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Abstract. The partition function of a degenerate quadratic functional is
defined and studied. It is shown that Ray-Singer invariants can be interpreted
as partition functions of quadratic functionals. In the case of a degenerate non-
quadratic functional the semiclassical approximation to the partition function
is considered.

Section 1. Introduction

The degenerate Lagrangians are important in quantum field theory. For example
the action in gauge theories is invariant with respect to infinite-dimensional group
of local gauge transformations and therefore the corresponding Lagrangian is
degenerate. To calculate the physical quantities in gauge theories one must impose
the gauge conditions, but final results must be independent of the gauge
conditions. The physical quantities in the gauge theories and other theories
described by degenerate Lagrangians were expressed through functional integrals
by Faddeev and Popov (see [1]).

In the present paper we give a rigorous treatment of the case when the action is
a degenerate quadratic functional (Sects. 2 and 3). Our results can be useful when
dealing with various questions on quantum field theory. For example, they are
connected with so-called anomalies. These results can be used to study the
instanton contribution in Schwinger functions (Sect. 5). Our assertions can be
applied outside of quantum field theory too. They are closely related with the
theorems proved in [2, 3]. Namely, we show that the Ray-Singer torsion [2] can
be considered as a partition function of action which is invariant by diffeo-
morphisms. The independence of Ray-Singer torsion on the choice of riemannian
metric can be interpreted as independence of the partition function on the choice
of gauge condition. In a similar way one can get invariants constructed in [37] and
new invariants. One of the new invariants will be described below.

Part of our results was formulated in [4]. A short review of some mathematical
results used in present paper can be found in [5].
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The functional integrals for partition functions of quadratic functionals are
gaussian and therefore they can be expressed through determinants. We must
define therefore the determinant of infinite-dimensional operator and some related
notions.

We say that the non-negative self-adjoint operator B in Hubert space is regular
if for ί->+0

Sp(exp(-Bi)-ff(B))= Σ*k(B)t~k + 0(f) , (1)

where ε >0 and k run over finite set K of non-negative numbers. The symbol Π(M)
denotes here and later the projector on the kernel of operator M :

where ft run over zero modes of M. The trace Sp M of operator M is defined as

where et run over orthonormal basis. [Always when we consider the trace of
operator M we suppose that the operator M is of the trace class, i.e. the sum of the
eigenvalues of (M*M)1/2 converges.] The zeta function ζ(s\B) of operator B for
large Re (5) can be defined by the formula

where λj run over non-zero eigenvalues of B. For other 5 the zeta function must be
defined by means of analytic continuation. It is easy to check that for regular
operator B the analytic continuation of ζ(s\B) in the half-plane Re(s)> — ε, ε>0
can be written in the form

keK

+ } Sp(exp(-Bί)-Π(B))- £ o^Bf^dt . (3)
0 \ keK

We define the regularized determinant D(B) of the regular operator B by the
formula

This definition is correct because ζ(s\B) is analytic at point s =0. It follows from (3)
that

- J Sp (exp ( - Bt) - Π(B))Γ l

i

k l- J (Sp (exp (-Bt)- 77(5))- Σ «k(B)Γk}Γ ldt . (4)
0 \ keK
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If B is an operator acting from Hubert space ̂  into Hubert space 34f2 and the
operator B*B is regular, then one can define the regularized determinant D(B) as

-\ ^-ζ(s\B*Bη =D(B*B)112 . (5)

If B is a self-adjoint regular operator this definition of D(B) concide with the
preceding one.

We define smooth regular family of operators as a family of regular operators
B(u\ 0 ̂  u ̂  1, satisfying

-B(u)t-Π(B))- £ ak(B(u))Γk}\ ^
keK

for 0<ί<l and

j V^.f V'xl^ V -t-'v""/''/ "V *-V// = ~./V" \ ' /
αw

for ί^l. (Here K denotes finite set of non-negative numbers, N is an arbitrary
number, the positive constants ε, C, CN do not depend on u.)

We say that the operators A, B acting in Hubert space ffl form a regular pair if
B is a non-negative self-adjoint operator

SpA(exp(-Bt)-Π(B))= Σ βk(A\B)Γk + 0(tε) (8)
keK

for ί->+0 and

Sp A(QXp (-Bt)- Π(B)) = O(t ~ N) (9)

for f-» oo. [Here as in (3) K denotes a finite set of non-negative numbers, ε>0, N as
an arbitrary integer.] If A = 1 then the pair (A, B} is regular if and only if the
operator B is regular.

