,
N

h2d%(Inh, x) = A%(x) (59)

6  Wesay, as usual, that a formal power series is O(#") if all the coefficients of the powers smaller than
v vanish identically
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come from tree graphs and hence A%(x) is a polynomial in the fields and their
derivatives. Indeed a diagram with M(M >0) loops and the insertion of a N%
vertex (for which A, =1) has a #'/? degree which is always greater than that of the
vertex itself. We can thus say that Eq. (57) is equivalent to

4%(x)=0. (60)

The solvability of this equation, in terms of the coefficients of order A2 of
#™ s a direct consequence of the following Lemma, proved at the end of this
Section :

Lemma. In the hypothesis given in Eq. (56), an arbitrary choice of the h™'? order
coefficients of L™ gives

A3(x)=W"*(x)d (61)
where
Ay=[dxdy(x) (62)

and 4 ~(x) is a vertex with U.V. dimensions £4 and L.R. dimensions =4.

To show how Eq. (60) follows from the Lemma, let us remark that from Eqgs.
(54), (56), (59) we have
N+1
WHX)N =A%(x)+0(h 2 ,5—1) (63)
N
and, isolating on the Lh.s. of this expression the terms of order #2 (which we will
indicate by a subscript N), we can write

(WD )y =W X)Ly =W %) [dy Ly (0) + QM L)™, %), v<N. (64)

On the r.h.s. of Eq. (64) we have separated the tree approximation contributions
from the radiative corrections Q% which, according to the corollary of Theorem 1,
depend from Z™ for v<N. Comparing Eq. (63) with Eq. (64) we obtain

ANX) = W(x) [dy L3 () + QL™ X), (65)
so that the further substitution of Eq. (61) in Eq. (65) yields
WL X) = W) [ QL )y (66)
and hence Eq. (60) is solved by the choice
L) = = OML, ) (67)

which, taking into account the I.R. and U.V. dimensions of A ~» 18 easily shown to
be compatible with the constraints appearing in Eq. (45).

Let us also remark that the possible P.G.B. mass correction terms contained in
0, cannot be introduced into Z2™ but they must be compensated by a suitable
redefinition of the P.G.B. propagators. This procedure is legitimate since, as shown
in Sect. 2, the diagrams which contribute to such mass corrections in Q, are free
from I.R. singularities which implies that Q2 does not depend on the values of the
P.G.B. masses.
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The proof of the lemma can now be completed employing the techniques of
[10]. The first step, in this approach, is the introduction of a functional description
of diagrams with A%(x) vertices. This is carried out, as usual, by adding external
B*(x) fields whose coupling are given by:

LM(B)=L"(x) + f(x)A3(x) . (68)

The A,(x) vertices affect the subtraction indices of a diagram in a way accounted
for by assigning to the external * legs null U.V. dimension and I.R. dimension
one. The W.I. are altered by the introduction of the *(x) fields as:

W) (B)= 513“( )F (B)

+N3[4"(x, HIT(B)+O0(s—1) (69)

where the first term on r.h.s. stands for the insertion in I'(f) of an external A%(x)
vertex and the second one indicates collectively all the remaining contribution
implied from the Q.A.P.

We proceed to analyze both members of Eq. (69) in order to put into evidence
the terms of l%xst order in #!2. Recalling our induction hypothesis

(N3[4*(x)]T = O(h?), N =2) and on the basis of Theorem 1 (in particular Ay =1 for
the vertlstx A%(x)) observe that the *(x) dependent terms in I'(f) are at least of the

order #2 and that, moreover the least order contribution is given by the sole tree
approximation term [dxp*(x)A%(x). Hence we have:

N+1
0
/3“( )F(ﬁ) Ay(x)+ 0k * ) (70)
and, taking into account Eq. (63) we get:
N+1
W)=y = A30) + [dyfr )W () A3(y) + O 2 ). (1)

Substituting these equations into Eq. (69) yields
N1
NALA™x I = | dyB) #0430 +0ln 2 )

