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Abstract. Building upon Kostant's graded manifold theory, we present a new
way of introducing spinors into the spacetime manifold, by expanding the
algebra of functions on spacetime to a graded algebra. The elements of
differential geometry are generalized to accomodate the expanded algebra of
functions and in this enriched geometry we find the elements of supersymmetry
and of supergravity theory. The geometrical role of the supergravity fields is
discussed and a derivation of their transformation rules is given.

I. Introduction

Symmetry transformations mixing particles of different spin were introduced
several years ago under the name of supersymmetry [1,2]. In the simplest case,
due to Wess and Zumino [2], a scalar field φ and an anticommuting spinor field χ
are given the following variations

δφ = εχ (l.la)

(Lib)

where ε is taken to be a constant anticommuting spinor. The action integral for a
free scalar field and a free spinor field is easily seen to be invariant under these
variations [2].

A characteristic feature of supersymmetry transformations is that the sym-
metrized product of two supersymmetry transformations is always an infinitesimal
translation. One finds that,

(δ1δ2 + δ2δ1)φ,χ = 2ε1γ'lε2dμφ,χ. (1.2)

Thus supersymmetry transformations are in some sense an extension of the
algebra of infinitesimal spacetime translations. This suggested that a theory of
local supersymmetry, where the parameters ε are taken to be functions of
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spacetime, should have something to do with gravitation, because a theory
invariant under local supersymmetry transformations would by closure also have
to be invariant under local infinitesimal translations, and these latter play a role in
the general theory of relativity. Indeed an action for general relativity coupled to
an anticommuting spin 3/2 field ιpμ was found to be invariant under the following
local supersymmetry transformations [3, 4]

Taking again the antisymmetric product one easily sees that

(δΛ + Mι^v = ̂ v), (1-4)

where

ξv = 2ε1yvε2. (1.5)

Recalling that Eq. (1.4) represents the Lie derivative of the metric along a vector
field given by Eq. (1.5) [5], we see that local supersymmetry transformations should
constitute, in some sense, an extension of the algebra of vector fields on spacetime.

This theory of gravity coupled to a spin 3/2 particle, called supergravity, has
seen an enormous amount of development in the past few years. Supersymmetry
may very well be an ingredient in the eventual solution of two of the oldest and
most difficult problems in theoretical physics, that of understanding the re-
lationship between gravitation and the other forces in nature, and that of building
a consistent quantum theory of gravity. However in spite of this wonderful
progress the conceptual and mathematical foundations of supersymmetry are not
well understood. The idea of supersymmetry and the motivations given for it
involve an extension of our ideas about the structure of spacetime and the relation
of spacetime structure to the elementary particles that move in it. However, exactly
what these ideas are, and what they imply for physics, has never been clear. We
hope to clarify the nature of supersymmetry theories by developing a mathemati-
cal framework for supergravity that is a direct extension of the mathematics that
we use to describe spacetime. For this purpose we have found Kostant's notion of
a graded manifold [6] to be a useful generalization of differential geometry, and
we have taken his work as our starting point.

The basic idea is to extend the algebra of functions on the spacetime manifold.
These functions represent physically the classical observables of a scalar field, and
we extend the algebra of observables to include the observables of fields with spin.
Very roughly, a differential manifold on which the algebra of functions has been
extended to include anticommuting as well as commuting elements is called a
graded manifold. In differential geometry all of the intrinsic structures on the
manifold are defined ultimately in terms of the algebra of functions, and it turns
out to be straightforward to generalize these structures to accommodate the
expanded algebra of functions on a graded manifold. We then discover a
representation of the elements of supersymmetry theory in the geometrical
structure of the graded manifold, and we thus discover in what sense super-
symmetry transformations are, and are not, a generalization of spacetime trans-
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lations. We also discover a geometrical interpretation for the spin 3/2 field, and we
find a derivation of the supergravity transformation laws, Eqs. (1.3a) and (1.3b).

Before going on we would like to discuss in more detail what questions are left
unanswered by the standard formulations of supersymmetry and how the
formulation presented here may clear them up.

The first problem concerns the nature of the supersymmetry transformations
themselves. In physics there are two very different kinds of symmetry transfor-
mations, called passive and active transformations. Passive transformations are
transformations between different mathematical descriptions of the same physical
situation for example, coordinate transformations and gauge transformations are
of this type. Passive transformations correspond to different ways of describing the
same physical objects, and it follows that well defined geometric objects are
invariant under passive transformations.

Active transformations, on the other hand, correspond to changes in some
aspect of the actual physical system. One example is isospin transformations where
protons are substituted for neutrons in an experiment, another is spacetime
translations, where objects are actually moved from one place to another on the
spacetime manifold. Local geometric objects are certainly not, in general, invariant
under active transformations but must transform to reflect the active transfor-
mation of the physical situation they correspond to. However, in particular
circumstances an active transformation may leave the physics of the situation
unchanged and when this is true, and the transformation is a continuous
operation, Noether's theorem tells us that conserved currents must exist [7]. In the
absence of gravitational fields spacetime is homogeneous, and the physics of any
system is unchanged if it is moved from one part of spacetime to another. The
result, by Noether's theorem is of course the conservation of energy and
momentum. In general spacetime is not homogeneous, and the physical behavior
of systems is altered if they are moved from one place to another. As a
consequence of this, energy and momentum are no longer in general conserved.

We saw in Eqs. (1.4) and (1.5) that the symmetrical product of supersymmetry
transformations corresponds to Lie derivation by a vector field. The Lie derivative
is defined in terms of an active transformation in which geometric objects are
dragged infinitesimally along the flow lines of a vector field, and it follows from
this that supersymmetry transformations must also be some kind of active
transformations. For the product of two passive transformations, each leaving
geometrical objects invariant must leave geometric objects invariant and hence
must be also a passive transformation. In terms of graded manifolds we shall see
that the set of vector fields on the manifold is expanded and that Lie derivation by
some of the new, odd, vector fields generate local supersymmetry transformations.
Moreover the relationship between supersymmetry and spacetime transfor-
mations follows naturally from the Lie algebra of our expanded vector fields.

The realization that local supersymmetry transformations are active transfor-
mations has important consequences for the theory of supersymmetry. It means
that there do not exist any local objects that are invariant under supersymmetry
transformations, in particular there cannot be any manifestly supersymmetry
invariant local Lagrangian. The fact that supersymmetry transformations are
active transformations means that the situation is rather different from that of
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gauge invariance in Yang-Mills theory, and any manifestly invariant objects must
be global objects, defined as integrals over the whole manifold. This result should
not be surprising as it is the case in all known supersymmetry theories that it is the
action and not the Lagrangian that is invariant.

