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Abstract. The partition function of a degenerate quadratic functional is
defined and studied. It is shown that Ray-Singer invariants can be interpreted
as partition functions of quadratic functionals. In the case of a degenerate non-
quadratic functional the semiclassical approximation to the partition function
is considered.

Section 1. Introduction

The degenerate Lagrangians are important in quantum field theory. For example
the action in gauge theories is invariant with respect to infinite-dimensional group
of local gauge transformations and therefore the corresponding Lagrangian is
degenerate. To calculate the physical quantities in gauge theories one must impose
the gauge conditions, but final results must be independent of the gauge
conditions. The physical quantities in the gauge theories and other theories
described by degenerate Lagrangians were expressed through functional integrals
by Faddeev and Popov (see [1]).

In the present paper we give a rigorous treatment of the case when the action is
a degenerate quadratic functional (Sects. 2 and 3). Our results can be useful when
dealing with various questions on quantum field theory. For example, they are
connected with so-called anomalies. These results can be used to study the
instanton contribution in Schwinger functions (Sect. 5). Our assertions can be
applied outside of quantum field theory too. They are closely related with the
theorems proved in [2, 3]. Namely, we show that the Ray-Singer torsion [2] can
be considered as a partition function of action which is invariant by diffeo-
morphisms. The independence of Ray-Singer torsion on the choice of riemannian
metric can be interpreted as independence of the partition function on the choice
of gauge condition. In a similar way one can get invariants constructed in [37] and
new invariants. One of the new invariants will be described below.

Part of our results was formulated in [4]. A short review of some mathematical
results used in present paper can be found in [5].

0010-3616|79|0067|0085|$01.20



2 A. S. Schwarz

The functional integrals for partition functions of quadratic functionals are
gaussian and therefore they can be expressed through determinants. We must
define therefore the determinant of infinite-dimensional operator and some related
notions.

We say that the non-negative self-adjoint operator B in Hubert space is regular
if for ί->+0

Sp(exp(-Bi)-ff(B))= Σ*k(B)t~k + 0(f) , (1)

where ε >0 and k run over finite set K of non-negative numbers. The symbol Π(M)
denotes here and later the projector on the kernel of operator M :

where ft run over zero modes of M. The trace Sp M of operator M is defined as

where et run over orthonormal basis. [Always when we consider the trace of
operator M we suppose that the operator M is of the trace class, i.e. the sum of the
eigenvalues of (M*M)1/2 converges.] The zeta function ζ(s\B) of operator B for
large Re (5) can be defined by the formula

where λj run over non-zero eigenvalues of B. For other 5 the zeta function must be
defined by means of analytic continuation. It is easy to check that for regular
operator B the analytic continuation of ζ(s\B) in the half-plane Re(s)> — ε, ε>0
can be written in the form

keK

+ } Sp(exp(-Bί)-Π(B))- £ o^Bf^dt . (3)
0 \ keK

We define the regularized determinant D(B) of the regular operator B by the
formula

This definition is correct because ζ(s\B) is analytic at point s =0. It follows from (3)
that

- J Sp (exp ( - Bt) - Π(B))Γ l

i

k l- J (Sp (exp (-Bt)- 77(5))- Σ «k(B)Γk}Γ ldt . (4)
0 \ keK
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If B is an operator acting from Hubert space ̂  into Hubert space 34f2 and the
operator B*B is regular, then one can define the regularized determinant D(B) as

-\ ^-ζ(s\B*Bη =D(B*B)112 . (5)

If B is a self-adjoint regular operator this definition of D(B) concide with the
preceding one.

We define smooth regular family of operators as a family of regular operators
B(u\ 0 ̂  u ̂  1, satisfying

-B(u)t-Π(B))- £ ak(B(u))Γk}\ ^
keK

for 0<ί<l and

j V^.f V'xl^ V -t-'v""/''/ "V *-V// = ~./V" \ ' /
αw

for ί^l. (Here K denotes finite set of non-negative numbers, N is an arbitrary
number, the positive constants ε, C, CN do not depend on u.)

We say that the operators A, B acting in Hubert space ffl form a regular pair if
B is a non-negative self-adjoint operator

SpA(exp(-Bt)-Π(B))= Σ βk(A\B)Γk + 0(tε) (8)
keK

for ί->+0 and

Sp A(QXp (-Bt)- Π(B)) = O(t ~ N) (9)

for f-» oo. [Here as in (3) K denotes a finite set of non-negative numbers, ε>0, N as
an arbitrary integer.] If A = 1 then the pair (A, B} is regular if and only if the
operator B is regular.