—approln 7). 12)

After all this preliminary work we can now finally obtain the consistency
conditions for the breaking A%(x), arising from the commutation rules of the local
Ward operators #™*(x). From Eqgs. (27), (69) we get

Sx =) [P W) (B) AP, )I(B)

0
o1 ()

5 ra,
_6ﬁﬂ(y)A (xsﬁ)r(ﬁ)sz

s=1
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N
Isolating the least order terms (hf) in both members of Eq. (73) and substituting

into its r.h.s. Eq. (72) we have [22],
O(x = y) [ A3(x) =W *(x) AR(y) — W () A3 () . (74)

This equation has been discussed in purely algebraic terms in [10] under the
hypothesis that the U.V. dimension of 4%(x) does not exceed 4. It turns out that its
general solution is

A%(X)=W*(x) Ay + 6*° A (x) + 8, 9" (x) (75)

where A jA ~(x)dx, and both 4 ~(x) and the other two contributions on the r.h.s.
have U. V dimensions <4. Moreover A4 y 1s defined up to gauge invariants, the
term 6*° 4%'(x) indicates a possible gauge invariant breaking to the W.L relative to
the abelian invariant subalgebra, and 0,9"*(x) stands for the possible contribution
of the Adler Bardeen anomaly [11].

In our model, where the Adler Bardeen anomaly is obviously absent, the
presence of Ay*(x) can also be excluded on the basis of the invariance of the
lagrangian for the inversions in Egs. (20). Indeed 4%'(x) should be odd under these
transformations, which is uncompatible with the gauge invariance and the U.V.
dimensionality requirements. In other models, gauge invariant terms of this kind
can in general be excluded by power counting arguments [10].

The last point we have to check in order to complete the proof of the Lemma is
that the I.R. dimensionality of AN(x) in Eq. (62) is greater than or equal to four. In
the notation of Sect. 2, possible contribution to A violating this condition are:

ago(x)+be{ (X)p 1 (X)+cpi(x). (76)

Recalling that A ~ In Eq. (75) is determined up to gauge invariants, we are free to
choose the coefficient a in Eq. (76) equal to zero. To show that the coefficient b
vanishes we use Egs. (61), (63) and obtain

. 0 o 1)
" P57 @) 04 0) |- HY/3E 6<p1 ® 30,0 oo
N+1
=G(p)= ]/§Fb+0(h_7) (77)

N .
from which it follows that the least order term (h2> of G(p) is equal to ]/§F b. Since
the renormalization rules enforce G(0)=0, it follows b=0. The same method
applies straightforwardly to show that ¢=0 too.

5. Conclusions

We have so exhausted a systematic discussion of a perturbative approach to an
Euclidean field theory with radiative “mass generation”; let us remark, as a final
comment, that we have no idea about the existence of a corresponding per-
turbative structure for the S-matrix of the model, the reason being that the S-
matrix elements contain mass-shell singularities which, according to the mecha-
nism discussed in Sect. 3, could mix in a completely uncontrolled way the order of
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our perturbation expansions. However it is of some comfort to us the fact that is
not the only sickness affecting the perturbative S-matrix in these kind of models
since, in the presence of unstable particles, there is no perturbative framework, to
our knowledge, giving a unitary S-matrix and preserving the W.L [23].

Acknowledgements. One of us (C.B.) is deeply indebted to Prof’s K. Symanzik, R. Stora, K. Pohlmeyer
and to A. Rouet for helpful discussions during the draft of this paper.

Appendix

In this Appendix we analyze in detail the #/? degree of the amplitudes of our
theory subtracted according to the rules given in Egs. (35), (36); the analysis is
further extended to include also possible insertions of composite external vertices
in our Green functions in order to arrive at the results of Theorem 1, Sect. 3.

