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Abstract. A mathematical generalization of the concept of quantum spin is
constructed in which the role of the symmetry group 03 is replaced by Ov

(v = 2,3,4,...). The notion of spin direction is replaced by a point on the
manifold of oriented planes in IRV. The theory of coherent states is developed,
and it is shown that the natural generalizations of Lieb's formulae connecting
quantum spins and classical configuration space hold true. This leads to the
Lieb inequalities [1] and with it to the limit theorems as the quantum spin /
approaches infinity. The critical step in the proofs is the validity of the
appropriate generalization of the Wigner-Eckart theorem.

1. Introduction

The study of the classical limit of certain quantum mechanical systems was the
subject of an interesting paper of Lieb [1]. Among the systems considered there is
the Heisenberg model whose Hamiltonian is of the form

H^M=ΣβJkv
j) w, (i.i)

where the L0) are independent quantum spins with the same total spin quantum
number /. To this model corresponds a classical analogue, defined formally by the
same energy function with the L0) interpreted as vectors of length I in 3-
dimensional space. If one writes L0) = /ω0), the ω(j) unit vectors, the classical model
is then defined by its energy function

From the point of view of statistical mechanics one is interested in the respective
partition functions

HuaJ (1.3)
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and

..dωII, (1.4)

where n is the total number of spins and the integral in the classical case is with
respect to uniform surface measure (solid angle) over the n unit spheres. Lieb
proves two striking inequalities

,..ant(0, (1-5)

and

They show that as / increases, and the coupling constants gjk are fixed, the
quantum and classical partition functions form two non-decreasing and interlac-
ing sequences. An ingenious application of this fact is the theorem, proved by Lieb,
that if the coupling constants are scaled inversely proportionally to I2 and the limit
/->oo is taken after a bulk (thermodynamic) limit, then the free energy per spin in
the quantum model goes over into that of the classical model. This is one
mathematically precise version of the traditional wisdom that quantum physics
goes over into classical physics "in the limit of large quantum numbers".

In the present paper we wish to contribute to a better understanding of how
such remarkable results come about. Ingredients of the mathematics leading to
(1.5) and (1.6) are familiar to practitioners of statistical mechanics, namely the
Peierls-Bogoliubov and Golden-Thompson inequalities. But the possibility of
applying these inequalities to the problem at hand depends on certain formulae
which relate quantum spin operators to the "classical" unit vectors. These
formulae are arrived at by consideration of a distinguished family of quantum
states ("coherent states"), definable as eigenvectors of spin components in various
directions belonging to their largest positive eigenvalue / (this definition is
obscured in the Lieb paper by the use of the inherently unsymmetrical spherical
polar coordinate system). Let ω = (ω l ϊω2,ω3) be a unit vector (direction) in IR3,
L = (L15L2,L3) a spin vector with the standard commutation rules L1L2 — L2L1

= /L3, etc., L L = Z/J + L2 + L2 = 1(1+1), Lω = α) L = co1L1+co2L2 + co3L3. Then
the coherent state φω belonging to the direction ω is defined by

Lωφω = lφω. (1 7)

The first of the formulae referred to above expresses the expectation value of Lω, in
the state φω, where ω and ω' are any two directions:

(Φa»Lω'Φω) ,M ̂

> Φω)

(1.8)

This is the formula at the root of the inequality (1.5). The other inequality (1.6) is
based on a more spohisticated fact, namely that the operator Lω, itself may be
given an integral representation over the "classical configuration space", the unit
sphere of directions ω. This integral representation is

ωω, (1.9)
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where Eω is the projection operator into the one-dimensional space generated by
φω, and where the integral is the usual uniform one with respect to the unit vector
ω. The occurence of /+ 1 in (1.6) has its origin in the appearance of this factor in
the formula (1.9).