Let us consider differential operators on a compact manifold M (i.e. differential
operators acting in the spaces of sections of vector bundles with the base M). The
coefficient functions of differential operators (as well other functions under
consideration) will be always supposed smooth. The family of differential oper-
ators depending on parameter u, O^u^ 1, will be called smooth if the coefficient
functions are smooth with respect of all arguments (including u). Further in
present section we use the notations A or A{ for differential operators and the
notation B for self-adjoint non-negative elliptic differential operator.

Lemma 1. The operator Aλ exp( — Bt)A2 is of the trace class for t >0 and

Sp A! exp (-Bt)A2 = Sp A2Al exp (- Bή = Sp exp (- Bt)A2Aί .

Lemma 2. The function Sp ^4(exp (— Bt) — Π(B)) decreases faster than any power of
t at infinity.

Lemma 3. For t-+ +0
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where ε >0 and k — , / is an integer. (Here n denotes the dimension of manifold

M and m denotes the order of operator B.)

Lemma 4. // M is an odd-dimensional manifold, then Ψ0(A\B) = 0.

The coefficients Ψk(A\B) can be calculated by semiclassical method. They are
given by local formulae. In other words the following assertion is correct.

Lemma 5. // the coefficient functions of operators Bί and B2 coincide in the
domain GcM and the coefficient functions of A vanish in M\G then

Ψ0(A\Bί)=Ψ0(A\B2) .

It follows from Lemma 2 and Lemma 3 that the pair (A, B) is regular and the
coefficients βk(A\B) are given by β0(A\B)=Ψ0(A\B)-SpAΠ(B)9 βk(A\B)=Ψk(A\B)
for /c>0. For arbitrary elliptic operator C the operator B = C*C is a non-negative
self-adjoint elliptic operator; one can therefore define the regularized determinant
D(C) for arbitrary elliptic operator.

Let A(u) be a smooth family of differential operators and B(u) a smooth family
of self-adjoint non-negative elliptic operators (O^w^l). We assume that
Sp Π(B(u)} — dim ker B(u) does not depend on u.

Lemma 6. The function Ψk(A(u)\B(u)) is smooth with respect to u and

Sp A(u) exp (- B(u)t) - £ Ψk(A(u)\B(u)t -k <Ctε

for 0<ί<l

|Sp^(u)(exp ( - B(u)t) - Π(B))\ ̂

for ί^l. (Here ε>0, N is arbitrary, C and CN do not depend on u.)

Lemma 7.

It follows from Lemma 6 and Lemma 7 that B(u) is a smooth regular family.
The lemmas above can be derived from well known results. In particular

Lemmas 3-6 can be deduced from the results of [6] and [7].

Section 2. The Partition Function of Quadratic Functional

Let <9" be a quadratic functional on a pre-Hilbert space Γ0 i.e.

(1)

where S is a self-adjoint operator acting in Γ0. If the functional £f is non-
degenerate (i.e. Sf = Q if and only if / = 0) and S2 is a regular operator one can
define the partition function Z of ¥ as D(S)~1/2=D(S2)~1/4. [Formally we can
define Z as the functional integral of exp ( — 5 )̂ over Γ0. The formal calculation of
this gaussian integral leads to the answer (detS)~1/2.]
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Let us consider now the quadratic functional ̂  on pre-Hilbert space Γ0 and a
linear map T of pre-Hilbert space Γ^ into Γ0 satisfying

&(f+Ώi) = &(f) (2)

for every /zeΓr [It is easy to check that the requirement (2) is satisfied if and only if
ST = Q.~] It follows from (2) that every element ΛejΓi generates a symmetry
transformation of £f. If TΦO then the functional ̂  is degenerate. We assume that
there exists adjoint operator T* defined on Γ0 and taking values in Γ0; the
operators S2 and T*T will be supposed regular. Then we can define the partition
function of Sf as

Z = D(S)-1/2D(T). (3)

(This definition will be justified in Appendix by means of Faddeev-Popov trick.)
By definition D(S) = D(S2)ί/2, D(T) = D(T*T)1/2 and therefore

It is easy to check that S2 + TT* is regular operator and

D(S2 + TT*) = D(S2)D(TT*)

(this equality can be deduced from relations S2 - TT* =0, TT*S2 -0 which follows
from ST = 0). The non-zero eigenvalues of TT* coincide with non-zero eigenvalues
of T*T and therefore D(TT*) = D(T*T). Hence we can represent the partition
function in the form

3 / 4, (4)

where

Π0 = S2 + TT*, (5)

D! = Γ*T. (6)

If S is a regular operator then the partition function can be represented in the form

Z = D(S+TT*Γ1/2D(T*T) . (7)

It is important to note that not only the functional y but also the map T and
the scalar products in the spaces Γ0, Γ^ are used in the definition of partition
function. We will study now the variation of partition function by variation of
scalar products in Γ0, T^ and by variation of T Our proofs will be based on the
following Lemma.