The active character of supersymmetry transformations has consequences for
another important question from supergravity theory, what exactly is the geomet-
ric role of the spin 3/2 particle ιpμl It has been assumed by many people that the
spin 3/2 field is a connection field that plays the same role with respect to
supersymmetry invariance that the electromagnetic field plays with respect to its
gauge invariance. However, if supersymmetry transformations are active rather
than passive transformations then, by analogy with local translations, we should
not expect to construct a covariant derivative for supersymmetry.

But if the ψμ field is not a connection then how does one interpret its
transformation law, Eq. (1.3b), which resembles the transformation law for a gauge
field under a gauge transformation? In the geometry of graded manifolds we will
find that the metric of spacetime is extended following the extension of the algebra
of functions, and it will be a natural hypothesis to associate the spin 3/2 field with
one of the new pieces of the metric. We will then see that Eq. (1.3b) can be
understood as the result of Lie differentiation of the odd part of the metric by an
odd vector field, and thus is analogous to the Lie differentiation of the spacetime
metric by a normal vector field as in Eq. (1.4).

We find that we are also able to answer some of the questions concerning the
supersymmetry transformation law for the metric, Eq. (1.3a). An interpretation of
supersymmetry as a passive symmetry transformations implies that the geometry of
spacetime is not well defined as the metric structure would depend on the choice of
gauge. In particular as the metric structure defines the light cones, and hence the
casual structure on spacetime, it is not at all clear how to define classical or
quantum field theory in this situation. Moreover the metric structure is directly
measurable in terms of rulers and clocks whereas it is not the case in a normal
gauge theory that the variables that transform under gauge transformations are in
any way observable. Thus a proponent of a passive interpretation of super-
symmetry would have to not only provide us with a mechanism for fixing the
gauge but would have to provide us with a way to make sense of physics in the
situation that the gauge is not fixed. Moreover he or she would have to explain
why we could not in that situation use rulers or clocks, or light signals, or the
motion of goodesics to establish the spacetime geometry.

In general, as none of the normally covariant geometric objects, such as the
curvature or tortion tensors are now meaningfully defined, the acceptance of a
passive interpretation of supersymmetry necessitates a truly radical revision of our
ideas about spacetime, and we know of no positive steps in this direction. It is thus
very gratifying to find that we have to regard supersymmetry transformations as
active transformations, as in this case we have none of these problems. We will find
that we are able to derive and interpret Eq. (1.3a) in terms of the mixing of the
various components of the contravariant metric under the action of an odd vector
field.

In Sect. II we describe Kostant's formulation of graded manifold theory, and a
very useful representation of graded manifolds due to Batchelor. Then, in view of
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their intended use, we impose additional structure, defining what we call a spin
graded manifold. In Sect. Ill we show how supersymmetry transformations are
found in the tangent space of a spin-graded manifold, and we make some
comparisons between superspace and graded manifold theory. In Sect. IV we see
that local supersymmetry transformations are generated by odd vector fields, and
we show how, if we consider the spin 3/2 field to be part of the metric defined on
the tangent space of a spin graded manifold, we can derive the supergravity
transformation laws. In Sect. V we summarize our results and argue that graded
manifold theory provides a geometric formulation for supersymmetry that is more
faithful to the physical content of the theory than are the usual superspace
constructions.

II. Graded Manifold Theory

The papers of Kostant [6] and of Batchelor [8] on graded manifold theory are
written in the language of sheaves and bundles and thus are not easily accessible to
most physicists. We have tried to write this section so that it can be understood by
anyone who is familiar with differential geometry as it is developed in the standard
treatments of general relativity [5]. What we do is give a description of those
elements of graded manifold theory relevant to our purposes here, thus our
exposition consists almost entirely of motivation and definitions. A few theorems
are stated without proof, many are simple generalizations of theorems in ordinary
differential geometry. For the rest, and for more details, we refer the reader to the
original papers [6,8].

Consider the set of C00 functions defined over an open set U of a manifold M.
This set is closed under the usual addition and multiplication of functions and
thus forms an algebra (actually a commutative ring) which we denote by C°°(C7). In
classical field theory C°°(ί/) is interpreted as the algebra of observables of a neutral
scalar field in the region U. The basic idea of our construction is to expand this
algebra to allow for the description of fields possessing spin. The new algebra,
called A(U) is taken to be graded commutative, that is it is the direct sum (in the
vector space sense) of two pieces

A( U) = A(U)Q + A(U)i (2.1)

such that if f,geA(U)0 and 5, teA(U)± then

st=-tseA(U)Ό. (2.2)

We call A(U)0 the even part and A(U)ί the odd part of A(U). An element is
called homogeneous if it is purely even or purely odd, by Eq. (2.1) any element is
the sum of an even and odd element. If feA(U)0 we define o(/) = 0, if feA(V)^
then o(f) = 1. We define the graded commutator of two homogeneous elements /
and g of A(U) to be

[/,0] = /0-(-l)°ωo(β)flΛ (2-3)

Although it is not usually stressed, the fundamental constructs of differential
geometry may be constructed directly from the algebra of C°° functions. Indeed,
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given the algebra C°°(U) the points of the set U can be reconstructed as a basis for
the dual space to CGO(t7), the dual space being defined as the set of all linear maps
from C°°(ί7) to the real numbers. The tangent space is defined in terms of
operations on C°°(U) and most of the rest of the structures are defined in terms of
the tangent space. We will develop graded differential geometry by following the
usual constructions of differential geometry, except that at each step we will
generalize the construction by letting the algebra A(U) play the role played by
C°°([7). In this way we will define the graded tangent space, graded forms, metric
and connections. However, we must first describe in more detail the properties of a
graded manifold.

A(U) may be split into a direct sum of two pieces, one of which contains all of
its nilpotent elements. That is

A(U} = A°(U) + A\U) (2.4)

where /eA1(ί7) implies that there exists a finite n such that /n = 0. Note that while
A(U)1CAί(U) and A°(U)CA(U)0 there are also elements that are even and
nilpotent. [In fact Al(U) is the nilpoint ideal generated by A(U)±.~\

In order that the algebra A(U) be in the simplest way possible an extension of
C°°(£/) we shall require that A°(U) be isomorphic to C°°(ί7). That is we shall
require that there exists a homomorphism

such that

oo : A*(U)^C™(U)

is an isomorphism and

x: A\U)^Q.

This map will have a natural extension to all of the structures we shall define on a
graded manifold such that there will always be an unambiguous projection to the
analogous structure defined in terms of C°°(ί7).