There is another integral representation, simpler than (1.9), namely,

2/4- 1
I=-^-ίEωdω, (1.10)

where / is the identity operator. This one implies, in particular, that for any
operator A

The proofs given by Lieb are basically verifications, starting with the ex-
pression for φω in terms of the spherical polar coordinates of ω. While this is
logically without blemish, we feel that it does not sufficient justice to the matter,
especially the role of symmetry under orthogonal transformations. We have
therefore set ourselves the task of generalizing the whole scheme, in such a manner
that on the one hand the quantum-classical analogy should prevail, and that on
the other hand the true essence of the formulae analogous to (1.7)-(1.11) shall be
revealed. In pursuing a generalization, the obvious first idea suggests itself to
replace the "classical" unit sphere in IR3 by the unit sphere in a higher dimensional
space Rv (v>3). This idea founders on the obstacle that then no reasonable
replacement for the operator family Lω appears possible. Fortunately, there is a
way out of this difficulty. It is only necessary to reinterpret the geometrical essence
of the situation in R3 slightly, to make the generalization to IRV possible, indeed
almost obvious. A direction in IR3 is a unit vector, but equally well a plane, the
plane orthogonal to the vector. To make this unambiguous, the plane must be
assigned an internal sense of positive rotation (orientation), and a convention must
be made how the orientation picks out one of the two possible orthogonal unit
vectors. Thus the unit sphere S2 in R3 may be thought of as the manifold of
oriented planes through the origin. This concept makes sense in IR4, R5, etc., indeed
already in R2, so that we take the point of view that "classical configuration space"
is the manifold of oriented planes (two-dimensional linear subspaces) of Rv. With
Ihis as a starting point, the theory of quantum spins, coherent states, and so forth,
can be developed exactly along the lines of the case v = 3 familiar from ordinary
quantum mechanics. As we shall see, the properly conceived analogues of Lieb's
formulae hold for the generalization. The mathematics we develop suggests new
statistical mechanical models that may perhaps be of interest on their own.

2. The Space of Oriented Planes

A plane σ passing through the origin in Rv (v ̂  2) is determined by two orthogonal
unit vectors a, b lying in it. An orientation of σ is a distinguished sense of rotation
in it. This can be specified as the rotation that carries a into b by the angle π/2.
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Thus σ as an oriented plane is completely determined by the ordered pair (a, b).
Two ordered pairs (a, b) and (a', b') determine the same oriented plane σ if

b'=-asin0 + bcosθ ^ '

for a suitable angle θ. Thus an oriented plane is defined precisely as the
equivalence class, with respect to the relation (2.1), of ordered pairs (a,b) of two
orthogonal unit vectors.

The set of all oriented planes σ in Rv will be denoted Mv, or simply M. M2 has
two elements, JR2 with its two orientations. Mv for v^3 forms a real analytic
manifold of dimension (v— l) + (v — 2) — 1 =2v — 4. The simplest of these, M3, can
be identified with the unit sphere S2 in R3, for an oriented plane σ in 1R3

determines, and is determined by, a unique unit vector a x b orthogonal to it.
A function / = /(a,b) may be regarded as defined on M whenever (2.1) implies

/(a,b) = /(a',b'), in which case we write / = /(σ).
The skew-symmetric matrix m defined by

mjk = ajbk ~ bjak (A & = 1, 2, . . . , v) (2.2)

is invariant with respect to transformations of the form (2.1), hence we may write
m = m(σ). It has rank 2, and is so normalized that

Conversely, if m is skew-symmetric, has rank 2, and satisfies (2.3), then there is a
pair (a,b) of orthogonal unit vectors, determined up to transformations (2.1), such
that in terms of it m is given by (2.2). Thus M may be viewed alternately as the
space of normalized skew-symmetric matrices of rank 2. From this point of view,

M2 is thought of as the set of the two matrices m± = I ~~ , while M3 is the
0

set of matrices of the form

-ω9

where β> = a x b varies over unit vectors in R3.
The orthogonal group 0 = Ov acts in a natural manner on Mv. Let ReOv be an

orthogonal matrix, and write Rx for the vector that it transforms any xeRv into. If
(a,b) determines the oriented plane σ, we write Rσ for the oriented plane
determined by (Ka, R\ή. The transformation law for the corresponding matrices is

m(Rσ) = Rm(σ)Rt, (2.4)

where the superscript t denotes matrix transpose. The action of Ov on Mv is
transitive: any σeMv may be transformed into any σ'eMv by a suitable ReOv.
Thus Mv under the action of Ov is a homogeneous space and, as such, may be
viewed yet another way, namely as arising from the group manifold of Ov by a
suitable identification process but we do not emphasize this aspect. The action of



Generalized Quantum Spins 73

02 on M2 is quite trivial, in that Re02 either leaves the two elements of M2

invariant (DetK = 1), or interchanges them (DetK = — 1). The action of 03 on M3

may be expressed in terms of the normal vector ω uniquely associated with σ as
follows: ω(Rσ) = (ΌetR)Rω(σ).

