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Shift Automorphisms in the Henon Mapping
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Abstract. We investigate the global behavior of the quadratic diffeomorphism of
the plane given by H(x,y) = (l+y — Ax2, Bx). Numerical work by Henon, Curry,
and Feit indicate that, for certain values of the parameters, this mapping admits a
"strange attractor". Here we show that, for A small enough, all points in the plane
eventually move to infinity under iteration of H. On the other hand, when A is
large enough, the nonwandering set of// is topologically conjugate to the shift
automorphism on two symbols.

Several numerical studies have recently appeared [3, 4, 7, 8] on the dynamics of
the diffeomorphisms of the plane

Interest in these maps [12, 14, 5] has been prompted by Henon's numerical
evidence [8] for a "strange attractor" when A = 1.4, B = 0.3. Feit [4] has shown, for
A >0 and 0 <B < 1, that the non- wandering set Ω(H) is contained in a compact set,
and that all points outside this set escape to infinity. Curry [3] has shown that, for
Henon's values of the parameters, one of the fixed points has a topologically
transverse homoclinic orbit, and hence that there is a horseshoe embedded in the
dynamics of the map.

The present note is intended to clarify the behavior of the mapping H for
parameter values far from those where "strange attractors" have been observed.
Henon and Feit have noted that for £ = 0.3 and A outside a certain interval
(roughly [ — 0.12, 2.67]) no attractors are observed numerically, all points seem to
escape to infinity. We exhibit, for any J3ΦO, a pair of A values, A0 <0<^2, such
that the non-wandering set Ω(H) is empty for A<A0, but for A>A2, Ω(H) is the
zero-dimensional basic set obtained from Smale's horseshoe construction [9, 11,
13]. We begin by rewriting the map in a more convenient form; then we establish
Feit's result (for all A,B + 0) in a version more suited to our purposes, by
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constructing a filtration; and finally, for A>A2 we exhibit the elements of the
horseshoe construction in our compact set.

Henon notes that the map H represents one canonical form for quadratic maps
with constant Jacobian determinant. We will find it convenient to consider the
alternate canonical form for such maps

It is easily verified that for A and B both nonzero, the linear change of coordinates

X = x/A Y=By/A

gives a topological conjugacy between H and F, with the parameter values A and
B unchanged. For Henon's map H, the parameter value A = 0 gives a linear map,
while in our map A = 0 has no special significance. In fact, our results are
established without the restrictions A>0, 0 <£ < 1 imposed by earlier papers we
assume only that £ΦO. Thus our analysis includes the orientation-preserving
cases £?<0, and the area-preserving cases B=+l, which were considered by
Henon in an earlier numerical study [6]. Actually, the β-values with absolute
value greater than one do not exhibit new behaviour, since the inverse map

with given parameter values A = a, B = bή=0 is conjugate to the forward map F
with A = a/b2, B = l/b by the linear change of variables

x-> —by y— » — bx .

To state our result, we fix B and define three crucial ^[-values

and, for any particular ,4-value, we define R = R(A) by

With this notation, our results are summarized in the following theorem.

Theorem, i) For A<A0, Ω(F) = φ.
ii) For A^A0, Ω(F) is contained in the square S = {(x,y)\\x\^R,\y\^R}.

iii) For A^AV A= P| Fn(S) is a topological horseshoe; for £ΦO, there is a
n^TL

continuous semi-conjugacy of Ω(F)cA onto the 2-shift.
iv) For A>A2, A = Ω(F) has a hyperbolic structure and is conjugate to the

2-shift.

The value A0 is, as Henon remarked, precisely the ,4-value at which the first
fixed point of F2 appears. Thus, statement i) above follows from the Brouwer
translation theorem [1, 2] however, we shall give a direct proof of this fact. On the
other hand, the values we give for A1 and A2 are somewhat larger than the
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experimental values given by Henon and Feit (when £ = 0.3, Al = 3.38, A2=4.00).
In fact, they are clearly not the lowest values that yield the desired conclusions, but
they yield these conclusions relatively easily.

The proofs of statements i)-iii) rely on the following technical lemmas :

Lemma 1. a) R is real if and only if A ̂  A0. In this case, R is positive and equals the
larger root of

b) A-\B\R>R if and only if A>Al .

Proof, a) is trivial it implies that A + \B\R =R2 — R and the first inequality of b) is
equivalent to R>2(ί + \B\). Substituting this into the definition of R and solving
for A gives the second inequality of b). D

We will find it convenient to denote the image of the point (x0,y0) by (x^y^)
= F(x0,y0), and use negative subscripts for pre-images.

Lemma 2. a) The image under F of the horizontal strip \yQ\^C is the region
bounded by the two parabolas

The image under F of the vertical strip |x0 |^C is the horizontal strip (yJ^C.
b) The inverse image of the vertical strip \x0 = C is the region bounded by the

two parabolas

-C-A-x2_1<,By_ί^C-A-x2_1.

The inverse image of the horizontal strip \y0\^C is the vertical strip |x_J^C.