The algebra A(U) has a very useful decomposition which is as follows. We shall
consider odd elements S1, S2, ..., SneA(U)1 to be algebraically independent if
S1^2 ... yφO. For any graded algebra there is a unique m which is the maximal
number of algebraically independent odd elements, m is called the odd dimension
of the algebra A(U). Given a particular choice of m algebraically independent odd
elements SA, A = 1, . . ., m, consider the set consisting of the SA\ their products and
the element ίeA°(U). This set has the structure of an exterior algebra, and is
denoted by D(U). One can then show that the algebra A(U) is isomorphic to the
product of the algebras A°(U) and D(U\ that is that there exists an isomorphism

given by
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for feA°(U) and teD(U). Thus, given a choice of SA's any element feA(U) may be
written as

f = f° + fAS
A + fABS

AS* + ... +fmS1S2...Sm, (2.5)

where all of the /'s are C°° functions and repeated indices are summed over as
usual.

The choice of algebraically independent elements is not unique. Given one set
of m algebraically independent elements SA any other set of m elements

SA'=MA'SB+MA

CDSBSCSD+ ...

will be algebraically independent as long as Mβ is a non-singular matrix with real
valued coefficients. A different choice of the SA results in a different exterior
algebra D(U) and a different decomposition in Eq. (2.5), leaving in general only /°,
the C00 part, fixed. For the applications considered in this paper we will always be
interested in decompositions with respect to a fixed choice of the 5 '̂s.

This completes our discussion of the basic properties of the algebra A(U). For
our purposes the important result is Eq. (2.5) which may be expressed by saying
that A(U) is just the algebra of the C°° functions on the set U extended by the
inclusion of the m odd elements SA. What we must now do is explain how the
different algebras A(U) defined over the different open sets of the manifold are to
fit together.

We do this by generalizing from the case of C°° functions. Given any two open
sets, U and V, on M such that VQ U then there exists a natural map

defined by restricting the function defined on the region U to the region V. This
restriction map satisfies the property :

1) If WQVQU, then

If, in addition U = (J Ut is an open covering of the set U than it can be shown that
ieΛ

the following properties hold :
2) If /,0eC°°(E7), then QU9vt(f) = QϋtVi(g)VieΛ implies f = g.
3) If Λ.eC00^) is given for all ieΛ such that

for all iJeΛ than there exists an element /zeC°°((7) [unique by property 2)] such
that ρv>Vι(h) = h,

These properties of C°° functions are abstracted to give the definition of a
sheaf:

If we assign to every open set U of a manifold M an algebra B(U) such that for
every U and V such that V£U there exists a map

ρϋtV:

satisfying properties l)-3) than we say we have a sheaf of B algebras over M.
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Given the sheaf of C°° functions we can construct a sheaf of graded algebra
A(U) with the properties discussed. In each A(U) we pick out a fixed set of m
algebraically independent elements denoted by Sβ. We then define, for all V£U,
the restriction map

ρϋtV:

to be an algebra homomorphism (ρϋfV(fg) = Qυ,v(f}$υ,v(9Ϊ)sucn tnat actinβ on C°°
functions it gives the normal restriction map for C°° functions and such that
ρv v(Su) = Sy. One may easily check that the restriction map defined in this way
satisfies the properties l)-3). It is also clear that there are at least as many restriction
maps as there are choices of the S$ for each U.

We are now ready to give Kostant's definition of a graded manifold [6]:
An n dimensional differentiate manifold which is covered by a sheaf of graded

commutative algebras A(U) is called a graded manifold if, for all U £M,
1) There exists a homomorphism oo: A(U)-+C**(U).
2) There exists an exterior algebra D(U)cA(U) such that A(U) is isomorphic to

the product of D(U) and C°°(17).
The elements of the algebras A(U) will be called, when no confusion can arise,

the elements of the graded manifold. One can show that for a given graded
manifold all of the algebras A(U) must have the same odd dimension m. m is then
called the odd dimension, and n the even dimension of the graded manifold.

The definition of a graded manifold summarizes our discussion up to this
point. A graded manifold is essentially an ordinary manifold whose algebra of
functions has been extended to a graded commutative algebra. However, this
description of graded manifolds has a certain disadvantage for the application to
physics which follows from the fact that the algebras A(U) are assigned to the open
sets rather than to the points of the manifold. One cannot evaluate an element of a
graded manifold at a point, in the manner of a normal function, without first
specifying a particular open set containing that point and then a particular set of
SA9s for that set. Thus, the description is in a peculiar sense non-local.

One might then wonder whether it is possible to give an equivalent description
of a graded manifold in terms of local objects. Batchelor has answered this
question by proving that there exists a local construction that is isomorphic to any
given graded manifold [8]. Before proceeding to this local construction we give
rough definitions for two terms, vector bundle and section, whose use will simplify
the subsequent discussion.

Given a vector space V we may associate a copy of it, Vx to each point x of a
manifold M. The set of all the Vx for all xeM is called a vector bundle Ίf over M
with typical fibre V. Since observables in field theory often take their values in
some vector space the concept of a vector bundle is a very general one that
encompasses the idea of a locally defined physical field. A section through a vector
bundle i^ over an open set Uξ=M is a smooth map from M into i^ that assigns to
each xe U one element out of Vx. For example ifV = R, the real numbers, then the
vector bundle is called a line bundle and, given any UQM9 the sections through the
line bundle over the set U are isomorphic to the space of C°° real valued functions
over that set.
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We now give the local construction of a graded manifold. Given a m
dimensional vector space V over a field R, we define the exterior algebra of V,
Ext V, to be the direct sum of vector spaces (Ext V)t

m

ExtF=0(ExtF) ( ,i = 0

where (Ext V)t is the z'-fold antisymmetric tensor product of V with itself,
(Ext F)ίaw1 Λ w 2 Λ ... Λ wf where wfce F and w ΛV = W®V — V®W. (Ext F)0 is taken
to be the field .R, and of course (Ext V)1 = V. Λ defines a product structure on
Ext K ab = a A b. No te that if a e (Ext F) . and b e (Ext V)J9 ab = (- l)ijba so that Ext V
is a graded vector space.

If bA, A = 1 , . . . , m are a set of basic elements for V, then the set consisting of 1 e R
and all of the products bA, bAbB, ...,blb2 ...bm form a set of basic elements for
Ext V. Hence, any element r Ext V may be expressed as

r = r0 + rab
A + rflb^bβ + . . . rmblb2 . . . bm , (2.6)

where all of the r's are elements of R.
The resemblance of Eq. (2.6) to Eq. (2.5) is a result of the fact that the exterior

algebra D(U) constructed from a graded algebra with odd dimension m is
isomorphic to the algebra of basic elements of Ext V for any m dimensional vector
space K We proceed to construct a graded manifold by making a vector bundle
over an n dimensional manifold whose typical fiber is Ext V. This is called the
exterior bundle associated with the vector bundle y and is denoted
Clearly, Ext y is the direct sum of m + 1 vector bundles,

Again, (Ext y)1=y and (Ext y)0 = St, a line trivial bundle with typical fibre R. We
take R to be the real numbers, than the sections of ̂  over a set U are isomorphic
to C°°(E7).