We shall proceed in two steps: the first one is to connect the behaviour for
vanishing # of the amplitudes with that of the corresponding Feynman integrand.
This evaluation is carried out with a method which is a straightforward
generalization of the one employed by Zimmermann and Lowenstein [7] to
discuss the convergence and power counting properties of Feynman integrals with
massless propagators. The second step is to identify the leading order in #!/2 of the
integrands; for this we shall adopt the same inductive procedure illustrated in [6].

Let us recall that the contribution to a Green function of a proper subtracted
Feynman diagram has the general form

= [dkR(p, k) (Ala)

R(p, k)= ,,—P(% (A.1b)
H (2 +m3)

where all momenta are Euclidean, k and p denote collectively the integration
variables k, ..., k,, and the external momenta (p;, ..., p,) fixed at a non exceptional
value. The vectors [; are linear combinations of k’s and p’s, P(p, k) is a polynomial
in p and k and all the masses m]2 are greater than or equal to zero with the P.G.B.
ones proportional to 7.

Let u,(k)...u k), v,(k)...v,(k), a+b=m be a non singular change of basis in the
linear space spanned by the k’s; the hyperplane H is define by the condition that
v,(k)...v,(k) be kept constant. With this notation and with the definitions in Eq.
(39), we will show that

deghl/z J(p) g min [deguhuz R(p, k) + 4a] . (A2)

— {hyperplanesH} ——

Concerning the integrand in Eq. (A.1b), we denote, after Ref. [7], by S, the set
of lines with m?>=0 or m*cch; moreover let SCS, such that LeS, LeS,, [}=1?
imply /;e S and let T stand for the complement of S.

Chosen an arbitrary number r>0, we define the subdomains

Dy={k:2(k)<r if LS} (A.3a)
Dy={k:2(k)>r if T} (A.3b)
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so that the integral in Eq. (A.1a) can be written as

J= Z Jg (A.da)
(s}
where
Jg= f dkR(p,k). (A.4b)
DsnDr

The domain Dy is further divided into disjoint sectors Dy, where n is any
permutation of the lines in S and

Dg,={k:2 <I? <...<IZ <r}. (A.5)

For each permutation m we select a basis u,,...,u, of momenta of the S lines
choosing u, 1 £j<a, as the first, and hence the smallest among the momenta of the
ordered chain in Eq. (A.5), which is independent from u,,...,u;_, and from the
external momenta p.

Denoting by vy, ...,v,, a+b=m, the completion of this basis in the full k space,
the P(p, k) polynomial in Eq. (A.1b) decomposes as [7]

P(p,k)=} M, (w)C, v, p) (A.6)

where M, (1) are monomials in the u momenta containing all the powers of 7. It
follows that:

Usls [ dkIR(p, k)

DsnDr
=Y | dkRpkI= Y Js,, (A7)
{h) DsrnDT T,
with
IM,, (u)| IC, (v, p)l
Jo,= | d 25 dv s A.8
Sna d!ﬂ M 1—[ (ljg_‘_mjg)nj dJ; 1"[ (li2+I’YI§2)"‘ ( )
13eDsn 12eDr

where the domains of the integration variables u and v are given by

— 2__72 2 2 272 2
dg,={12=1, <12, <. <P, <u=12, <12,

1 11 =
<. SB <i=B <. <i=P <. <P <r) (A.92)
dr={v|l}(u,0,p)>r for LeT} (A.9b)

Recalling that our subtraction procedure insures that the integral in Eq. (A.1a) is
absolutely convergent, we can majorize the subintegral on the domain d; in Eq.
(A.9) by the same method of Ref. [7] to obtain

IM, (w)
Vg EAgp) | A== 55—,
s s d!n [1 2+ m?)n’

J

(A.10)

Remark that if any lf in Eq. (A.10) depends upon the external momenta, then for a
choice of r >0 sufficiently small, J ¢, vanishes since the domain of integration dg, is
empty [7]; for this reason we shall, from now on, assume that the [ s are linear

combinations of the u momenta alone.
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We now introduce explicitely # into our treatment by further subdividing dg,
into disjoint domains dg,, where

Snl {{ul ua}ed&n u12—1 éhéulz} (All)

Obviously only dg,, will be non empty if #>r; the integral in Eq. (A.10) can thus
be decomposed according to

T 520 = Al D) 2 st (A.12)
=1
where
M
Jgrr = f du——l——“sl—. (A.13)

dsni l_[ (112 + m?)”j
J

Adopting the notation in Eq. (A.9a), the above integral is first majorized by
substituting in the integrand the following inequalities:

1 2
Go+mi = % +u?