Let σ, σ' be any two oriented planes of Mv. Let F be any geometric figure in σ of
positive 2-dimensional Lebesgue measure A(F). If F' is the orthogonal projection
of F onto σ', we denote by ρv the ratio ±A(F')/A(F\ taken positively if projection
preserves orientation, negatively if it reverses it. ρv clearly depends only on σ and σ'
and it has the properties — 1 ̂  ρv(σ, σ') = 1, ρv(σ, σ') = ρv(σ', σ), ρv(Rσ, Rσ') = ρv(σ, σ')
for all σ, σΈMv all ReOv. The explicit formula for ρv is

ρ>,σOHa a')(b b')-(a b')(b a')

= Σ ™jk(°)mjk(°') (2 5)
j</c

In particular, ρ2(σ,σ /)=±l depending on whether σ = σ' or φσ', while ρ3(er, σ')
= ω(σ) ω(σ').

Integration over Mv is defined in terms of normalized Haar-measure h = hv

over Ov. If / = /(σ) is a continuous function on Mv, its integral is defined by

f f(σ)dμ(σ)= f f(Rσ0)dh(R), (2.6)
Mv Ov

where σ0 is some, arbitrarily chosen, plane in Mv. Since /ι(0v) = l, it follows that
μ(Mv) = l. For v = 2 "integration" is simply averaging

J/(σ)Jμ(σ) = i/(σ+) + i/(σ_), (2.7)
M2

where M2 = {σ+,σ_}. For v = 3 it is given by the familiar formula

J f(σ)dμ(σ)=±-Sf(ω)dω (2.8)
M3

 47Γ S2

in terms of the solid angle element dω with respect to the unit normal vector.

3. Spherical Harmonics and Spin Operators

We summarize briefly the appropriate generalization of the theory of spin
operators, based on a construction in terms of spherical harmonics. For an
extensive treatment of spherical harmonics in Rv we refer the reader to Chap. 6 in
the book of Hochstadt [2], and to Chap. IX in the book of Vilenkin [3].

A spherical harmonic of degree I (1 = 0,1,2,...) in v variables (v = 2,3,...) is a
homogeneous polynomial /(xl5 x2, - . . , xv) = /(x) of degree / that satisfies Laplace's
equation Δf = 0.

The dimension of the linear space of all homogeneous polynomials of degree /

is the binomial coefficient I . Spherical harmonics form a subspace (a
\ ' /
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proper one for / ̂  2) of dimension

d = dvj =

a number that reduces to the familiar 21+1 for the case v = 3. We denote by
§ = §v f l the space of spherical harmonics of degree / in v variables. It is made into a
Hubert space by the definition of an inner product

(f,g)=^Sftog(χ)dω, (3.2)

where integration is over the unit sphere Sv~ 1, and the element of surface dω is so
normalized that rv~1drdω is the Euclidean volume element in IRV.

is the surface measure of the unit sphere. The calculation of inner products in § is
facilitated by knowing integrals of the form

/(fe l 9...,fe v)=ijx^...x^ω, (3.4)

where the kj are non-negative integers. / vanishes unless all kj are even, and in that
case

(3.5)

This formula is obtained by noting that

00

/(*!,. • Λ ) f e ~ Γ V 1 + " + 4 v + v~ 1<fr (3 6)
0

and

oo oo

f e'^dx^.. f e-**x*vdxv (3.7)
— oo — oo

are proportional. A related and useful formula is

P(yp...,y2J, (3.8)

where P is the "pairing sum", the sum of the (2n-l)!!=(2n-l)(2n-3)...3 l
products, formed with n dot-products yyyΛ, in each of which all of vectors y7 occur.
This fact is obtained by noting that both sides are multilinear in the y,., symmetric
under permutations, and invariant under y^Ky^ with Re Ov arbitrary. This shows
that they must be proportional, and the constant of proportionality is checked in
the special case y1 = ...=y2ιι = e1=(l,0 J0, ...,0).
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In the space § a unitary representation R^U(R) of Ov is defined by

U(R)f(x) = f(R'x). (3.9)

Spin operators acting in § are defined in terms of U by the following construction.
Let (a,b) determine the oriented plane σ. Let ΎQ

σ denote the rotation of IRV specified
by

7>=-asinθ + bcosθ (3.10)

x = x if x a = x b = 0.