Lemma 8. Let us suppose that

- Σ λqSp(Qχp(-tAq(u))-Π(Aq(u)))

Σ Sp/yu)(exp(-tTr(M))-Π(TΓ(w))), (8)
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where Aq(u) is a smooth regular family of operators for every q and (Rr(u\ Tr(u)) is a
regular pair of operators for every u and r. Then the variation of the expression

σ(u)= Σ λqlogD(Aq(u)) (9)
O^q^m

by infinitesimal variation of u is given by the formula

dσ/du= X β0(Rr(u)\Tr(u)) . (10)
O ^ r ^ n

It follows from (8) that

4- ΣWA^ = k Σ A(Λr(u)|Γr(tt)) . (11)
uu q r

To calculate the derivative of σ(u) we represent logD(Aq) in the form (1.4) and
use (8) and (9). We see that

£ = - Σ
aU / c Φ O

- } i(spβχ(eχp(-ίrr)- W))
0 ai \ \ r

Using the regularity of the pair (Rr, Tr) we obtain (8).
Let us study now the variation of partition function by variation of scalar

products in Γ0 and Γr We begin from the formal calculations. Let < , >Q and < , >"
denote the scalar products in Γ0 and Γ± depending on the parameter u, O r g w r g l .
The partition function Z(u) is equal to

where

Ώ0(u) = S2(u)+TT*(u), (12)

D1(ιι) = T*(w)T (13)

S(u) and T*(w) are defined by the formulae

) = <S(u)f, />"0 = </, S(u)/>«o , (14)

. (15)

The variation of scalar products by infinitesimal variation of u can be described by
the operator B" satisfying

^u<f^yii=<B^gy^i=aB^y^ . (16)

It is easy to check that

dS(u)/du=-Bu

0S(u), (17)

dT*(u)/du = T*(u)Bu

Q - B\ T*(u) (18)
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and therefore

d Ώ0(u)/du = - B0S
2 - SB0S + TT*B0 - TBί T* , (19)

d Ώ±(u)/du = T*B0T-BιT* T . (20)

Using the relations

exp(-ίD0)T=Texp(-ίD1),

exp(-ίD0)S = Sexp(-£D0)

we obtain

( - i Sp exp ( - Πo(n)f) + f Sp exp ( - D

= -itSp(B0S
2exp(- Dot))-i

+ iίSp(β0TT*exp(-D0ί))

-fiSp(B0TT*exp(-D0i))

D1t)). (22)

Now we can use Lemma 8. We see that the variation of log Z by infinitesimal
variation of scalar products is equal to

To justify the consideration above we must impose some requirements. Let Γ0

and ΓL be spaces of smooth sections of vector bundles η0(E0,M0,F0,p0) and
771(£1,M1,F1,p1).Όne can define naturally the scalar products in Γ0 and Γx if the
hermitian structures in ηQ, η± are fixed. (We say that the vector bundle is provided
by hermitian structure if the base is a riemannian manifold and the hermitian
scalar product is introduced in the fibres.)

Let y be a quadratic functional on Γ0 and T a differential operator acting from
Γx into Γ0. We will say that ^ is an elliptic functional with respect to T if the
operators D0 and D! are elliptic. [As earlier we define 5, D0 and Πt by the
formulae (1), (5), (6). The definitions of S, CH0, Dx depend on the choice of hermitian
structures in ηQ,ηl9 however we shall show that the ellipticity of D0, D! does not
depend on this choice.]

We consider a family of hermitian structures in ηQ9ηί depending on parameter
u. (As always we assume that this family is smooth.) The variation of correspond-
ing scalar products < , )" in Γ0, Γx by infinitesimal variation of hermitian structures
can be described by means of operators BU

Q,B\ defined by (16).

Theorem 1. The variation of partition function Z of elliptic functional £f by
variation of hermitian structures in η&η^ can be given by the formula

d log Z/du = i/?0(β"0 1 D"0) - ±β,(B\ I DO . (23)
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The proof of this theorem follows immediately from the considerations above
and from the lemmas of Sect. 1 which permit to justify our formal calculations.