Proof. These are straightforward calculations. D

In the following, we interpret min (a, R) or max (α, R) with R complex as equal
to a.

Lemma 3. a) // x 0 ^min(— |y0|, — R), then xί^x0, with equality only for
x0=-R,y0=±R.

b) 7/x 0^-|y 0 andBy0^max(Q9\B\R),thenBy_1^By0and\y_1\^\y0\9with
equality only for x0 = — R, y0 = ±R.

Proof. For a), by the definition of xί and, in the last inequality below, our
hypothesis on x0,

The last expression is zero for

If R is complex, so is x0, and the expression above is negative for all x0, whereas
when R is real, the lesser root is x0 = — R, so that the expression remains negative
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Fig. la-c. Filtration for A<A0. Situation shown is for B >0 B <0 is obtained by reflection about the
x-axis. a Filtration, b Image under F. c Image under F'1

for x0 < -R. On the other hand, when x0 = -R but \y0\ <R, the last inequality
above is strict, so that equality only holds for x0= — \y0\ = —R.

The proof of b) is similar. Consider

The last expression is positive provided \y0\ >max(0,K); if B is positive, this says
y_ί >y0^0, whereas for B negative, it says y_l<y0^0. The equality statements
follow as before. D

Now, to prove statement i) of the theorem, we define a partition of the plane by

x^-\y\ and

-|j>l and By^

(see Fig. la).

Proposition 1. For A<A0,

a) F(M! uM2)C interior Mr

b) x is strictly decreasing along F -orbits in Mr

c) F~1(M2(jM2>)CinteriorM^
a) \y\ is strictly increasing along F~l-orbits in Λ/3.

Proof. By Lemma 3a, if (χ0, y0)eM l 5 then y1=xQ>x1. The inequality is strict
because R is complex. Also, since x0^0, y1 = -\y1[ This shows F(Mί)c interior
M1 and statement b). Moreover, by Lemma 2a, the x-axis maps to a parabola
opening left with vertex at (AO); this lies to the left of the boundary of Mr

Furthermore, the image of the line By= -ε is a parabola to the left of the previous
one, so that F(M2) lies to the left of the boundary of M^ (see Fig. Ib).
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ΠH3!

Fig. 2a-c. Partition for A^
under F'1

b e

. Situation shown is for β>0. a Partition, b Image under F. c Image

The proof of c) and d) is similar. If (x0, j;0)eM3, then by Lemma 3b,

and

An analysis similar to the above, using Lemma 2b, completes the proof of c) (see
Fig. Ic). D

Proposition 1 gives a filtration for F with Liapunov functions for the extreme
sets M1; M3, and M2πF(M2) = φ, so that Ω(F) = φ for A<A0. Statement ii) of the
theorem is proven by an analogous construction, with the positive x-axis above
expanded into another element of the filtration. Specifically, when .R is real (i.e.,
A ̂  A0\ define four sets by Fig. 2a

Proposition 2. For A^A0,
a) F(N,)CN1.
b) F(N2uN3)CNί^N2.
c) x is decreasing along F- orbits in Nί (strictly decreasing except at the two

points x = — \y \ = — R) .
d) F-^
e) F-l(
f) \y\ is increasing along F~ l -orbits in N4 (strictly increasing except at the point

Proof. The only statements whose proof differs from Proposition 1 are b) and e). b)
is proven by invoking Lemma 2a with C = R, and by noting that the right
boundary of F(N2) intersects x = — R at \y\ =R by Lemma la (see Fig. 2b).
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Fig. 3a and b. Image of S. a AΌ^A<A1. b A1 ^A

Similarly, we note that the boundary curves — x0 = |j;0|>.R of N1 map under
F~l to curves in the interior of N4. This follows from Lemma 3b and proves d).
Also, the line segment x0= — R, \y0\^R maps to the parabolic segment

By_1=x2_1-R-A, | x _ J ^ Λ

which is disjoint from N1. This proves e) (see Fig. 2c).
Proposition 1 does not, strictly speaking, give a filtration for F9 since one of the

two left corners of the square S maps to the boundary of N1 under F, and to the
boundary of N4 under F~l. This could be taken care of by a slight modification of
N1 and 7V2, but for our purposes, it suffices to note that, by c) and ί), all points in
the interior of NίuN4 are wandering. In fact, they escape to infinity in at least one
time direction. By b) and e), this implies that Ω(F)cN2nF~ί(N2). But from
Lemma 2, we see immediately that

thus proving statement ii) of the Theorem.
To prove statement iii) of the Theorem, we note that, by Lemma 2a, F(S) is the

region bounded by the parabolas

x1=A±\B]R-yl \yι\£R

and the two horizontal line segments

^x ^ -R.
The latter follows from the identities

A + \B\R-R2=-R

A-\B\R-R2=-(l+2\B\}R

which follow immediately from Lemma 1. The vertex of the left boundary of F(S) is
at (A + \B\R,0); as A increases, this moves to the right. When A passes A^ it
crosses the right edge of 5, by Lemma Ib (see Fig. 3). Thus, for A>A19 we have the
topological part of the horseshoe : the image of any horizontal line segment in S is
a parabola which cuts across S in two segments. By a standard analysis [9, 11, 13]