Then we define

-/}, (3.11)

and call it the spin operator associated with σeM. Explicitly

iLσ = (a x)(b grad)-(b x)(a-grad)9 (3.12)

or also

Lσ=Σ mjk(σ)Ljk, (3.13)
j<k

where

^=^ "x (3 14)

These definitions are straightforward transcriptions of the familiar ones from
quantum mechanics (the case v = 3). The only novelty is that "spin direction" is
interpreted in the general case as an oriented plane in Rv.

Spin operators Lσ for varying σeM are related to each other by the natural
action of the orthogonal group Ov. The identity

implies

LSa = U(R)LσU*(R)i (3.16)

or equivalently,

Lσ=U(R)LRtσU*(R), (3.17)

This identity, the transformation law of spin operators under the action of Ov, will
be of particular importance below. We rewrite it in yet another form in terms of

fv\
the coordinate-plane spins Ljk. For any RεOv define a matrix W(R) with rows

and columns as follows

(3.18)
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Then (3.17) may be rewritten

Ljk= Σ Wjk,rs(R)U(R)LrsU*(R). (3.19)
r<s

The correspondence R-*W(R) is a unitary matrix representation of Ov (the
antisymmetrized tensor product of the identity representation with itself). One
obtains (3.17) from (3.19) upon multiplying with mjk(σ), summing over subscripts
and making use of (2.4).

Proposition 1. The spherical harmonic

)1 (3.20)

is the unique eigenfunction of Lσ belonging to its largest positive eigenvalue /,
satisfying 0αfc(a) = l, where (a,b) determine σeM.

Proof. In view of the transformation law (3.16) it suffices to consider a particular σ,
for instance the one determined by (e1?e2). Every / = /(χ) is § has the form

/= ΣU
rs

where crs = crs(x3, ...,xv) is a homogeneous polynomial of degree l—r — s. Since

/ can be an eigenfunction of L12 only if for all non-vanishing crs the same value is
taken by r — s; and the largest such value is evidently /, when clo is a constant. The
requirement /(e^^l fixes it uniquely, so that f(x) = (xί+ix2)

1, Q.E.D.
The eigenfunction φab oϊLσ is said to determine the coherent state belonging to

σ. Note that as the pair (a, b) is replaced by the equivalent pair (a', b') via (2.1), φab is
replaced by φa'b' = e~~ίlθφab. Thus the quantum mechanical state is determined by σ
alone.

Inner products of coherent state functions are easily computed with the
integration formula (3.8). One finds

2/a a' + b b' .a b'-b a'Y _0 , fa-ib

where

Tk \1/ 2

is the norm of φab in the Hubert space

4. Integral Representation of Spin Operators in Terms of Coherent States

We come to the appropriate generalizations of (1.8)-(1 11) The notational
convention will be adopted that the pairs (a, b) and (ar, b') determine the oriented
planes σ and σ' respectively, and Eσ is the projection operator onto the ray
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determined by φab. Subscripts v and / will be omitted where no confusion is
possible.

The analogue of (1.8) is

Proposition 2. For all σ and σ' in M ,

Proof. Use (3.12) and (3.20) for Lσ, and φab respectively, calculate the inner
product (3.2) via (3.8), and compare the result with (2.6), Q.E.D.

The integral representation of the identity operator, generalization of (1.10), is

Proposition 3.