Over an open set U we may pick a field of basic elements bA for y, then it is
easy to see that any smooth section through Ext y must have the following form

f = f° + fAb
A + fABbAbB+ ... +/"W. ..//«, (2.7)

where the /'s are elements of C°°(ί/) as in Eq. (2.5) however, in this case the b^'s
are associated with points rather than open sets. The sections / may thus be
thought of as functions over U taking values in the exterior algebra Ext V.

Clearly, Ext y is a graded manifold. Batchelor's theorem states that the two
constructions, one in terms of graded commutative algebras, the other in terms of
exterior bundles, are completely equivalent. The precise statement of the theorem
is : If y is a real vector bundle over a smooth manifold M, let Ext y be the
associated exterior bundles and let Γ(Ext y) be the sheaf of sections of Ext y.
Then, every graded manifold over M is isomorphic to Γ(Ext y) for some vector
bundle y over M [8].

The proof of the theorem involves sheaf cohomology, and we shall not discuss
it here.
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We would now like to use the elements of a graded manifold to describe a
multiplet of physical fields on spacetime. In order to do this, we must define the
action of the local Lorentz group on Ext *¥*. To accomplish this, we shall require
that the vector space V transform according to the spinor representation of the
Lorentz group. Thus the elements of our graded manifold shall be sections
through the exterior bundle associated with the spin bundle of our spacetime
manifold M. We propose to call this structure a spin-graded manifold, and it will
be the basis for all of our constructions in the rest of the paper.

The SA will from now on be considered to be basis fields for the spin bundle i^ ,
and any section through i^ over an open set U can be written as f = fAS

A where
fAeC (U). Thus our spinors have real valued coefficient functions rather than
Grassman valued, as is usual in formulations involving supersymmetry. However,
this formulation, in which classical spinor fields are treated as anticommuting
Grassman algebras is only really appropriate for quantum field theory, to
implement the spin-statistics relation in the functional integral. For a purely
classical formulation, such as we are concerned with in this paper, real valued
spinors are the appropriate thing, otherwise one is led to writing nonsensical
equations in which one side is nilpotent, and the other is C°°. Also, note that since
the coefficients are real valued functions, our spinors are Majorana.

The spin bundle has a metric structure given by the charge conjugation matrix
CAB, CAB> which is used to raise and lower spinor indices

SA = CABSB. (2.9)

The charge conjugation matrix satisfies

CABC
BD = δD

A (2.10)

and, as a result of the fact that the spin basis elements anticommute, must be
antisymmetric.

In addition, we assume that the spin frames are tied to the usual spacetime
frame fields by a bilinear mapping

(2.11)

where 2Γ is the tangent bundle to M. If za are an orthonormal basis for 5~ (the
veirbeins) we have

y(^,S*H(y«)*efl, (2.12)

where the (ya)B

A are the usual gamma matrices (in a real representation). We shall
take the coefficients CAB and (γa)A to be constants; one can show that no
additional degrees of freedom are introduced by letting the (γa)A be functions of
spacetime.

We can thus use the γ matrices to write an arbitrary element of a spin graded
manifold in terms of quantities that transform irreducibly under local Lorentz
rotations.

/ = /o + fA$A + RSAS
A + PSA(γ5)ASB

AS
A)2 . (2.13)
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Thus we see that the elements of a spin graded manifold consist of three scalar
fields, one pseudo scalar field, two spinor fields and an axial vector field.

In deriving Eq. (2.1) from Eq. (2.5) we used the well-known symmetry proper-
ties of the y matrices [2] as well as the useful identity

εABCD = CABCCD _ cACςBD + CADCBC (2 14)

In order to compare formulas like Eq. (2.13) with the usual formulation with
suppressed spinor indices (but explicit charge conjugation) it is helpful to
remember that the y matrices are defined with one index up and one index down,
and all other objects are defined with a raised index. Thus fA = CABf

B is equivalent
to / and fAS

A to fs.
We now come to the definition of the extended tangent space associated with a

graded manifold. We proceed by recalling the definition of the tangent space for an
ordinary manifold. The tangent space at a point p of a manifold M is defined to be
the set of all linear maps Wp from the space of functions to the real numbers
satisfying the Liebnitz property.

Wp(fg)=Wp(f)g(p) + f(p)Wp(g)9 (2.15)

where/, ge C°°(U) and U contains p. We see that the definition of the tangent space
involves the function algebra and thus we can define a generalized tangent space
with A(U) taking the place of C°°(U). Since the elements of a graded manifold may
be thought of as functions taking values in the exterior algebra Ext V [whose
general element may be written as Eq. (2.6)], we shall consider the linear maps
from A(U) to Ext V that satisfy a graded Leibnitz property. The space of linear
maps between two graded vector spaces is graded, even maps are defined as those
which preserve the grading while odd maps are those that map between the even
and odd subspaces. Thus we make the following definition : The tangent space Tp

to a point p of a graded manifold M is a graded vector space,

(2.16)

consisting of all the linear maps

such that each homogeneous element satisfies,

Wp(fg} = Wp(f)g(p) + (- \)mw*}f(p)Wp(g), (2.17)

where f,geA(U) and pe U.
Given a set of coordinates xμ on U a basis for the ordinary tangent space is

given by the partial derivatives —- evaluated at p. In the case of graded manifolds
(7.X

one can show [6] that, given coordinates xμ and a basis SA for V any element of Tp

can be written as,

w = Wμ μ WA (2 18Ϊ3,,w 3O-4 ' V /
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where Wμ and WA are elements of the algebra Ext V. -r—j is defined by

and the following anticommutation relations

= 0, (2.20)

(2.21)

where we have made use of the definition of the graded commutator, Eq. (2.3). In
addition, the following equations hold,

d d

δS
A
 δS

B

δ δ

δS
A
 δx»

δ δ
h
 δs

B
δs

A
~

δ δ

d d '

δS
A
 δS

B

δ δ '
δx

μ
 δS

A
 \dS

A
 dx

μ

^Γ=0. (2.23)

In the rest of the paper we shall make use of the abbreviations,

d d
μ Pv-^ A PC^OX CΊ3

It follows from Eq. (2.18) that the graded tangent space is the direct sum of a
part that is isomorphic to the normal tangent space and a nilpotent part.