Let us consider differential operators on a compact manifold M (i.e. differential
operators acting in the spaces of sections of vector bundles with the base M). The
coefficient functions of differential operators (as well other functions under
consideration) will be always supposed smooth. The family of differential oper-
ators depending on parameter u, O^u^ 1, will be called smooth if the coefficient
functions are smooth with respect of all arguments (including u). Further in
present section we use the notations A or A{ for differential operators and the
notation B for self-adjoint non-negative elliptic differential operator.

Lemma 1. The operator Aλ exp( — Bt)A2 is of the trace class for t >0 and

Sp A! exp (-Bt)A2 = Sp A2Al exp (- Bή = Sp exp (- Bt)A2Aί .

Lemma 2. The function Sp ^4(exp (— Bt) — Π(B)) decreases faster than any power of
t at infinity.

Lemma 3. For t-+ +0
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where ε >0 and k — , / is an integer. (Here n denotes the dimension of manifold

M and m denotes the order of operator B.)

Lemma 4. // M is an odd-dimensional manifold, then Ψ0(A\B) = 0.

The coefficients Ψk(A\B) can be calculated by semiclassical method. They are
given by local formulae. In other words the following assertion is correct.

Lemma 5. // the coefficient functions of operators Bί and B2 coincide in the
domain GcM and the coefficient functions of A vanish in M\G then

Ψ0(A\Bί)=Ψ0(A\B2) .

It follows from Lemma 2 and Lemma 3 that the pair (A, B) is regular and the
coefficients βk(A\B) are given by β0(A\B)=Ψ0(A\B)-SpAΠ(B)9 βk(A\B)=Ψk(A\B)
for /c>0. For arbitrary elliptic operator C the operator B = C*C is a non-negative
self-adjoint elliptic operator; one can therefore define the regularized determinant
D(C) for arbitrary elliptic operator.

Let A(u) be a smooth family of differential operators and B(u) a smooth family
of self-adjoint non-negative elliptic operators (O^w^l). We assume that
Sp Π(B(u)} — dim ker B(u) does not depend on u.

Lemma 6. The function Ψk(A(u)\B(u)) is smooth with respect to u and

Sp A(u) exp (- B(u)t) - £ Ψk(A(u)\B(u)t -k <Ctε

for 0<ί<l

|Sp^(u)(exp ( - B(u)t) - Π(B))\ ̂

for ί^l. (Here ε>0, N is arbitrary, C and CN do not depend on u.)

Lemma 7.

It follows from Lemma 6 and Lemma 7 that B(u) is a smooth regular family.
The lemmas above can be derived from well known results. In particular

Lemmas 3-6 can be deduced from the results of [6] and [7].

Section 2. The Partition Function of Quadratic Functional

Let <9" be a quadratic functional on a pre-Hilbert space Γ0 i.e.

(1)

where S is a self-adjoint operator acting in Γ0. If the functional £f is non-
degenerate (i.e. Sf = Q if and only if / = 0) and S2 is a regular operator one can
define the partition function Z of ¥ as D(S)~1/2=D(S2)~1/4. [Formally we can
define Z as the functional integral of exp ( — 5 )̂ over Γ0. The formal calculation of
this gaussian integral leads to the answer (detS)~1/2.]
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Let us consider now the quadratic functional ̂  on pre-Hilbert space Γ0 and a
linear map T of pre-Hilbert space Γ^ into Γ0 satisfying

&(f+Ώi) = &(f) (2)

for every /zeΓr [It is easy to check that the requirement (2) is satisfied if and only if
ST = Q.~] It follows from (2) that every element ΛejΓi generates a symmetry
transformation of £f. If TΦO then the functional ̂  is degenerate. We assume that
there exists adjoint operator T* defined on Γ0 and taking values in Γ0; the
operators S2 and T*T will be supposed regular. Then we can define the partition
function of Sf as

Z = D(S)-1/2D(T). (3)

(This definition will be justified in Appendix by means of Faddeev-Popov trick.)
By definition D(S) = D(S2)ί/2, D(T) = D(T*T)1/2 and therefore

It is easy to check that S2 + TT* is regular operator and

D(S2 + TT*) = D(S2)D(TT*)

(this equality can be deduced from relations S2 - TT* =0, TT*S2 -0 which follows
from ST = 0). The non-zero eigenvalues of TT* coincide with non-zero eigenvalues
of T*T and therefore D(TT*) = D(T*T). Hence we can represent the partition
function in the form

3 / 4, (4)

where

Π0 = S2 + TT*, (5)

D! = Γ*T. (6)

If S is a regular operator then the partition function can be represented in the form

Z = D(S+TT*Γ1/2D(T*T) . (7)

It is important to note that not only the functional y but also the map T and
the scalar products in the spaces Γ0, Γ^ are used in the definition of partition
function. We will study now the variation of partition function by variation of
scalar products in Γ0, T^ and by variation of T Our proofs will be based on the
following Lemma.