(A.14a)

when either 1<i<I/—1 and m, =0 or a=i>![ (u2=0 by convention) and

1 < const
B4+mi = h

when 15i<]—1 and m =727 >0. The choice of the basis u,, ...,u, insures, for
i=1, the decomposition

(A.14b)

L =75y o) + T (g, vy ) (A.15)
with ¥} non vanishing, from which it follows the inequality [7]
ViE+ul \u,) | %
- S1+ ; A16
T T T (A19

where the r.h.s. is uniformly bounded on the integration domain dg,. The above
result implies that the r.h.s. of Eq. (A.14a) can be further majorized for a=i=1 by
replacing
1 const
B4ul =V +ul
The substitution of Egs. (A.17), (A.14) into Eq. (A.13), after extending the domain
of integration from dS to the one defined by

{u2<u2< <u <h<u2< <u2<r}

(A.17)

yields: M| " .
Jo . <const. du, =L du asl—1 »
Smal = ufj<h 11—[(12 JHp u?—zéi?—1§ﬁ - ln(l, TR IR AT

IM, M, |
duy ———28° us as (A.18)
ﬁéj%é 'H(sz%)”“ Wi £< H(‘I/2+ua_ yai
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where, for i</—1, the indices v, refer to the contribution of the propagators with
m} proportional to # and y; to that of the remaining ones. Now the integral in
du,...du,_, obeys:

I, M,
S,m,_Const(hlﬂ)k - ﬁéu?érdulm.“
- 1£u.z,§ ﬁ—"//l%-—u'—l)— (A.19)
where l
dy=4+dog Moy =23 1. (A.20)
Setting l
0=, (OZ") (A21)

we arrive at

di M |
1 = Const. (h”z)" ! duy — Magl
S 1= hgjlu; 1 ]._[(,.Viiz_l_h)nh

d

| dsal 1/;
iag H(“/f;+uf,_1)naf u | (A.22)

The last 1ntegra1 on the r.h.s. of Eq. (A.22) is evaluated by rescaling the integration
variable u,=w,|u,_,| and by extending the integration domain, so that

1-1

M
Jgna S Const. (31251 { —IT(_IV_-f-IT)—
li

- dw M, | .
B T a asal A23
I ‘ 1| 15“‘)‘;§wlwa|5 H(y/ﬂ?_f_l)nai ( )

i

The same technique, applied to the other terms, finally gives

Jq<Const (13)ed:%) =2 (A24)
The result anticipated in Eq. (A.2) is obtained by comparing the exponent of #'/2
in Eq. (A.24) with the behaviour of the integrand R(p, k); indeed we have that

a -1

Y d,—d=d= Zd—mm Zd (A.25)

= l<}<a

and, from Egs. (A.7), (A.18)
deg“hl/ZP(p’ k) = I'{l'lll)’l (_ZIE_g.uh‘/zMas
=5 L

éd_eguhl/lMas= Z (EuhI/ZMask (A26)
k=1
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which substituted into Eq. (A.15) yields,
d=4a+deg,;1-R(p, k). (A.27)

Once the first connection is made, we proceed to evaluate the r.h.s. of Eq.
(A.27). To this purpose we recall briefly the notion of complete forest.

Given a connected diagram A and a hyperplane H in the linear space spanned
by the k’s, let 7 be a reduced subdiagram of A (i.e. a diagram yC A with a set of
1.P.I., mutually disjoint 4, Cy contracted to a point); we shall say that y lies along
H (in symbols y| H) if all the internal lines of ¥ have integration momenta
belonging to H: if no line of ¥ satisfies this condition 7 will be called skew to
H(y 4 H).