Having defined the tangent space for a graded manifold we proceed to define
graded vector fields. Ordinary vector fields are defined to be a smooth map from
each point in the manifold to an element of the tangent space over that point, that
is as sections through the tangent bundle. We thus define a graded vector field to
be a section through the tangent space of a graded manifold. Any graded vector
field can be decomposed into a sum of one that is purely even and one that is
purely odd it also can be decomposed by the oo map into the sum of an ordinary
vector field and a nilpotent one. From now on, unless otherwise stated we shall use
the term vector field to refer to the general, graded case. The vector fields on a
region U of a manifold M can also be thought of as the set of linear maps from the
function algebra on U to itself which satisfy the Liebnitz rule. It follows from
Eq. (2.18) that the odd vector fields (which must carry an odd number of SA's and
δ^'s) acting on an element of A(U) map the different coefficient functions,
representing fields of different spin into each other. Thus the odd vector fields on a
graded manifold may be thought of as infinitesimal supersymmetry transfor-
mations. We shall show in the next two sections how the properties of super-
symmetry transformations can be understood in terms of this fact.

In order to complete our description of the differential structure of graded
manifolds, we need to introduce the cotangent space and differential forms. Given
the tangent space Tp at a point peM, we define the cotangent space T* to be all the
linear maps from Tp into Ext V.
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If We Tp and ηe T*9 then the map

η:W-+ExtV

is denoted as usual by <*/, Wy. As with the tangent space, the cotangent space has
an even and an odd part, and a C°° part and a nilpotent part.

The smooth sections through the cotangent bundle are called, as usual, the
1 -forms of the graded manifold. If Ω1(A, U) denotes the set of 1 -forms over an open
set U of a graded manifold, then there exists a map

given by

(2.25)

where feA(U) and W is a vector field. It follows that a basis for T* is given by dxμ,
dSA where

(2.26)

3μ> = 0,

and that any ωeΩ1(A9 U) can be written as

ω = ωμdxμ + ωAdsA , (2.27)

where ωμ, ωAeA(U). Moreover, we have,

df=^dx"+wdSA (128)

If η, ωeΩ1(A9 U\ we define the graded exterior product as

(2.29)

We then define the general (I, m) form on a graded manifold to be

ω = ω

μι...μι,Aί...Am

dχμιΛ -" ΛdxμιΛdSAίΛ ...ΛdSA™εΩl>m(U,A), (2.30)

where ωμι_μiιAί_AmeA(U).

We define also

Ωn(A,U)= X ®(ϊ m(U9A) (2.31)
« = Z + m

for n > 1 and ι

(2.32)

Cartan's exterior derivative generalizes naturally to this context [6]. If
ωeif m(A9 U\ then dωeΩl+m+ί(A, U) is defined by

dω= ωμi-μι>Al- A™dxλΛdxμιΛ ... ΛdxμιΛdSAiΛ ... ΛdSAm

dxλ

+ 8ω^''όAm dSD Λ dxμί A ... A dSA™ . (2.33)
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The reader may easily show that d2 = 0 and that Eq. (2.25) is satisfied.
Finally, we define a particularly useful restriction map on the space of graded

tensor fields,

T is defined to consist of all the elements of T which are of the form,

where vμ, vAeR. The ~ projection can be easily generalized to arbitrary tensor
fields.

III. Global Supersymmetry

We have seen how the algebra A(U) contains a multiplet of fields with different
spins and parities. In this section we would like to show how global super-
symmetry transformations for this multiplet are defined in terms of the constant
odd vector fields on U. We shall see how the algebra of supersymmetry follows
from the graded Lie algebra of vector fields on a graded manifold. Because the
notion of a constant vector field is in general only well defined in flat spacetime, we
shall consider in this section that we are working in flat spacetime. In the next
section we shall discuss local supersymmetry by generalizing to the case of general
odd vector fields and curved spacetime.

The formulation of global supersymmetry we outline here completely parallels
the usual superspace formulation of global supersymmetry [9,10]. At the end of
this section we shall compare superspace with graded manifold theory.

Recall that an element fεA(U) has the general form of Eq. (2.13).
We consider the constant vector field εAdA, where the constant coefficients εA

are four ordinary numbers, acting on / It can be considered as a map between
coefficient functions, in which case it maps the coefficient functions to those with
one less SA. In particular if we define

<5f/ = ε^/ (3.1)

then we find

<5e~/o = ̂ > (3.2a)

WA = R*A + Λ*(7 5)2 + Vj>B(y V )*, (3.2b)

δ~R = ̂ Af2A^ (3.2c)

δ-P=-fA(y5}AεB, (3.2d)

^ = /Λ)*Λ (3.2e)

«?=4/V (3.2f)

We can compare Eq. (3.2a) with Eq. (l.la). They express the same transfor-
mation with the important difference that usually ε and χ are considered to be odd
elements of a Grasman algebra whereas here both fA and εA are commuting
numbers. We have already explained in Sect. II why the coefficient functions are
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ordinary functions, since we wish to interpret supersymmetry in terms of
transformations between coefficient functions the SA must also be ordinary
numbers. Note that in a graded manifold if the εA were to be odd, they would have
to be of the form

ε = ε1 SB + ε2 oβocoD

in which case would not satisfy any of the properties we would like our
supersymmetry generators to have.

While we differ in this respect from the usual formulations of supersymmetry
within the context of graded manifolds this choice of εAεCco(U) is correct.
Moreover our interpretation of supersymmetry transformations in terms of
mappings between coefficient functions has one important advantage : we do not
have to worry about what it means to say that the variation of an ordinary
function is a nilpotent object.

Having defined a lowering supersymmetry operator, we must define a raising
operator, that is one that maps coefficient functions up in the number of SA.
Guided by the idea that the anticommutator of two supersymmetry transfor-
mations should be an ordinary derivative we find in Tp the object
graded commutation relations are

(3.3)

Defining, as before

δ:f = εA7λ

ABS
BSλf (3.4)

we find that,

(3.5a)

(3.5b)

(3.5c)

(3.5d)

WA = lOήi A* + eVVsk A-Ps +e V? V)E AΛ) , (3 5e)

δ+f2=&AtiBdλf2B. (3.5f)

Note again that Eq. (3.5a) gives the correct transformation law for the Wess-
Zumino multiplet, Eq. (l.lb). We can form the total supersymmetry operator as
the sum of the raising and lowering operator, and we denote its action onfeA(U)
by

^(f) = ̂ (SA + γλ

ABS
Bdλ)f. (3.6)

The notation is chosen to comply with the usual notation for the action of a
vector field on a function. The (graded) commutation relationship

[ε1,ε2]^2ε^βεfδA (3.7)

is then seen to be just a piece of the Lie algebra of vector fields.
Note that while all ordinary constant vector fields on spacetime commute, this

is not the case for graded vector fields.
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Note that in order that Eq. (3.6) and (3.7) be dimensionally consistent, we must
assign dimensions to SA of square root of length, and to dA of inverse square root
of length. Whether this assignment of dimensions is purely formal or has some
physical interpretation, we do not know.