I = d$Eσdμ(σ).
M

Proof. It is only necessary to show that the integral is a multiple of /, since the
proportionality constant is established by taking the trace and noting Tr£σ = l.
This is accomplished as soon as it is shown that the integral commutes with each
U(R), ReOv, because U is irreducible. (See Vilenkin [3] for proof. In cases v = 2,
/^l, U is reducible when viewed as a representation of the subgroup SO2 of
rotations, but still irreducible when, as here, viewed as a representation of the full
orthogonal group 02 that includes reflections.) For every ReOv and every (a,b)

(4.1)

so that

(φab,f) (4.2)

for all /e§. A straightforward calculation then shows that U(R)Eσf = ERσU(R)f,
in other words

ERσU(R)=U(R)Eσ. (4.3)

If this is integrated over M with respect to the measure μ, being invariant with
respect to the action σ->Rσ of Ov, one obtains the desired equation

f Eσdμ(σ)U(R) = U(R) J Eσdμ(σ) , Q.E.D. (4.4)
M M

Of course, there is an analogue of the trace formula (1.11).

Proposition 4. For any operator A acting in ξ>,ΊΐA = dN~2 j (φab,Aφab)dμ(σ).
M

Proof. Write A = AI, use the integral representation for /, note Ύΐ(AEσ) = N~2

(φab,Aφab\ Q.E.D.
The only difficult one among the facts to be established is the generalization of

(1.9), the integral representation of spin operators. It is

Proposition 5. For all σ'εM, Lσ, = (l + v — 2)d J ρ(σ',σ)Eσdμ(σ).
M

The rest of this section will be devoted to its proof.
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To make the proof more comprehensible, we outline the steps to be taken. First
we show that Lσ, and the operator represented by the integral behave the same
way under conjugation with the unitary operators U(R\ ReOv. Then, and this is
the critical step, we prove that this behavior uniquely determines the family of
operators in question up to a multiplicative numerical factor. This statement is the
analogue of the Wigner-Eckart theorem in quantum mechanics. Finally, we
compute the proportionality constant and show that it is (I -f v — 2)d.

Let Tσ, denote the integral that occurs in Propositions. Using (4.3), one
obtains, after a simple calculation

TRσ, = U(R)Tσ,U*(R). (4.5)

This is the same equation as (3.16) if T is changed to L. Write Tσ = £ mjk(σ)Tjk, so
j<k

that

Tjk=$mjk(σ)Eσdμ(σ). (4.6)
M

Then the Tjk satisfy the Eq. (3.19). Let us rewrite the latter in matrix form, obtained
by expressing operators as matrices with respect to some fixed orthonormal basis

{/ι> /2> > fd}
 in S Let Aaβ = (/α> Afβ) (1 ̂  «> 0 g <f) for anY operator A acting in §.

The equation reads

tw= Σ ΣWjkιrs(R)Uxβ(R)Uδγ(R)ξrsβγ (for all ReOJ. (4.7)
r<s βy

It is satisfied by both ξ = L and ξ = T. We intend to show that the solution space is
one dimensional, whence it will follow that the Ljk are proportional to the Tjk.

The product of the first two factors under the sum in (4.7) forms a matrix entry
M

of W(R)®U(R\ a matrix of \d rows and columns. The correspondence

R-+W(R)® U(R) is a unitary representation of Ov. As such, it is equivalent to a
direct sum of irreducible representations

.

Vl(R) 0 ... 0

° v W ~ ° |s* (4<8)

0 0 ... Vq(R)j

where the Vτ(R) ( l^τrgg) are irreducible unitary representations of Ov and S is
some unitary matrix. We adopt the convention that any Vτ equivalent to U is
taken actually equal U; this can clearly be arranged by choosing S suitably. In
terms of matrix entries (4.8) reads

WJk,rs(R)Uxβ(R)= Σ Σ V.τΛW.f.τ. (4-9)
τ ηε

Substitute into (4.7), integrate over Ov with respect to normalized Haar measure,
and make use of the orthogonality relations of the matrix entries of unitary
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representations ([3], p. 45). This yields

ζjkaδ~d L^Sjkot.,τδ LJ 2^ ^rsβ,τyίrsβy = L^ Cτ^jka,τδ ' (4-10)
τ r<s βy τ

where the sum Σ' *s restricted to those terms for which Fτ = U. We see that the
dimension of the solution space of (4.7) does not exceed the number of terms in the
right hand side of (4.10), i.e. the number of times the irreducible representation U
occurs in the direct sum decomposition of the representation W®U into
irreducibles.

Lemma. For v^2 and I ̂  1 the multiplicity of U in the direct sum decomposition of
W®U is 1.