Lemma 8. Let us suppose that

- Σ λqSp(Qχp(-tAq(u))-Π(Aq(u)))

Σ Sp/yu)(exp(-tTr(M))-Π(TΓ(w))), (8)
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where Aq(u) is a smooth regular family of operators for every q and (Rr(u\ Tr(u)) is a
regular pair of operators for every u and r. Then the variation of the expression

σ(u)= Σ λqlogD(Aq(u)) (9)
O^q^m

by infinitesimal variation of u is given by the formula

dσ/du= X β0(Rr(u)\Tr(u)) . (10)
O ^ r ^ n

It follows from (8) that

4- ΣWA^ = k Σ A(Λr(u)|Γr(tt)) . (11)
uu q r

To calculate the derivative of σ(u) we represent logD(Aq) in the form (1.4) and
use (8) and (9). We see that

£ = - Σ
aU / c Φ O

- } i(spβχ(eχp(-ίrr)- W))
0 ai \ \ r

Using the regularity of the pair (Rr, Tr) we obtain (8).
Let us study now the variation of partition function by variation of scalar

products in Γ0 and Γr We begin from the formal calculations. Let < , >Q and < , >"
denote the scalar products in Γ0 and Γ± depending on the parameter u, O r g w r g l .
The partition function Z(u) is equal to

where

Ώ0(u) = S2(u)+TT*(u), (12)

D1(ιι) = T*(w)T (13)

S(u) and T*(w) are defined by the formulae

) = <S(u)f, />"0 = </, S(u)/>«o , (14)

. (15)

The variation of scalar products by infinitesimal variation of u can be described by
the operator B" satisfying

^u<f^yii=<B^gy^i=aB^y^ . (16)

It is easy to check that

dS(u)/du=-Bu

0S(u), (17)

dT*(u)/du = T*(u)Bu

Q - B\ T*(u) (18)
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and therefore

d Ώ0(u)/du = - B0S
2 - SB0S + TT*B0 - TBί T* , (19)

d Ώ±(u)/du = T*B0T-BιT* T . (20)

Using the relations

exp(-ίD0)T=Texp(-ίD1),

exp(-ίD0)S = Sexp(-£D0)

we obtain

( - i Sp exp ( - Πo(n)f) + f Sp exp ( - D

= -itSp(B0S
2exp(- Dot))-i

+ iίSp(β0TT*exp(-D0ί))

-fiSp(B0TT*exp(-D0i))

D1t)). (22)

Now we can use Lemma 8. We see that the variation of log Z by infinitesimal
variation of scalar products is equal to

To justify the consideration above we must impose some requirements. Let Γ0

and ΓL be spaces of smooth sections of vector bundles η0(E0,M0,F0,p0) and
771(£1,M1,F1,p1).Όne can define naturally the scalar products in Γ0 and Γx if the
hermitian structures in ηQ, η± are fixed. (We say that the vector bundle is provided
by hermitian structure if the base is a riemannian manifold and the hermitian
scalar product is introduced in the fibres.)

Let y be a quadratic functional on Γ0 and T a differential operator acting from
Γx into Γ0. We will say that ^ is an elliptic functional with respect to T if the
operators D0 and D! are elliptic. [As earlier we define 5, D0 and Πt by the
formulae (1), (5), (6). The definitions of S, CH0, Dx depend on the choice of hermitian
structures in ηQ,ηl9 however we shall show that the ellipticity of D0, D! does not
depend on this choice.]

We consider a family of hermitian structures in ηQ9ηί depending on parameter
u. (As always we assume that this family is smooth.) The variation of correspond-
ing scalar products < , )" in Γ0, Γx by infinitesimal variation of hermitian structures
can be described by means of operators BU

Q,B\ defined by (16).