Let us consider the case when the operator T(u) has not zero modes and every
zero mode of operator S(u) can be represented in the form T(u)g. [Only in this case
the Faddeev-Popov trick permits to interprete Z(u) as partition function corre-
sponding to the gauge condition T*(w) = 0.] In the case under consideration
Π( DO) = Π( DJ = 0 and therefore

i<F0(£<ίl DO . (24)

If Γ0, Γj are spaces of sections of vector bundles with odd-dimensional base then it
follows from (24) and Lemma 4 that the partition function Z(u) does not depend
on u.

Let us take for example the functional

y = j ω Λ dω = f εabcωa(dbωc - dcωb)d3x , (25)
M M

where M is a three-dimensional oriented compact riemannian manifold, ω = ωadxa

is a 1-form, d denotes the exterior differential. It is evident that &'(ω + dλ) = &'(ω)
therefore we can consider the partition function ZM of (25) with respect to
operator d acting from the space of functions (0-forms) into the space of 1 -forms.
(The riemannian metric generates scalar product in these spaces.) It is easy to
check that

ZM = D(A1Γ
1/4D(A^'\ (26)

where At = d*d + dd* is the Laplace operator on the i-forms. [The operator A0

transforms the function λ into — VaVaλ and Δ1 transforms 1-form ω = ωadxa into
ω' = —(VbVbω^dxa — Rb

aωbdxa.~\ Let us suppose that the one-dimensional rational
cohomology group of M is trivial and therefore Π(Aί) = Q. Then it follows from
Theorem 1 and Lemma 4 that ZMV(M)~ 1/2, where V(M) denotes the volume of M,
does not depend on the choice of riemannian metric in M. (More general assertion
is proved in Sect. 5.)

It is useful to generalize the functional (25) assuming that the forms take values
in flat vector bundle. If the one-dimensional and zero-dimensional cohomology
group of M with coefficients in this bundle are trivial [i.e. Π(A1) = Π(A()) = Q~] then
ZM does not depend on riemannian metric. (This assertion is proved in [2] it can
be deduced from Theorem 1 too.)

Let us study the variation of partition function by variation of operator T. It
follows from (1) that

if T' = TQ where Q is an arbitrary operator. Hence one can consider the partition
function Z(̂ , Γ) of Sf with respect to the operator Γ. We will study the
infinitesimal variation of T and prove (at formal level) that for T = T(l +εR), ε->0

(27)
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Really,

= ε(R*T*T+T*TR)+o(ε).

Using (21) we obtain

= — iεί —SptR + /?*)exp( — Oίt)+o(ε) .
at

This relation permits to derive (27) from Lemma 8.
Let ̂  be an elliptic functional with respect to linear operator T. It is easy to

prove that then £f is an elliptic functional with respect to operator T — TQ where
Q is an invertible differential operator of order zero. We consider a smooth family
Q(u) of invertible differential operators of order zero and partition functions Z(u)
constructed by means of functional y and linear operators T(u) — TQ(u).

Theorem 2.

dlogZ(u) ,
~ΛΓ" = "IJ

where

R(u) = Q-1(u)(dQ/du).

To give a rigorous proof of this theorem one must justify the formal
calculations leading to (27) be means of lemmas of Sect. 1.

Section 3. Resolvents

Let us consider a quadratic functional ̂  on the linear space Γ0. The sequence of
linear spaces JΠ and linear operators 7^ acting from the space Γt into the space Γt_ ί

will be called a resolvent of the functional if if &>($ ^-Tίh) = «$?(/), 7] _ l Tt = 0 (here
i = l9...,N",/eΓ0,/i6Γ1). If 5̂  = 0 the notion of resolvent coincide with the notion
of complex. If Γt are pre-Hilbert spaces one can consider the operator S in Γ0

satisfying

and adjoint operators 7J*. We assume that operators S2 and 7]*7Jare regular. Then
we can define the partition function of ̂  with respect to the resolvent {/], Tt} by
the formula

= D(SΓ112 Π JW-1'"1. (2)
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(This definition will be explained in Appendix.) It follows from our assumptions
that the operators

D0 = S2 + Γ1T*, (3)

q,=η*7j+τ;+ 1η*1, Ϊ=I,...,N (4)
are regular too and

We see that the partition function can be represented in the form

Z= Π fl(Πι)1" (5)

where vί = (-l)ί

Let us suppose now that J .̂ = Γ(/7f) is a space of smooth sections of vector
bundle η.(Ei9 M , Ft, pt). We say that [Γ\9 η} is an elliptic resolvent of Sf if S and Tt

are differential operators of order m and one can choose hermitian structures in η
in such a way that the operators Πί? i = 0, 1,..., Λf, are elliptic. (The operators Πf

must be defined by means of scalar products in induced by hermitian structures in
?/. .) If N = 1 then ̂  is an elliptic functional with respect to Tv If £f = 0 the notion of
elliptic resolvent coincide with the notion of elliptic complex.