points in the invariant set A = (\ Fn(S) can be coded by a bisequence of O's
— oo ^n ̂  oo

and Γs according to which of the two components of S_1=Sr^F(S) contain
successive backward iterates and which of the two components of Sί =SπF~1(S)
contain successive forward iterates. The coding gives a continuous orbit-
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preserving map of A onto the Cantor set underlying the shift automorphism on
two symbols. To see that Ω(F)cΛ maps onto the shift space, we note that every
periodic sequence corresponds to a nested intersection of closed disks, and hence
to at least one periodic orbit of F; but the closure of the set of these periodic orbits
is a set of non- wandering points in A mapping onto the shift space. This establishes
statement iii) of the Theorem.

To prove statement iv), we first note that the matrix of partial derivatives of F

and of

are independent of A and y. Thus, for B Φ 0 fixed, the hyperbolicity of an invariant
set depends only on the projection of this set onto the x-axis. We will show that
orbits which stay away from a band about the x-axis (whose width depends on B)
have two constant bundles of sectors

with λ>l which are invariant, respectively, under the Jacobians JF and JF~l. We
will then show that the invariant set A = r\Fn(S] is disjoint from this band when
A>A2.

Lemma 4. Suppose that, for some λ > 1, x satisfies

Then: a) For any vector (ξθ9η0)eS^9 the vector ( ξ l 9 η ί ) = JFx(ξ0,η0) satisfies

l£ι l>4ϊol
b) For any vector (ξ0,η0)εS~, ( ξ _ ί , η _ 1 } = JF-1(ξ0,η0) satisfies lη.^λlη^.

Proof. By hypothesis,

so that

1) 2\x\-\B\/λ>2\x\-λ\B\^λ,

2) 2\x\-λ^λ\B\.

To show a), we use the formula for JFX, the inequality \a + b\^\a\ — |b|, the
hypothesis |/70|^|^0|//l, and 1) in succession to conclude

^(2\x\-\B\/λ)\ξ0\>λ\ξΌ\
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Similarly, to show b), we use the formula for JF~ 1 and 2) to obtain

*(2\x\-λ)\η0\/\B\

Zλ\η0\. D

As a consequence, we can prove the following.

Proposition 3. // (xQ9y0)
 and (^.ViH^Wo) both satίsfy

\x\>λ(l + \B\)/2

for some A>1, then
a) for any vector (ξ0,η0)eS^9 ( ξ ί , η 1 ) = JFXo(ξ0,η0) belongs to Sf, and

b) For any vector (ξ^η^eS^, (ξ0,η0) = JF~1(ξ1,η1) belongs to S^ and

λ\(ξι,riι)\£\(ξ<»1<>)\

Proof. Our notation above is such that in both a) and b),

(ξl9ηι) = JFXo(ξθ9η0).

In particular, η1 = ξQ. To show a), we invoke Lemma 4a to get

λ\ηA=λ\ξ*\^\ξι\
so that (ξ1,η1)eS^ while by the definition of S^

λ\η0\^\ξ0\ = \ηι\.

This proves a). Similarly, to establish b), we use Lemma 4b to conclude

and the definition of S^ to conclude

|ξol = toιl^l£ιl. π
Our last step in establishing statement iv) is to verify the hypotheses of

Proposition 3 for all points of Λ = nFn(S) when A>A2.

Proposition 4. // A>A2, there exists λ>l such that

\x\^λ(l + \B\)/2

for all(x,y)eSnF~ί(S).

Proof. From Lemma Ib, we see that the pre-image F ~ ί ( S ) lies outside the
parabola

which intersects the edge of S at a pair of points with x-coordinates ±x^ where
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Fig. 4a and b. Preimage of S; A>AV. a £>0. b B<0

Fig. 5

It is clear that F 1(S)nS lies in the region |x|^|xj (see Fig. 4).
Let us write A in the form

A quick calculation from the formula for R then gives

so that

+ \B\)2/2 .

For fc> 0, this quantity increases with k and the left hand factor equals 1 when

2k = 5 + 2 j/5 or A = A2. Thus when A>A2, we can take

to get the conclusion of the proposition, and hence hyperbolicity of λ. D
We close with the observation that the conclusion of Proposition 4 for points

of Λ could be obtained with lower values of A if, instead of estimating the
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intersection of the edge of F~1(S) with the edge of S, we considered the smallest
x-value, |3c|, among the four intersections of the edge of F~1(S) with the edge of
F(S) (see Fig. 5). This point, which is a solution of the two quadratic equations

is a lower bound for |x| on A which satisfies the hypotheses of Proposition 4 for
values of A somewhat lower than A2.

We finally remark that our theorem shows that the phenomena of the Ήenon
attractor" are part of a bifurcation occurring in the creation of a horseshoe from
nothing. This gives another perspective on the significance of these mappings for
dynamical systems theory.

Note. After this paper was written, it came to our attention that S. Newhouse has outlined a proof of a
similar result [10].
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