Theorem 1. The variation of partition function Z of elliptic functional £f by
variation of hermitian structures in η&η^ can be given by the formula

d log Z/du = i/?0(β"0 1 D"0) - ±β,(B\ I DO . (23)
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The proof of this theorem follows immediately from the considerations above
and from the lemmas of Sect. 1 which permit to justify our formal calculations.

Let us consider the case when the operator T(u) has not zero modes and every
zero mode of operator S(u) can be represented in the form T(u)g. [Only in this case
the Faddeev-Popov trick permits to interprete Z(u) as partition function corre-
sponding to the gauge condition T*(w) = 0.] In the case under consideration
Π( DO) = Π( DJ = 0 and therefore

i<F0(£<ίl DO . (24)

If Γ0, Γj are spaces of sections of vector bundles with odd-dimensional base then it
follows from (24) and Lemma 4 that the partition function Z(u) does not depend
on u.

Let us take for example the functional

y = j ω Λ dω = f εabcωa(dbωc - dcωb)d3x , (25)
M M

where M is a three-dimensional oriented compact riemannian manifold, ω = ωadxa

is a 1-form, d denotes the exterior differential. It is evident that &'(ω + dλ) = &'(ω)
therefore we can consider the partition function ZM of (25) with respect to
operator d acting from the space of functions (0-forms) into the space of 1 -forms.
(The riemannian metric generates scalar product in these spaces.) It is easy to
check that

ZM = D(A1Γ
1/4D(A^'\ (26)

where At = d*d + dd* is the Laplace operator on the i-forms. [The operator A0

transforms the function λ into — VaVaλ and Δ1 transforms 1-form ω = ωadxa into
ω' = —(VbVbω^dxa — Rb

aωbdxa.~\ Let us suppose that the one-dimensional rational
cohomology group of M is trivial and therefore Π(Aί) = Q. Then it follows from
Theorem 1 and Lemma 4 that ZMV(M)~ 1/2, where V(M) denotes the volume of M,
does not depend on the choice of riemannian metric in M. (More general assertion
is proved in Sect. 5.)

It is useful to generalize the functional (25) assuming that the forms take values
in flat vector bundle. If the one-dimensional and zero-dimensional cohomology
group of M with coefficients in this bundle are trivial [i.e. Π(A1) = Π(A()) = Q~] then
ZM does not depend on riemannian metric. (This assertion is proved in [2] it can
be deduced from Theorem 1 too.)

Let us study the variation of partition function by variation of operator T. It
follows from (1) that

if T' = TQ where Q is an arbitrary operator. Hence one can consider the partition
function Z(̂ , Γ) of Sf with respect to the operator Γ. We will study the
infinitesimal variation of T and prove (at formal level) that for T = T(l +εR), ε->0

(27)
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Really,

= ε(R*T*T+T*TR)+o(ε).

Using (21) we obtain

= — iεί —SptR + /?*)exp( — Oίt)+o(ε) .
at

This relation permits to derive (27) from Lemma 8.
Let ̂  be an elliptic functional with respect to linear operator T. It is easy to

prove that then £f is an elliptic functional with respect to operator T — TQ where
Q is an invertible differential operator of order zero. We consider a smooth family
Q(u) of invertible differential operators of order zero and partition functions Z(u)
constructed by means of functional y and linear operators T(u) — TQ(u).

Theorem 2.

dlogZ(u) ,
~ΛΓ" = "IJ

where

R(u) = Q-1(u)(dQ/du).

To give a rigorous proof of this theorem one must justify the formal
calculations leading to (27) be means of lemmas of Sect. 1.

Section 3. Resolvents

Let us consider a quadratic functional ̂  on the linear space Γ0. The sequence of
linear spaces JΠ and linear operators 7^ acting from the space Γt into the space Γt_ ί

will be called a resolvent of the functional if if &>($ ^-Tίh) = «$?(/), 7] _ l Tt = 0 (here
i = l9...,N",/eΓ0,/i6Γ1). If 5̂  = 0 the notion of resolvent coincide with the notion
of complex. If Γt are pre-Hilbert spaces one can consider the operator S in Γ0

satisfying

and adjoint operators 7J*. We assume that operators S2 and 7]*7Jare regular. Then
we can define the partition function of ̂  with respect to the resolvent {/], Tt} by
the formula

= D(SΓ112 Π JW-1'"1. (2)
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(This definition will be explained in Appendix.) It follows from our assumptions
that the operators