A A-forest C is said to be complete with respect to H if:

i) A1PI=AeC

ii) Yye Cu{A} it follows either 7(C)|H or »(C)¥H where %(C) is obtained by
reducing y with respect to all the elements of C properly contained in it.

In terms of the set of complete forests #y(A) the subtracted integrand in Egs.
(35) can be rewritten as

R,= ) R,O) (A.282)
Cebu(A)
R, (CO)=(1-1,)Y,C) (A.28b)

where Y (C), yCA is defined recursively by

(O =1;08, [11,.Y,(C) (A29%)
1— if ¥y y H

;- { 5, i ROSH, 3C)] (A.29b)
-1, otherwise

and the subtraction operator t, obeys the rules given in Egs. (36), (37).
The whole analysis is centered on the structure of the integrand Y,(C) which,

choosing a basis {u,,...,u,} in H and its completion {v,,...,v,}, is of the type:

i fip,s—1,h)g(u,v,Inh)

— =1
= st (30

where for all j, f{p,s—1,%) is a monomial of degree y; in #'/> and v; in p,s—1 and
g,{(u,v,Inf) is a polynomial which, according to Eq. (41) does not depend on In#
when p, =2. Moreover D is a product of factors [Z; (p)+ %, (u)+ 7 Ll(v)]z +M ,i,(s)
corresponding to the line L of the graph; in particular ¥} (v)=0 if Le)(C)|H,
¥,w)>0 if Ley(C)fH and M} (s) may vanish independently of s or be pro-
portional to # if L belongs to a subtracted diagram. On the other hand M7 (s)
remains positive arid order zero in # for 0<s<1 if Le}(C) or Le A(C), A being a
maximal element of C contained in y with A(C)tH, 3(C)| H.

Now, in complete analogy with the results and by the same method of Ref. [6],
these specifications and the study of the #'/* degree of Y,(C) in Eq. (A.30) link the
behaviour of the subtracted and unsubtracted diagrams, as follows.
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Lemma 1. Let t, be the subtraction operator defined in Egs. (36), (37); for any
CoyCA4, y=£v, (v, a P.G.B. mass correction), we have

degyzyps— 1)T, Y, Zmin(degy iz s 1) ¥y 4882, ¥, +max(0, ¢,)) (A.31a)
min(deg;: 2, ¥, degizupis—1y ¥, +1-0,)
deg, 2,7, Y, 211 WOIH (A.31b)
degy., Y, if WCYH
degyuaupis- 11 7)Y, 2 degyua, ¥, +max(0,0,) if FCHH (A310)

while for the P.G.B. mass correction diagrams y=7y, we have

min(deghl/zup(s_ 1) Y;,z, deghl/zu Y;’Z)
y, non minimal y,(C)|H

v

deg, i pupis )7, Y 24 A32a
aegi2 p(s—1)"y2 72 mln[dﬁhl/zup(s—l)Y;vzﬂmax((Ehl/quyz’ 3)] ( )

y, minimal

min(dﬁéh‘/zup(s— 1) sz’ @hl/zu Y;z)
degi,7,, Y, 24if 7,(C)|H (A.32b)
deguin, Y,, if 9,(C)fH

degyi2,Y,, 72(c)¥H non minimal

degyiizypis-1)(1—1,,) Y,, =23 min(deg, ., Y,, + 1, max(deg,s,2, Y, ,, 3))
7,(C)¥ H minimal (A.32¢)

Using Lemma 1 and the recursive structure of the renormalized integrand
corresponding to a given complete forest, the behaviour of any diagram can be
obtained from that of the reduced (unsubtracted) graphs or the minimal ones,
which is exhibited in the following:

Lemma 2. Given any subgraph vy of A let us define:
i) N,=number of independent loops of y (A.33a)

i) M,o,=4 ) Ny (A.33b)

AeCMO)||H
ACy
iif) v, = Y n(7) (d,— d9) (A33¢)
k

where n,(y) is the number of k-th type external legs and d,, dY are given in Eq. (38) and
Eq. (42) respectively

. _ if ng()

o {maX(O,Qy-l-vv) if ¢,<0 (A.33d)

V) A= Y [%K}E Y 4 (A.33¢)
Veve(y) Veva(y)
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where v,(y) is the set of composite external vertices of y and [x] means the least
integer nearest to Xx.