A set of vector fields that commute with the generators of supersymmetry
transformations is given by

It is easy to see that :

[ε*,ε]=0. (3.8)

This operator can be used to put supersymmetric invariant constraints on A(U)
and to write equations of motion that transform into each other under super-
symmetry transformations. As the use of this operator follows exactly what is done
in superspace, we refer the reader to the discussion of Salam and Strathdee [10].

The similarity between our formulation of global supersymmetry, and the
older superspace formulation suggests that we make a general comparison of
superspace with graded manifold theory. We begin by briefly describing the
superspace concept and pointing out the crucial differences between superspace
and a graded manifold.

Superspace is supposed to be a kind of generalization of a differential manifold
on which some of the coordinates are ordinary functions and some of the
coordinates are elements of a Grassman algebra. In particular, the standard
example has four ordinary coordinate functions xμ and four anticommuting spinor
coordinates ΘA. The basic idea is that if one considers any function on superspace
f(xμ, ΘA) the nilpotence of the ΘA limits the dependence of / on ΘA to the first few
terms of a power series. Thus any function of xμ and ΘA can be expanded in terms
of functions of xμ only to show explicitly the ΘA dependence,

f(xμ,θA) = f0(x) + fA(x)θA+ ... +f4(x)θίθ2θ*θ4. (3.9)

Such a field on superspace is called a superfield.
Equation (3.14) is analogous to the decomposition of an element of A(U) into

the odd generators SA and C°° functions and a decomposition of (3.14) into
irreducible Lorentz co variant fields shows the same particle content as Eq. (2.19).
However, in the superspace case the coefficient functions of odd terms are taken to
be odd Grassman variables rather than ordinary functions. This difference reflects
the different philosophies about classical Fermi fields and is not necessarily
serious.

The crucial difference between superspace and graded manifold theory is the
following. In superspace one speaks of making translations in the odd dimensions.
That is one makes a transformation

θA-+θA + εA, (3.10)

where the components of εA anticommute with themselves and with the ΘA. This is
supposed to be analogous to a translation in ordinary spacetime

(3.11)
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and therefore the εA are taken to be algebraically independent of the ΘA. The
possibility of such translations gives meaning to the idea that the ΘA represent new
dimensions of the spacetime manifold. Such translations are impossible in graded
manifold theory because by definition any odd element must be made up of an odd
number of SA's and is thus not algebraically independent of them.

What are the consequences of this difference for the comparison between
superspace and graded manifold theory?

In superspace translations such as Eq. (3.10) generate supersymmetry transfor-
mations. These transformations are interpreted as passive coordinate transfor-
mations and objects defined on superspace are supposed to be invariant under
supersymmetry transformations for the same reason normal geometric objects are
invariant under general coordinate transformations. This is in contrast to the
active interpretation of supersymmetry transformations that we have found in
graded manifold theory.

Moreover superspace is sometimes postulated to possess an extended general
coordinate invariance in which the ordinary and nilpotent coordinates are
transformed into arbitrary functions of each other [12]. This implies that the
symmetry group of the tangent space is OSP (4 3, 1) which mixes up the even and
odd vector fields, rather than just 0(3,1) as in our case. As a result of this very large
gauge symmetry group, most of the fields represented in the superspace formalism
turn out to be gauge artifacts. Since we have formulated supersymmetry in terms
of active rather than passive transformations, we do not have such a gauge
invariance and thus cannot transform away various component fields of A(U). On
the other hand, since they are not mixed up by a passive symmetry group the
individual component fields are individually well defined geometric objects and
can be projected out at will. In particular we can always project out the normal C00

part which has the same effect as the superspace gauge in which ΘA is transformed
to 0.

In the superspace formalism one defines invariant actions by integrating some
superfield over both commuting and anticommuting variables. The integration
theory for Grassman variables is defined by the condition that

$dθAf(θA + εA) = ldθAf(9A) (3.17)

and thus depends on the possibility of translation in the odd coordinates. In
graded manifold theory condition (3.17) does not make sense, and it is therefore
not clear that the integration theory for graded manifolds should be the same as in
superspace. The construction of an integration theory for graded manifolds is a
non-trivial mathematical problem on which there has been progress only recently
[11]. Unfortunately, until we have an integration theory we do not have a
canonical procedure for constructing invariant actions on graded manifolds.

It is clear from our discussion about Eq. (3.15) that graded manifold theory
does not provide a formulation for superspace. Or, if it did, it would have to be in
terms of an infinite dimensional exterior algebra to allow for arbitrary, algebrai-
cally independent translation in the odd coordinate. On the other hand, it is also
clear from our discussion that most probably any superspace construction that
does not depend on the existence of such odd translations, such as the original
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formulation of global supersymmetry, can be rewritten in terms of graded
manifold theory.

Moreover, recent progress in constructing a superspace formulation of super-
gravity [13,14] makes use of a restricted superspace invariant under a restricted
group of symmetry transformations in particular, their tangent space group is
only the Lorentz group. These superspaces are isomorphic to graded manifolds
(apart from the problem of the commutivity properties of the coefficient functions),
and the supergravity constructions can be rewritten in the terms of this paper [15].

In general, the differences between superspace and graded manifold theory
arise from the two different ways the formulations are intended as an extension of
spacetime structure. In superspace the spacetime manifold itself is extended and
graded, and then the ordinary spacetime structures are simply applied to this
bigger space. In graded manifold theory the spacetime itself is not touched, and it
is the algebra of functions on spacetime that is extended.

Thus, while superspace and graded manifold theory are in their general
formulations incompatible, after the restrictions are made that have been found in
each case necessary to successfully formulate supersymmetric theories, they are
essentially equivalent. These restrictions are to a spin-graded manifold, in the case
of graded manifold theory, and the limitation of the tangent space group to the
Lorentz group, in the case of superspace.