D0 = S2 + Γ1T*, (3)

q,=η*7j+τ;+ 1η*1, Ϊ=I,...,N (4)
are regular too and

We see that the partition function can be represented in the form

Z= Π fl(Πι)1" (5)

where vί = (-l)ί

Let us suppose now that J .̂ = Γ(/7f) is a space of smooth sections of vector
bundle η.(Ei9 M , Ft, pt). We say that [Γ\9 η} is an elliptic resolvent of Sf if S and Tt

are differential operators of order m and one can choose hermitian structures in η
in such a way that the operators Πί? i = 0, 1,..., Λf, are elliptic. (The operators Πf

must be defined by means of scalar products in induced by hermitian structures in
?/. .) If N = 1 then ̂  is an elliptic functional with respect to Tv If £f = 0 the notion of
elliptic resolvent coincide with the notion of elliptic complex.

Lemma 9. // {ΓJ, Tt] is an elliptic resolvent of the functional 5̂ , then the operators
Dj are elliptic for arbitrary choice of hermitian structures in η .

The assertion of Lemma is well known in the case of ^=0 (i.e. in the case of
elliptic complex). Namely, if the complex is elliptic, it is easy to prove that the
sequence σ(TJ) of symbols of operators T is exact. This property of symbols does
not depend on the choice of hermitian structures in η. and is equivalent to the
ellipticity. In the general case we note that fixing the riemannian metric in the base
M0 of η0 we can define the scalar product </,#>0 where /eΓ0 and g belongs to the
space ΓQ consisting of smooth sections of vector bundle η'0 dual to η0. Using this
scalar product we represent the bilinear form corresponding to the quadratic
functional ̂  in the form </1? S/2> where /1? /2eΓ0 and S acts from Γ0 into Γ0'. It is
easy to check that 57^=0 and therefore we can consider the complex

Λ r TN TN-ί TI „ S Γ/ π x,v
0 - >ΓN - ̂ Γ^.i - > . . . - >Γ0 - ̂ Γ0 - > 0 . (6)

One can define elliptic resolvent of functional ^ as such a resolvent that the
complex (6) is elliptic. This definition is equivalent to the previous one, however it
does not use the hermitian structures in η.. [It uses the riemannian metric in M0

however one can verify that the exactness of the sequence of symbols of operators
entering in (6) conserves if the metric in M0 is replaced by the other one.]

Lemma 10. // {/], 7]} is an elliptic resolvent of functional ^ Q for l^ί^N are
invertible differential operators of order zero acting in Γ0 and β0 = l then {Γί9T!}
where T = Q^-\ T}Qi is also an elliptic resolvent.

One can prove this assertion using the definition of elliptic resolvent given by
the proof of Lemma 9.

Let us consider an elliptic resolvent {Γi9Ti} = {Γ(ηί)9Tί} of functional ^ a
smooth family of hermitian structures in η. depending on parameter u and
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corresponding family < , >" of scalar products in Ft. The partition function of
functional ίf with respect to resolvent {ΓJ, 7]} and scalar products < , >" will be
denoted by Z(u).

Theorem Γ.

=i Σ (-D'/WIW), (7)
O^i^N

where £", z = 0, 1,..., JV, are defined by the formula (2.16).

Let [Γi, TJ} be an elliptic resolvent of functional £f. We consider a family of
elliptic resolvents {/J, 7](w)} where Ti(u} = Ql_\(u)TίQi(u\ β0 = l and Q^w) for
i = l, . . . ,JV is a smooth family of invertible differential operators of order zero
acting in Γt. The partition function of £f with respect to the resolvent {Γ^ T^u)} will
be denoted by Z(u). [The hermitian structures in vector bundles η. and corre-
sponding scalar products in Γt — Γ(η .) are fixed.]

Theorem 2'.

=ι Σ (-
l^i^N

where

Theorems Γ and 2' can be considered as generalizations of Theorems 1 and 2;
the proofs of these theorems are similar to the proofs of Theorems 1 and 2.

Let us define the torsion Tor (7~j, 7]) of elliptic complex {Γi9 7]} by the formula

where as usual DI = 7]*7J+7J+17]^1 [we assume that the scalar product in
/^ = Γ(?y.) is induced by the hermitian structure in η^]. The elliptic resolvent of the
functional ̂  = 0 can be considered as an elliptic complex it is easy to see that the
partition function of the functional £f = 0 with respect to elliptic resolvent coincide
with the torsion of this elliptic complex.

Theorem Γ permits to study the variation of torsion of elliptic complex by
variation of hermitian structures in ηt. The following assertion is closely related
with Theorem 2' and has similar proof.