Lemma 9. // {ΓJ, Tt] is an elliptic resolvent of the functional 5̂ , then the operators
Dj are elliptic for arbitrary choice of hermitian structures in η .

The assertion of Lemma is well known in the case of ^=0 (i.e. in the case of
elliptic complex). Namely, if the complex is elliptic, it is easy to prove that the
sequence σ(TJ) of symbols of operators T is exact. This property of symbols does
not depend on the choice of hermitian structures in η. and is equivalent to the
ellipticity. In the general case we note that fixing the riemannian metric in the base
M0 of η0 we can define the scalar product </,#>0 where /eΓ0 and g belongs to the
space ΓQ consisting of smooth sections of vector bundle η'0 dual to η0. Using this
scalar product we represent the bilinear form corresponding to the quadratic
functional ̂  in the form </1? S/2> where /1? /2eΓ0 and S acts from Γ0 into Γ0'. It is
easy to check that 57^=0 and therefore we can consider the complex

Λ r TN TN-ί TI „ S Γ/ π x,v
0 - >ΓN - ̂ Γ^.i - > . . . - >Γ0 - ̂ Γ0 - > 0 . (6)

One can define elliptic resolvent of functional ^ as such a resolvent that the
complex (6) is elliptic. This definition is equivalent to the previous one, however it
does not use the hermitian structures in η.. [It uses the riemannian metric in M0

however one can verify that the exactness of the sequence of symbols of operators
entering in (6) conserves if the metric in M0 is replaced by the other one.]

Lemma 10. // {/], 7]} is an elliptic resolvent of functional ^ Q for l^ί^N are
invertible differential operators of order zero acting in Γ0 and β0 = l then {Γί9T!}
where T = Q^-\ T}Qi is also an elliptic resolvent.

One can prove this assertion using the definition of elliptic resolvent given by
the proof of Lemma 9.

Let us consider an elliptic resolvent {Γi9Ti} = {Γ(ηί)9Tί} of functional ^ a
smooth family of hermitian structures in η. depending on parameter u and
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corresponding family < , >" of scalar products in Ft. The partition function of
functional ίf with respect to resolvent {ΓJ, 7]} and scalar products < , >" will be
denoted by Z(u).

Theorem Γ.

=i Σ (-D'/WIW), (7)
O^i^N

where £", z = 0, 1,..., JV, are defined by the formula (2.16).

Let [Γi, TJ} be an elliptic resolvent of functional £f. We consider a family of
elliptic resolvents {/J, 7](w)} where Ti(u} = Ql_\(u)TίQi(u\ β0 = l and Q^w) for
i = l, . . . ,JV is a smooth family of invertible differential operators of order zero
acting in Γt. The partition function of £f with respect to the resolvent {Γ^ T^u)} will
be denoted by Z(u). [The hermitian structures in vector bundles η. and corre-
sponding scalar products in Γt — Γ(η .) are fixed.]

Theorem 2'.

=ι Σ (-
l^i^N

where

Theorems Γ and 2' can be considered as generalizations of Theorems 1 and 2;
the proofs of these theorems are similar to the proofs of Theorems 1 and 2.

Let us define the torsion Tor (7~j, 7]) of elliptic complex {Γi9 7]} by the formula

where as usual DI = 7]*7J+7J+17]^1 [we assume that the scalar product in
/^ = Γ(?y.) is induced by the hermitian structure in η^]. The elliptic resolvent of the
functional ̂  = 0 can be considered as an elliptic complex it is easy to see that the
partition function of the functional £f = 0 with respect to elliptic resolvent coincide
with the torsion of this elliptic complex.

Theorem Γ permits to study the variation of torsion of elliptic complex by
variation of hermitian structures in ηt. The following assertion is closely related
with Theorem 2' and has similar proof.

Theorem 2" '. Let us consider a family of elliptic complexes {Γt, T^u)} where
TI(U) = Q^-i^TQ^u) and Q^u) is a smooth family of invertible differential operators
of order zero. Then

where