This will be proved in Sect. 5. In the mean time we can conclude that (4.7) has a
unique solution up to a numerical factor. Therefore there is a number c = c(vj)
such that Lσ = cTσ for all σeM. It may be remarked that this conclusion remains
valid, even if trivially, in the case 1 = 0 not covered by the Lemma, for in that case
Lσ as well as Tσ vanish.

It remains to determine c. Consider the integral

ί ρ(Rσ9σ
f)ττ(ERσEσ,)dμ(σf)

M

as R varies in Ov. It is easily seen to be independent of R, so that we can write

) = k9 (4.11)
M

where k is independent of σ. Thus

Tr Σ L2

jk = c2 Σ Tr(7*) = c2 f f ρ(σ,σ')Ύr(EσEσ,)dμ(σ)dμ(σ') = c2k. (4.12)
j<k j<k M M

But

-2)7 (4.13)

so that

C2k = l(l + v-2)d. (4.14)

To eliminate fc, substitute x = ̂ (a-ίb) into N~\φa,b,,φab)φa,b,(x) = Eσ,φab(x\ so
that in view of (3.23) one obtains

N-\φa,b,, φab)\2 = Tr (£ A )

When this is multiplied by cρ(σ9 σ'} and integrated with respect to σ', the result is

= ck. But cTσ = Lσ, Lσφab = Iφ^ and Φab(°- = l This shows that

ck = 19 so that c = (I + v — 2)d as was to be shown. Proposition 5 now only depends
on the truth of the lemma.
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5. Proof of the Lemma

The multiplicity of the irreducible representation U in the direct sum decom-

position in terms of irreducibles of the representation W® U is computed by

means of the orthogonality relations of group characters, i.e. the traces of the

representing matrices. If Vτ(R) and Vτ (R) are two inequivalent irreducible unitary

representations of Ov then

ί V*aβ(R)V;'δ(R)dh(R) = Q9 (5.1)
ov

and

j ΨΓβ(R)V;ε(R)dh(R) = 1 δajδβε , (5.2)
Ov

 aτ

where dτ is the dimension of the representation space. Therefore

Ό
f Tr Vτ(R) Tr Vτ'(R)dh(R) = \ (5.3)
ov I1

depending on whether Vτ and Vτ' are inequivalent or equivalent respectively. It

follows that the required multiplicity is

f Tr W(R)®U(R) Tr U(R)dh(R) = f Tr W(R)\Ύr U(R)\2dh(R) . (5.4)
ov ov

It must be shown that this integral has the value 1 (for /^l).

The trace of W is easily .calculated from the definition (3.18)

ΎrW(R)= Σ WjkJk(R)

. (5.5)

The computation of the trace of U is more complicated, but there is an elegant

procedure for obtaining it which, for the sake of completeness, is outlined below.

Since various values of / become relevant, this parameter will be displayed

explicitly. Thus we write §z for the space of spherical harmonics of degree /, Ul for

the corresponding representation of Ov. The larger space §J of all homogeneous

polynomials of degree I (harmonic or not) is also needed. A natural representation

U' of GLV c (the group of complex non-singular v x v matrices) is given by

U'l(R)f(x) = f(R-1x) for #eGLv ( C and /e$J. Here §j is regarded merely as a

complex linear space so that U't(R) need not, and in general will not, be unitary.

When Rί and R2 are conjugate in GLV c, R1=RR2R~1 for some R, then

ΎrU'l(R1) = ΎτU'l(R2). It suffices then to obtain the trace when R is in Jordan

canonical form. Since Tr Uf

t(R) depends continuously on #, it is even enough to

assume that R has distinct eigenvalues and therefore is a diagonal matrix with

non-vanishing diagonal entries r1 ?r2, ...,rv. A basis in §J is provided by the

monomials /(x) = x^x^2 *ίv with the kj ̂  0 integers, ̂  k. = I. They are eigenfunc-

tions of UΊ(R) with respective eigenvalues r^V^ k2...r~kv. Therefore

Trt/ί(Λ)= Σ r- fc l...r;^, (5.6)
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and hence

.=-. -"-I1-) ~l'-rj
= Det(l-z/r1Γ1. (5.7)

The coefficients in the power series expansion of the right hand side of (5.7) are
customarily denoted Pl=Pl(R\ thus ΊτU'l(R) = pl(R). Note that if ReOv the
generating function may equally well be written Det(l —zK)"1.