Theorem 2" '. Let us consider a family of elliptic complexes {Γt, T^u)} where
TI(U) = Q^-i^TQ^u) and Q^u) is a smooth family of invertible differential operators
of order zero. Then

where
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We say that the resolvent {/;, TJ is acyclic if Ker S = Im T1? Ker 7J = Im Ti+ i (ί^ 1).
(In the case ̂  = 0 this definition coincide with usual definition of acyclic complex.)
If the resolvents under consideration are acyclic then in odd-dimensional case we
can conclude from Lemma 4 that the partition functions in Theorems Γ and 2'
does not depend on u. In particular the partition function does not depend on the
choice of hermitian structures in this case.

Remarks. The definition of elliptic resolvent given above coincide with definitions
of elliptic resolvent of second kind given in [4]. One can define an elliptic resolvent
of first kind replacing in the definition above the operator D0 by the operator
D'0 = 5 + 7^7^ (see [4]). One can transfer all assertions of present section on the
case of elliptic resolvent of first kind. Corresponding modifications can be made in
the definition of elliptic functional (see [4]).

For simplicity we consider only differential elliptic operators in present paper.
However Theorems Γ, 2', 2" remain correct if the operators under consideration
are pseudodifferential elliptic operators.

Section 4. Ray-Singer Invariants

Let M denote π-dimensional oriented compact riemannian manifold. With every
representation χ of the group πx(M) in 0(m) we associate a flat vector bundle ξχ.
The space of fc-forms on M taking values in the fibres of ξχ will be denoted by
Λk(M\ the symbol d denotes the exterior differential acting from Ak

χ(M) into
Ak

χ

+1(M). If ω1eAk

χ

ί

ί(M\ ω2eAk

χ

2

2(M) then the exterior product ω 1 Λ ω 2 is con-
sidered as an element of Ak

χ\^2(M). Using the scalar product in the space of
representation χ one can define a map λ of Λk

χ@χ(M) into the space of real valued
fc-forms. The Ray-Singer torsion T(M, χ) is defined by the formula

,χ) = i Σ (-ly'ilogDCdf), (1)

where Δl = d*d + dd* is the Laplacian in Λk

χ(M). By other words T(M,χ) is the
torsion of de Rham complex. If the cohomology groups of M with coefficients in
ξχ are trivial [i.e. 77(zl£) = 0] the Ray-Singer torsion does not depend on the choice
of riemannian metric in M [2] this assertion can be derived from Theorem Γ.

It is easy to check that T(M, χ) can be interpreted as partition function. Let us
consider the representations χt, i = 0, l,...,n of the group π1(M) into the groups
0(m ) of orthogonal transformation of the mrdimensional euclidean space Et and
corresponding flat vector bundles ξi = ζχι. We fix invertible linear operators Ai

acting from £. into En_ί_ί and satisfying Aiχί = χn_i_1 these operators generate
linear maps At of Ak

χi(M) into Ak

χn_._ί(M). We consider the functional

£f — Σ I λ(Ara?/\dωn r * ) , (2)
O ^ r ^ / j M

where ωreAr

χr(M). Without loss of generality one can assume that
Af = (— l)n(r+1)An_r_1. It is easy to construct an elliptic resolvent of the functional

(2). Namely, one must take Γt= £ Λr~r '(M) [by definition Λk

χ(M) = 0 for k<0].
0<r<«
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The operators 7] can be defined as exterior differentials. The riemannian metric in
M determines the scalar products in Γt. One can check that the partition function
of the functional (2) with respect to the resolvent {Γί? 7]} can be expressed through
Ray-Singer invariants. To get new invariants we add to (2) the functional

r,s M

where ρrίSeAn

χ~^~ί(M) are fixed closed forms, ωr e Λr

χr(M). It is easy to see that
the resolvent {Γ^ TJ of ̂  can be considered as resolvent of ̂  + 5^ too. We assume
that the forms ρr's are sufficiently small and the cohomology groups of M with
coefficients in ξχr are trivial, then this resolvent is elliptic and acyclic. If the
manifold M is odd-dimensional then it follows from Theorem Γ that the partition
function of £f + 5̂  with respect to the resolvent {Tί? T{] does not depend on the
choice of riemannian metric in M. In even-dimensional case we suppose that
χ0 = ...=χn = χ, E0 = ...=En = E and A are identity maps. The forms ρr's in (3) will
be assumed real- valued in this case. The partition function Z(χ, ρ, g) of ̂  + 5̂  with
respect to {Γi9 TJ depends now on the representation χ, on the forms ρr's and on the
riemannian metric g in M. However it is easy to verify that the ratio
Z(χ, ρ, g)/Z(χ', ρ, g) does not depend on the metric if m-dimensional representations
χ and χ' satisfy requirements above. Really, it follows from Theorem Γ and
Lemma 5 that the variation of log Z(χ, ρ, g) by variation of metric is given by local
formula. Two flat bundles ξχ and ξ χ , are locally isomorphic and therefore the
variations of log Z(χ, ρ, g) and log Z(χ', ρ, g) coincide.