With all these definitions we have :

a) degpirupis- 150t My 2 2N5¢+ 0, +,

G Y. (max(0,¢,)+0y) if FO)H (A.34)
37iCy
b) degyi2,l5c)Z 2N 5c) - (A.35)

In both cases the h dependence of the external vertices of y has not been taken into
account.

Proof. Applying the definitions in Egs. (43), (44), (A.30), we obtain when »(C)||H

degy1/2up(s - 1) L0y + Myic) = 2N5c) +4

+ Y Dy—=H+ Y Dy=H+ X D, +H- Y @ (A.36)

Vevi(y) Veve(y) Ley Cs7.Cy
where 2N, is the loop factor and the last term on the r.h.s. is the contribution of

the diagrams with respect to which y is reduced. Recalling the definition of ¢, and
noting that each line ends in two vertices we get:

degyizups— 1) I3y + My 2 2N5c) + 0, +,

+ X (12>V+ka(V)d° @V)+ > (DV@vk(V)di’—eV)

Veui(y) Veve(y)
+ X (ka(y,)d" —4+ Z (4- QV) (A.37)
i€, yiCy Viey:

from which Eq. (A.34) is readily obtained after the following remarks:

a) the summation on the internal vertices, according to the condition in Eq.
(46) gives a positive contribution;

b) for the external vertices, from Eq. (41b), we find

Dy + Z vl =~ [DV +3 vk(V)dk] > 7V (A.38a)
hence
Dy + ;vk(V)d,? —0yZ— % (A.38b)

and since the Lh.s. is an integer, we have the stronger inequality

Dy + ;vk(V)d,? — 0y 2 Ay ; (A.38¢)
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¢) the last term on the Lh.s. of Eq. (A.39) can be rewritten as

4= Yvdi+ Y (ov,—9=0,+v, (A.38d)
k Vien
and from the definition of ¢, (Eq. (A.35) we get
max(0,0,)+ éy 20,+v,. (A.38¢)

For what concerns the proof of the second part of the Lemma, it is sufficient to
note that the choice of the (s—1)>M? factor in the propagators implies deg,I; >0
so that the /2 contribution may only arise from the loop factor #", thus yielding
Eq. (A.35).

Combining the results of Lemma 1 and Lemma 2 we arrive at:

Lemma 3. The Green functions defined by the Egs. (A.28, 29) satisfy :

a) without insertions of composite external vertices

gghl/zup(s— I)T Y, ZNyz‘l’z—Myz fz(c)“H (A39a)

Y2772

degyumupie (1= 7,) Y, ZN,, +2=M,, 7,(C)fH (A.39b)

V2=

deg;i2,1,,Y, . .
—=2r Ty >N, +3—-M f =*3— =
deghuz,,(l-fyz)sz =N, + p 1 Nyz>1 or =*3 M),2 if N, 1

(A.39¢)

where, in general, 2*x—M, means Z2x—M., if M, >0 and Zx—1 if M,=0; while
for y£v, we have

degyiups—1)5, Y, =N, +1- M +max(©,0) if FC)|H (A.40a)
degyape 11 —7)Y, =N, +1—M,+max(0,0) if FC)/H (A.40b)