When / = 0,1, §z = Sί so that ΎτUl(R) = pl(R). When ί^2, the relevant fact is
that every /e£)J is of the form /(x) = 0(x)+ \x\2h(x) where #e$z and /ze§J_ 2 (see
Vilenkin [3], p. 444). This means that §| is the direct sum of §z and |x|2§;_2, a
decomposition invariant under U't(R) when ^ is restricted to Ov. This shows that
U[(R) is the direct sum of Ut(R) and Ό'l_2(R\ whence

TrC/ί(jR) = Trt7z(K) + TrC7ί_ 2(Λ). (5.8)

Thus

TrC/z(R) = pz(R)-p i_2(R) (/^2). (5.9)

In generating function form

0
(ReOv).

The first few of the p, are p0 = 1, p1 = TrΛ, p? = |Tr(Λ2) + i(Tr jR)2. Following this
pattern, one can express p( as a polynomial with rational coefficients in ΊτR,
Ίr(R2),....^Γΐ(Rl). This comes from the identity

Det(l-z/?Γ1 = exp{-Trlog(l-z7?)}=exp f) ^Tr(K*). (5.11)

fc=l ^The trace of P^(Λ), computed above in (5.5), can also be expressed as pl(R) — p2(R).
With these facts at our disposal the proof of the Lemma is reduced to showing

that for /^ l

l (5.12)
ov

(for 1= 1 omit P j_ 2 )
Consider first the simplest case v = 2. #e02 is one of the two forms

/ cosβrinβ \

depending on Det,R= ±1. Integration with respect to Haar measure over 02 is
expressed by

•J 2π 1 2π

-i- J ...dθ+-:- J ...dθ. (5.14)
4π J 4π g

From (5.13) and obtains Det(l-zK)=l-2z + z2 when DetK = l, and 1-z2 when
Det,R = — 1. In view of the expansion

-j _ 2 oo

(5.15)
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one obtains for / ̂  1 Tr U^R) = 2 cos (/0) when Det R = 1 and = 0 when Det R = - 1 .
Furthermore, ΎrW(R) = ΌetR. Thus the integral (5.4) or (5.12) reduces to

I 2π

— J (2coslθ)2dθ = l (5.16)
4π o

as was to be shown. Of course, in this rather trivial case Proposition 5 can be
verified directly without the aid of the general method, indeed, it reduces to the
obvious statement that L12 = l(Eσ+ —Eσ_\

The case v = 3 is that of ordinary quantum mechanics, and the result is well
known. We present it here for the sake of completeness, partly as a pedagogical
exercise, but also to prepare for the new and interesting cases v ̂  4.

The two components of 03 are the subgroup SΌ3 of those Re03 with
DetjR = l, and its coset with respect to reflections consisting of those #e03 with
DetJR= — 1. The canonical form of J^e03 is

cosφ sin0 0

-sinφ cosφ 0 (DetJR=±l), (5.17)

0 0 ±1

where O^φ ̂ π, i.e. each Rε03 is equivalent by conjugation in 03 to one of the
forms (5.17). Functions (as the pz) that depend only on the conjugacy class can be
regarded as depending on φ and the + sign, and their integral with respect to Haar
measure is expressed by

]...sm2%-dφ. (5.18)

(DetjR=±l) (5.19)

ΌetR=l D e t j R = - l

From (5.17) one obtains

1-z2 l+z

Det(l-ztf) l-

whence upon expanding in powers of z

TrE7z(K)= < (5.20)

Also from (5.5) Tr W(R) = 1 ± 2 cos 0 (Det# = ± 1). The integral to be evaluated is
then

1 ?/, „ ,χSin 2 (/ + i) . !
-J(l+2cos0) /21/smi

- (l + 2cosφ)(l-cos(2l+l)φ)dφ
2π _π

1 (^1} (5.21)
0 (/=0).