IV. Local Supersymmetry and Supergravity

At the end of Sect. II we define vector fields on a graded manifold and argued that,
acting on elements of A(U\ they should generate supersymmetry transformations.
In Sect. Ill we showed how constant odd vector fields generated the standard
global supersymmetry transformations and that the graded Lie algebra of the
constant vector fields gave the usual global supersymmetry algebra. In this section
we pass to the case of local supersymmetry by letting the parameters ε depend on
spacetime. We show how supersymmetry transformations act on geometric objects
other than functions by generalizing the notion of a Lie derivative to graded
manifold theory. We then define a metric structure for graded manifolds and show
how the supersymmetry transformations in supergravity can be understood as the
Lie derivative, by an odd vector field, of this extended metric.

An ordinary vector field v defines a family of curves, or flow lines, on the
manifold to which the vector field is everywhere tangent. One can define a one
parameter group of diffeomorphisms of the manifold φt :M->M by mapping a
given point to a point some parameter distance ί along the flow line passing
through it. This in turn induces an active transformation of the geometric objects
on the manifold which is called the Lie transport of the object along the vector
field.

The Lie derivative of a geometric object along a vector field is then defined by
the rate of change of the object as it is dragged along the vector field [5]. For an
ordinary function one can show that the Lie derivative is just given by the action
of the vector field

(4.1)
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and that the Lie derivative of one vector field w by another v is given by the
commutator

J2> = [ι;,w], (4.2)

where the commutator of two vector fields is defined by

[υ, w]/ = t;(w(/)) - vφ(/)) = - [w, v]f . (4.3)

Now the odd vector fields of a graded manifold are not tangent to any curves
on the manifold and hence do not generate one parameter groups of diffeomor-
phisms. However, we can define the Lie derivative by a general vector field on a
graded manifold directly by Eqs. (4.1) and (4.2). We must however be careful to
replace the commutator by the graded commutator

Lv9 w]/ = ι;(w(/)) - ( - l)0<")0(w>w(</)) . (4.4)

The graded Lie derivative acting on one forms can be defined by,

, w> = - ( - l)°<*>°<*><<k J2» + JSP/0, w> . (4.5)

The graded Lie derivative of a higher tensorial object is then defined by the graded
Liebnitz rule,

The graded Lie derivative defined in this way can be seen to satisfy all of the
properties that normal Lie derivatives satisfy, including the very important
relation

r a? (£ ~| _ a? M Ί\

This equation tells us that if we define supersymmetry transformations in terms of
the graded Lie derivative, the supersymmetry transformations will always satisfy a
closed commutator algebra.

We thus shall consider local supersymmetry transformations generated by
vector fields of the form (3.6) where we now consider the parameters εA to be
spacetime dependent C°° functions.

As a result of the spacetime dependence of the εA, the commutator of two such
vector fields has additional terms and Eq. (3.7) becomes,

[ε, , ε2] = 2εf γλ

ABc
B

2 5λ +

λ). (4.8)

The existence of these new terms should not be surprising. In a sense the constant
term in the commutator given by Eq. (3.7) can be considered as arising from the
intrinsic local structure of the graded manifold in the same sense as the
commutators of the constant vector fields on a Lie group give the associated Lie
algebra. The new terms are just a consequence of the spacetime dependence of the
vector fields as in the case of the commutator of ordinary vector fields on
spacetime. Also, note that the extra terms all contain explicit SA's and hence can be
gotten rid of at any time by a projection using the ~ map.
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We now come to the definition of a metric structure for graded manifolds. The
most general definition we can make is that the metric is a smooth bilinear map,

ft: Tp®Tp-+ExtV.

It follows that given a basis dxμ, dSA for the cotangent space h can be expanded
out in components

h = h^dx* (x) dxβ + φμAdxμ (x) dSA

+ φAμdSA®dxμ + hABdSA®dSB, (4.9)

where hφ φμA, φAμ and hABeA(U\ with h^ = h^ hAB= ~hBA.
In order that this extended metric measure ordinary distances on the manifold

correctly, we have to require that h acting on two ordinary vector fields gives the
ordinary metric on the manifold. This requirement fixes the components

hμv = gμv, (4.10a)

where gμv is the ordinary metric on the manifold. Similarly, the graded metric
acting on two ordinary spinor fields of the form χ = χA8A should play the role of
the charge conjugation matrix and this fixes

hAB = CAB. (4.10b)

Only the φA^ and the φμA are left unrestricted by such a principle of cor-
respondence. These components allow us to define an inner product between
vector and spinor fields, i.e.

For simplicity we shall take

ΦμA = ΦAμ

The contravariant metric tensor can be defined acting on the cotangent space,

ft*:T/<g)T|,*->ExtF

and can be written out as

h* = h*«βdα®dβ + ψ*AdΛ®dA

+ ψA«dA®d0ί + h*ABdA®dB. (4.11)

The components of the covariant and contravariant metric tensors are related
by

Ay = δ*, (4.12a)

βA = 0, (4.12b)

gβμ=0, (4.12c)

μC=^. (4.12d)
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We can solve these equations if we set

(4.13a)

h*AB = CAB + τAB9 (4.13b)

where g^gvσ = δμ

σ and CABCBC = δA as usual. We find that,

Qμ = ΨμAΦA^ (4.14a)

τc=ΨAμΦμc> (4 14b)

where ψμA satisfies the equation

ΨμC(CCA + ΦρcΦρA) = ΦμA (4.15)

which has the formal solution

We thus see that if φμA is nilpotent, or contains a nilpotent part, only one of hμv

or h*μv can be purely C00.
We now are prepared to compute the result of acting with a local supersymmetry

transformation on the co variant and contravariant graded metric. We first compute
3? & acting on the basis vector fields and basis form fields. Using Eqs. (3.6), (4.2), and
(4.5), we find that

A-(dμε
A^ABS

Bdλ, (4.16a)

(4 16b)

= (dλε
A)yv

ABS
Bdxλ + εcfCAdSA , (4. 1 6c)

=-(dμε
A)dxμ. (4.16d)

We see that vector fields and one form fields have rather different supersymmetry
transformation rules. This is because the Lie derivative satisfies Eq. (4.5); form
fields transform so as to compensate the transformation of vector fields. One
consequence of this is that the components of the contravariant metric tensor will
necessarily have a different behavior under supersymmetry transformations than
the components of the co variant metric tensor.