E_i_e__gfll/zu(l - ‘Cy)Y

Y

} >N, 12 M, (A.40c)

b) when composite external vertices are present we have
degyipe—1)T, Y, SN, +1 =M, +max(0,0)+0,—4, if YC)[H (Adla)
deg,izps—1)(1—1,)Y, 2N, +1-M, +max(0,0,)+0,— 4, (A.41Db)

deg;i2,1, Y,

= -M — .
dﬁwzu(l—rym} =Ny +2=M,+o,=4, (Adlo)

Proof. Suppose that, for each given complete forest C, Egs. (A.39), (A.40), (A.41)
are true for the minimal diagrams, which will be proved later; assuming that the
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same conditions hold for the maximal subdiagrams properly contained in y, by
Lemma 2 and Eq. (A.29a) we obtain for the diagram y itself in case a):

%h“zup(s—l)yn gN}’2+2_MVz+QY2 (A'423)

2N, _+3-M_ if N _>1
d 2 Y =" '7 ‘ .)'2 Y2 .
ﬁh /2y yz{g*:;_Myz if N},2=1 (A 42b)
ggh”zup(s-l)yyéNv—i_thv'i_Qy (A.43a)
deg;i,Y,Z*N,+2—M., . (A.43b)

To verify these relations it is important to remark that in Eq. (A.33d) 0, <2. the
equality holding only for diagrams of the vy, type, as follows from Eq. (A.38d). In
much the same way in case b) we get

d_Gghuzup(s_l)ngNv‘i'I*My"r‘Q},“'Vy—iy (A44a)
deg,i2, Y, Z*N,+3+v,—4,— M, (A.44b)

as can easily be verified making use of the new bound ¢, </, deduced from Eq.
(A.38d). Now Egs. (A.39), (A.40), (A.41) follow from the above inequalities and
Lemma 1.

It remains to prove that they are true for minimal diagrams, i.e., those with no
subtracted subdiagrams. In this case directly from Lemma 1 and Lemma 2 we
have, when no composite external vertices are present (case a);

dﬂh‘/zup(s— nt Y, me(ZNyz—l- 1 —M)’z’ 2Ny2+ 1)

; yz_Z_Ny2+3—My2 7,(OH (A.45a)
degyiz,(1—1,)Y, 22N, =N +1 (A.45¢)
degyizype-1)(1-1,,)Y,, 22N, +1=N, +2 if §,(C)|H (A.454d)

degyi/zyps- 17, Y, 22N, — M, +max(0,0,)
=N, +1-M, +max(0,¢,), if HCO)|H (A.46a)

degyiaypis—1)(1— 7)Y, 22N, — M, +max(0,¢,)
2N, +1-M, +max(0,0,), if HC)yH (A.46b)
%izﬁiym } >*N,~ M, (A460)

and in the case b):

degyimupe- 1T, Y, 22N, +0,— M, +v,— A, if FC)|H (A.47a)
degyiups—1y(1—1,)Y, 22N, +max(0,0,)-M,, if HC)yH (A.47b)

g*zNy+1_My+vy—/{y for Qy>0:')7(C)HH

. (A.47c)
= 2N, otherwise

@h”zurva{
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The proof of the Lemma is completed by noticing that the inequalities in Egs.
(A.45), (A.46), (A.47) are at least as good as the ones we wanted to prove.

We have now introduced all the main ingredients to arrive at the evaluation of
the #'/? degree of the subtracted Feynman integrals, as given by the following

Theorem. The Feynman integral J ,(p) corresponding to a connected diagram A,
subtracted according to the rules specified in Eqs. (A.28), (A.29), satisfies:

a) degi2J 4(p)Z N 4+ 1 if no composite external vertices are present (A.48a)
b) deg;i2J 4(p)ZN+2—4, otherwise (A.48Db)

Proof. From Eq. (A.2) it follows that the inequalities in Eqgs. (A.48) hold true if they
are verified by deg,.»,R,+4a. Making use of Lemma 3, the theorem can be
directly verified for tadpole or vacuum bubble diagrams; in the other cases we
shall employ Eq. (A.28b) and analyze separately degjiz,,-1)Y, and
degyizys—1)TaYar