Generalizing the considerations above one can construct other invariants (for
example the invariants studied in [3]).

Section 5. Non-Quadratic Functional

Let G denote a group of transformations of manifold E ("gauge group") and let ̂
be a G-invariant functional on E. (The dimensions of E and G can be infinite.) The
Lie algebra of the group G will be denoted by &. The action of G in £ generates the
homomorphism of & into the algebra of vector fields on E the vector at point
xeE corresponding to the element ωe$ will be denoted by ^xω. We suppose that
E is a riemannian manifold (i.e. the tangential space Sx at point xeE is a pre-
Hilbert space) the transformations of the group G will be supposed isometric. We
assume that invariant scalar product is introduced in ^ and therefore invariant
riemannian metric is defined in G. The isotropy subgroup of the group G at the
point xeE will be denoted by Hx and the volume of Hx with respect to metric
induced by invariant metric in G - by V(HX) (the group Hx will be assumed
compact so that its volume is finite).

Let AT be a G-invariant submanifold of E. We assume that every point xe AT is a
stationary point of £f. The second differential of £f at point xeN will be denoted
by £fχ one can consider yχ as a quadratic functional on tangential space Sx i.e.
Sex(K) = (sxλ, A> - <1, sy,>. One can check that 9>x(λ + ̂ » - £fx(λ) for every ωe9
and therefore one can define the partition function Zx of £fx with respect to 2ΓX:

3/4
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where Dg = S* + ̂ ê *, L\l=3~*3~x. We assume that the tangential space Λς to
the manifold N at the point xεN coincide with Ker Sx. The functions Zx and V(HX)
are G-in variant and therefore can be considered as functions on the space R = N/G
of orbits of the group G in N. We assume that .R is finite-dimensional manifold and
define the measure dμ on R by the formula

dμ = Zx(V(Hjr*dμθ9 (1)

where dμ0 is the measure induced by the natural metric on R. The measure dμ
arises by calculation of functional integral for partition function of y by steepest
descent method. (The partition function of ̂  can be defined formally as functional
integral by means of Faddeev-Popov trick.) In particular case the detailed
explanation of the origin of the measure dμ is given in [5]. We are interested in
variation of the measure dμ by infinitesimal variation of riemannian metric in E
and scalar product in 0. The variation of Zx is studied in Sect. 2, therefore we must
study the variation of dμ0 and V(HX). We suppose that the new scalar product
(ω, σ) in 0 can be expressed through the old one as <ω, σ> + <£ω, σ> and the new
riemannian metric in E induces in the tangential space the scalar product (λ,μ)
= <λ, μ> + (Bxλ, μ> (here B and Bx are infinitesimal operators).

Lemma 11. The variation of V(HX) is equal to %V(Hx)SpBΠ(ϋfϊ).

Let Λ,1 ? . . . , λk denote the basis of the Lie algebra J^ of Hx which is orthonormal
with respect to the old scalar product. The new volume of Hx can be obtained from
the old one by means of multiplication on (det W)1/2 where W is the Gram matrix
of the basis Λ, l s . . . ,λ f c with respect to the new scalar product:

Omitting the higher order terms with respect to R we obtain

det W= 1 + £ <#4 λty = l + Sp BΠ( DJ) .

This proves the lemma.

Lemma 12. The variation of dμ0 is equal to

Let us denote by p the natural projection of N onto .R and by πx the
corresponding projection of tangential space jY*x at point xeN onto tangential
space $p(x} at point p(x)eR. The operator πx maps KerDgcΛ^. onto t%p(x)

isometrically therefore the orthonormal basis in &p(x} can be constructed as
π x ( f , \ . . . , π x ( f n ] where Sxft = 09 ^*/£ = 0, <fi,fj>=δij9 n = dimR.