We calculate first the effect of J*?ε on the contravariant metric tensor. Using Eq.
(4.16) and the graded Liebnitz rule we find that,

+ εByμ

BAh*ACdμ®dc - £Dyμ

DBh*ABdA®dμ

μ)

ρ A )
ρ μ

+ d®dA)

B A μ v

+εA(dAιp
Bμ)dB®dμ+εA(dAh*BC)dB®dc. (4.17)
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We interpret this transformation as a transformation of the different coefficient
functions of Eq. (4.11), as we did with global supersymmetry in Sect. III. We find
that,

δh*μv = εBy(μ

Aιp
v}A - 9λ(μ(3λε

A)yv

ABS
B

+ εAyλ

ABS
Bdλh*μv

+ εAdAh*μ\ (4.18a)

διpμA = - h*μv(dvε
A) - h*AByμ

BDεD

-ψλA(Sλε
D)yμ

DBS
B

+ εBdBιp
μA, (4.18b)

δh*AB= -Ψ^Adμε
B] + sDyλ

DESEdλh*AB

+ εAdAh*AB. (4.18c)

Equations (4.18a) and (4.18b) are the usual supergravity transformation laws
with /z*μv in the place of gμv and plus some additional terms. These additional
terms contain explicit SA's of dAs and depend only on the components of whose
variation they are a part. Thus they represent the mixing of the C00 parts with the
nilpotent parts of the individual components. If the component fields are purely
C°° then the dA terms are absent, and the terms with SA can be eliminated by a ~
projection.

The remaining dip variation is of the form δψ^(dμ-\-h:¥ABγμ

3D)εD. Terms
containing yμ occur in the δψ variation in the recently discovered transformation
laws for supergravity with auxiliary fields [16]. Another feature this formulation
and the auxiliary field formulation share is that the algebra of supersymmetry
transformations closes without recourse to the question of motion [in our case this
follows from Eqs. (4.7) and (4.8)]. This suggests that the auxiliary fields may result
from a decomposition of the h*AB components indeed the h*AByμε term in the
variation comes from the mixing in of the h*AB term in the metric. In fact, we can
write

h*AB = SCAB + P(y5)AB + Aa(y5ya)AB

exhibiting explicitly the auxiliary fields. Unfortunately, Eq. (4.18c) does not seem
to be of the right form to give all of the variations of the auxiliary fields given in
[16].

It is interesting to note the origin of the other terms in the supergravity
transformation laws. The dψ ~ dε, comes from

= [ 5 = - S - 4 19)

This is completely analogous to the ordinary Lie derivative of the ordinary metric
δg ~ Vξ which comes from

&ξμdμdv = iξμdμ, δv] = - (dvξ
μ)dμ . (4.20)
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The δg~εyψμ term, on the other hand, has its origin in the raising term
εAyμ

ABS
Bdμ which acts like

ί^BS
Bdμ,dc-] = εAyμ

ACdμ. (4.21)

We see from this that the δg = εγψ variation in supergravity arises from exactly the
same operation that generates the δχ = $φε term in the scalar multiplet of global
supersymmetry.

We have already remarked that the supersymmetry transformations of the
covariant and of the contravariant metric tensors must be different. This means
that we will find different transformation laws for supergravity depending on
whether we consider the gμv and ιpμA field to be part of the covariant or
contravariant graded metric tensor. This is a consequence neither of our active
interpretation of supersymmetry transformations, nor of any detail of our
particular formulation, but only of our assumption that supergravity is to be
constructed by putting the gμv and ψμA fields together into some kind of a
generalized metric tensor. The same thing must be true in superspace or in any
other attempt at a geometric formulation that makes this assumption.

Following the same procedure as before, we find the supersymmetry transfor-
mations of the components of the covariant graded metric tensor to be,

) , (4.22a)

(4.22b)

where we have used Eqs. (4.6), (4.9), (4.10), and (4.16) and we have not calculated
out the variations of the component fields themselves.

We see that the δφ term is of essentially the same form as the δψ term, while the
δhμv and dhAB terms have, in a sense, the opposite dependence as in the
contravariant case. That is δhμv~φdε, while δh*AB~ψdε and δhAB~εyφ while
δh*μv~εyιp.

The results of this section raise several interesting questions. Why is it the
transformation of the contravariant components that gives the correct super-
gravity transformation law for the metric? Might the covariant transformation
laws also play some role in supergravity theory?

V. Conclusion

In the investigations leading to this paper we had in mind two closely related
goals. The first was to develop a conceptual understanding of supergravity theory
in terms similar to those used in relativity theory. The second was to develop a
geometric formulation for supergravity that was in harmony with the conceptual
understanding we sought and that was, at the same time, mathematically
respectable. Here we would like to summarize our basic conclusions.

Physical arguments led us to the conclusion that there cannot be a sensible
formulation in which supergravity transformations have a passive interpretation,
and that therefore the spin 3/2 field cannot be related to a connection structure.
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These points alone rule out many otherwise attractive possibilities for a geometric
formulation of supergravity.

We then found that the graded manifold theory of Kostant does provide an
adequate base for a geometric formulation of supergravity. The main idea of this
formulation is the following: The algebra of functions on spacetime is extended to
a graded commutative algebra, which is chosen to be the algebra of sections
through the exterior bundle of the spin bundle. Physically, this corresponds to a
particular way of extending the algebra of classical observables of a scalar field to
include the observables of spinning fields. A straightforward generalization of
differential geometry is then made in which the extended algebra plays the role of
the function algebra and the resulting formalism is found to contain a repre-
sentation of supergravity theory.

Indeed this formulation of supergravity theory turns out to be equivalent to
the recent superspace supergravity constructions [15]. In spite of this formal
equivalence we would like to argue that the spin graded manifold provides a
geometrical formulation for supergravity that is closer to the physical content of
the theory.

As a result of the fact that the construction is based directly on the spin bundle
each component of a graded function is individually defined by its Lorentz
transformation properties, and thus has an invariant meaning. As a result of this
all of the transformations allowed by the formalism, with the exception of
general coordinate transformations and local Lorentz rotations, must be active, as
corresponds to our physical reasoning. In the superspace formulations, on the
other hand, the physical fields are not defined diretcly in terms of the components
in the Θ expansion and one must introduce spinorial covariant derivatives, or more
properly frame fields, to pick out the physical fields in terms of their Lorentz
transformation properties [14,15]. This is related to the fact that in these
formulations one has a large amount of freedom to make additional passive
transformations. These transformations reflect the idea that superspace is an
extension of spacetime with additional dimensions coordinatized by anticommut-
ing numbers, and that therefore arbitrary general coordinate transformations
mixing up the θ's should be allowed. However these transformations play no role
in the physics analogous to the role played by gauge transformations in Yang-
Mills theory and are completely unphysical. When these extra degrees of freedom
are frozen out, by a procedure known as going to Wess-Zumino gauge, the result is
essentially the formulation given in this paper.

Of course many questions still remain to be answered about the application of
graded manifold theory to supergravity, and we leave the reader with two of the
most important. First, will an investigation of the integration theory for a graded
manifold lead to the usual superspace integration formulas? Second, will an
extension of graded manifold theory to include internal symmetries lead to a
geometrical formulation for extended supergravity?
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