Concerning deg, 2, 1,74Y, we have from Lemma 3:

deghl,zu(s_ I)TAYA gdegw/:“TAYA

S JNa+1=M, with no composite external vertices
=~ |N,+2—M,— 1, in the presence of composite external vertices

(A.49)

The evaluation of degy/z,— 1) Y, is carried out by using in analogy to [6] the
augmented diagram A which is obtained from 4 by adding a new leg (g-line) to
each external vertex and a new vertex V_ where all the g-lines meet. Each g-line is

assigned a propagator with p large enough so that for any sub-

) (@*(p)+m>)
diagram y of A containing V,, the choice g,, 6, <0 should be possible.
Furthermore we have

degyizys—1) YaZ deguunys—1) Vi (A.50)

since no g-line lies along H due to the non-exceptionality requirement for the
external momenta of A. _

The evaluation of the r.h.s. of Eq. (A.50) is done separately for the case A | H
and At H. In the first case, owing to the fact that A does not contain any g-line, we
have directly from Eq. (A.29a)

degpiys—1) Yi=deguiupis—1) Y= degyizups-1)13

+ X deguirzupis— 1) Sy, Yy, F d88ntzupis— 1) frn Yo (A.51)

YiF Voo

Here y_, C A is the maximal element of C containing all the g-lines and V,,, hence
0,,<0,6, <O0and Y;does not vanish only if y, 4 H, f, =1. Let us also remark
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that all the possible composite external vertices of A belong to y .. Thus using Eq.
(A.41b) we find

degf.l/Zup(s— 1)(1 - Tyw) wa = _degh1/2up(s— 1) wa

=N, +1-M, i, (A52)

where N, ~does not receive contributions from the loops containing g-lines.

Moreover from Eq. (A.36)

dﬁhl/zup(s—l)lj+M/T—22Nj+ Z(EV—'_ kad£_4)
| 4 k

+ 2 (ka(vi)42~4)+;vk(yw)4£

YiFro \ k

22N;+2— Y [max(0,0,)+0,] (A.53)

YiF Yoo

the second inequality following from Egs. (A.45), (A.33d) and (A.38d) and from the
fact that y , has at least two external legs. Recalling now that g, <1 if y, is not a
P.G.B. propagator correction in which case ¢,,=2 and substituting Eqgs. (A.53),
(A.52), (A.39), (A.40) into Eq. (A.51) we arrive at

Qe_g;,uz,,(s_ 1) Y; Eg?ghuzup(s_ 1) Y, 2N, + 3— M, — /1/1 . (A.54)
Considering the case /T,}’ H, and hence VweZ, we have from Eq. (A.29a)
deguins— 1) Yi=degrue- i+ 2 deguisu- 17, Y,

Vi

2 dogn, 1+ T degyona Y, (A55)

Vi

The substitution of Egs. (A.35), (A.39¢c), (A.40c) into the r.h.s., recalling that the
loops containing g-lines do not contribute any # power to the counting, yields:

degizus—1) Vi 22N ;+ Z (N, +2-M, - Ay
Vi
2N +3-M,—1,. (A.56)
By comparison of Egs. (A.54), (A.56), (A.49) we have for any complete forest C
degyi/zyis- 1) RA(C)

- { N, +1-M, with no composite external vertices. (A.57)

= |N,+2—M — 1, with composite external vertices.

The results in Theorem 1 are now obtained directly from Eq. (A.28a) and the
observation that 4a> M , with the equality holding for M ,>0.
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As a final comment we point out that in some instances these evaluations can
be improved, in particular it is easy to verify that an one loop diagram containing
a P.G.B. mass counterterm of degree y in h*/? (y>2) satisfies

d;cgﬁl/zuryyvy ;X +1 (A58a)
dﬁhl/qung‘f‘z. (A58b)

The above Egs. (A.58) clearly imply that the corresponding Feynman integral
verifies :

deg,i.J(p)Zx+1. (A.59)
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