The measure dμ'0 in R corresponding to new metric in E can be written in the
form dμ'0 = (det Ux)

1/2dμ0 where Ux is the Gram matrix of the basis πx(f^ . . . , πx(fn)
calculated by means of new scalar product : utj = (πx(/ ), πx(fj)). To calculate u{ we
find such v1 ?...,vne^ that ^C/i + ̂ v^O (here fx*

) = &'x* + &'x*Bx-B&'x* is
the operator adjoint to ^~x with respect to new scalar products). Using that

we obtain

)) = (ft + ̂ xv» /.
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(We use that ^f/. = 0. The higher order terms are always omitted.) We see that
det Ux = 1 + £ <J5JC/ί, f i ) = 1 + Sp BXΠ( D£). This proves the lemma.

Assuming that Theorem 1 can be applied to calculation of variation of Zx we
obtain that the variation of dμ can be represented in the form

One can use (2) to study the instanton contribution in euclidean Green
function. This contribution can be calculated completely in the case of two-
dimensional non-linear σ-model [8]. In the case of the gauge theories we rederive
the results of [5].

If y is a quadratic functional on Γ0 which is elliptic with respect to the map T
of Γ}_ into Γ0 one can apply the assertions above taking E = Γ0,

 <£ = Γ1. In this case
the isotropy subgroup Hx can be compact only if its Lie algebra 3t?x is trivial
(j^x = 0). If 34fx is not trivial we can fix a basis in j f x = Jf and define V(HX) as the
volume of the basic parallelepiped in the metric in 3tf induced by the scalar
product in ̂  = 7^. By this modification of definitions the assertions above remain
correct. Let us consider for example the functional (2.25) studied in Sect. 2. In this
case we can identify the manifold R with the linear space H1(M) (one-dimensional
cohomology group). If H1(M) is realized as the space of harmonic forms with
respect to riemannian metric on M we can define a measure dμ on H1(M) as
dμ = ZMV(M)~1/2dμ0 where ZM is given by (2.26), V(M) is the volume of M and
dμ0 is the measure corresponding to the usual scalar product of forms. It follows
from (2) that dμ does not depend on the choice of the metric in M.

Appendix

Let E and G satisfy conditions listed in first paragraph of Sect. 5. If G is compact
and the scalar product in <& is normalized by condition that volume of G is equal to
1 then

f exp(-«$0ί/λ= ί expt-^det^^/M^Γ^v , (1)
E F

where F is the space of orbits of G in E and the measures λ and v correspond to the
riemannian metrics in E and F. (If the operator is not invertible we define the
determinant as product of non-zero eigenvalues.) The proof of (1) is given in [5]
Appendix II. The partition function of £f can be defined as LHS of (1) if LHS
exists if the group G is infinite-dimensional then LHS of (1) is meaningless but we
can define formally the partition function as RHS of (1). (This definition can be
considered as invariant form of Faddeev-Popov trick.)

Let us now suppose that all isotropy subgroups Hx are conjugate to H. We say
that the Lie groups G0, G1 ?...,GN and homomorphisms 7] of G{ into G f _ 1 ?

i=l,...,N9 form a resolvent if G0 = G, Im7;=J7, Im Tί+ί =Ker 7]. In the Lie
algebra &. of the group G we introduce the invariant scalar product normalized by
the condition : volume Gf = 1 in compact case. If the groups G0, . . . , GN are compact
then it follows from the results proved in Appendix II of [5] that

V(HX)= Π
1 <ί<N
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where ^Γ{ is the homomorphism of <Si into ^._ 1 induced by 7]. One can replace in
(2) det(^J*^) by det(^*^) where ̂  denotes the map of ̂ /Ker^ into ^_^
generated by ̂ . To prove (2) we note that the map 7^ generates diffeomorphism 7J
between Gf/KeΓ 7J and Im 7] the differential of 7] at the point corresponding to the
unit element of Gt can be identified with ̂ . Hence we can conclude that F(Im 7])

= det(^J*^;)1/2K(Gi/Ker7;) (the volumes of IrnT^cG^ and G^/KerT] are cal-
culated by means of metrics induced by metrics of G f _ ! and Gt respectively).
Noting that V(Gi/KQrT^=V(KQrT^1 = 7(Im7]+1)-1 (see [5]) we get
= det(^*«^;)1/27(Im7;+1)~1. This proves (2). Using (2) we obtain

x))1/2 [Ί (detJ^ dv (3)
F

where

The definition of the partition function with respect to resolvent is prompted by
(3).
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