This completes the proof of the Lemma for v = 3.
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Similar calculation could be made for the higher orthogonal groups Ov

(v = 4, 5, ...). The major complication is in the formula, corresponding to (5.14) and
(5.18) above, for the Haar-integral in terms of rotation angles (the curious reader is
referred to Murnaghan [4], Chapt. IX, for details). Fortunately, the required
integrals have been computed already. Issai Schur, in one of his pioneering papers
on the representation theory of orthogonal groups [5], proved the following
elegant theorem: // Irgra^v, then

ov j=ι

= Π ( 1 - c Γ 1 - (5 22)

In other words

$ Plιph...PlJh(R) (5.23)
0V

is the coefficient of zl^zl

2 >.zl™ in the multi-power series expansion of the rational
function on the right hand side of (5.22). The integral (5.12) to be calculated is a sum
of six terms which are all of the form (5.23) with m = 3 and m = 4. Their calculation
can be simplified by grouping terms appropriately and omitting factors from the
product γ[ (1 — Z Zfc)"1 which make no contribution. Thus it is found that

l^j^k^4
§pl(pι — pι-2)

2dh(R) is the coefficient of (zίz2)
1 in the expansion of

(!+2z1z2)(l-z1z2] Γ
1, that is

(5.24)

Similarly, §p2(Pι — Pι-ι)2dh(R) is the coefficient of ( z ί z 2 ) 1 in the expansion of
(l+z1z2)(l-z1z2)"1, that is

(5.25)

Subtracting, one finds (5.12). This completes the proof of the lemma and with it,
Proposition 5.

6. Concluding Remarks

We are now in a position to construct models of "interacting spins" analogous to
those considered by Lieb [1]. Let v = (v l 9 v 2 , . . . .v n ) and I = (lί9l2,....ln) be finite
sequences, and let ξ>v>l = ξ>VίJί®ξ)V2j2®... ®θVn,/n For l^r^n and l^j^k^v,
let Ujk denote the copy of Ljk that operates on the rth factor of §v,. Let P = P(ξ) be
a real polynomial in the variables ξ = (ξl 2 »^135 •• > £ Ϊ 2 > £ i 3 > •••) w^ ̂ e Pr°perty
that no term in it contains more than one factor ξr

jk with a given r (the "normal
case" of Lieb [1]). The quantum mechanical model is defined by the Hamiltonian
^quam = P(L\ that is, by replacing ξr

jk in P by Ujk. The associated partition function
i§ % quint= dγ,ι Tr exP( - ^quant)' where rfy , = dim§v,. The classical analogue of this
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model has the configuration space M = MVι x MV2 x ... x MVn whose points are n-
tuples σ = (σl5 σ2, . . . . σn) with σreMVr. The energy function #cίasΓ(σ) is obtained by
replacing ξr

jk in P by lrmjk(σr), symbolically Hv

c£s

p

s(a) = P(lm(σ)). The associated

partition function is Z*£s£ = J exp ( - //^(σ))dμ(σ) where μ is the product mea-
M

sure. The cases considered by Lieb correspond to v = (3,3, ...,3).

Proposition 6. Z

Proposition?. Z

-2 = (/1+v1-2, /2 + v2-2,...,/π + vπ-2). The proofs are exactly as
in Lieb's paper, with notational changes only.

It will not escape the reader that when v = (2, 2, . . . , 2) one has Zquant = Zclass.
This is no miracle, indeed it is a quite trivial and obvious fact. The point is that the
distinction between "quantum" and "classical" disappears in this case and
becomes a matter of mere notation : both models are just a fancy way of describing
the well known Ising model. From the quantum point of view, there is only one
spin-component Lί2 for each degree of freedom, having the two eigenvalues +/,
there is no non-commutativity in the model. From the classical point of view, the
configuration space M2 is just the union of two isolated "points" (the two
orientations of IR2) and the spin-variable is Im12(σ)=±l for the two points
σ = σ+eM2. Our embedding of the Ising model as the extreme case of two
sequences, one quantum, one classical, makes only official what every physicist
knows, that the Ising model can be thought of in either of these two ways.

The inequalities of Propositions 6 and 7 can be used, exactly as in Lieb's work,
to prove limit theorems as the quantum number /->oo (but v remains constant).
Because of the nature of the inequalities the limit /->oo must be done through an
arithmetic sequence of difference v — 2, then does one obtains the monotonic,
interlacing sequences of quantum (resp. classical) partition functions which are
used in the proof of the limit theorems.
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