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Critical Point Inequalities and Scaling Limits

Charles M. Newman*
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Abstract. A refined and extended version of the Buckingham-Gunton in-
equality relating various pairs of critical exponents is shown to be valid for a
large class of statistical mechanical models. If this inequality is an equality (in
the refined sense) and one of the critical exponents has a non-Gaussian value,
then any scaling limit must be non-Gaussian. This result clarifies the re-
lationship between the nontriviality or triviality of the scaling limit for
ordinary critical points in four dimensions (or tricritical points in three
dimensions) and the existence of logarithmic factors in the asymptotics which
define the two critical exponents.

I. General Results

In this paper, we use some surprisingly simple probabilistic arguments to obtain
rather detailed information about the critical behavior of a fairly large class of
statistical mechanical systems. For example, in the case of a four dimensional Ising
model we relate (see Corollary 2.7 below) the possible existence of logarithmic
factors in the large distance behavior of the two point correlation (at the critical
point) and in the small external field behavior of the free energy (at the
critical temperature) to the question of the possible triviality (i.e., Gaussian-ness) of
the Kadanoff block spin scaling limit [14,22,21]. One view of this result is that it
provides sufficient conditions for proving that the scaling limit is nontrivial and
thus perhaps also for proving that nontrivial φ4 field theories exist in four
dimensional spacetime [2, 15, 31]. This point of view underlies many of the critical
exponent results of Glimm and Jaffe (see [16] and the references listed there).
Another view is that it merely yields a new critical exponent inequality relating the
two possible logarithmic factors - an inequality which must be strict if the scaling
limit is to be Gaussian (as it "should" be). This latter view is consistent with
various calculations which imply such a strict inequality (see the discussion
following Corollary 2.8 below and the references cited there).
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In this section, we first present our results (without proofs) in the rather general
probabilistic context of a sequence of random variables, Sn (and an associated
sequence of positive numbers, Vn) the proofs are given in Sect. III. In Sect. II, we
discuss in some detail various statistical mechanical models to which our general
results apply and present these applications using standard critical point termi-
nology and notation. One type of application [see (2.24) and Corollaries 2.6-2.8]
concerns the Buckingham-Gunton inequality [6,9] relating the magnetic suscepti-
bility exponent δ and the spin-spin correlation exponent η. Another application
(see Corollaries 2.9-2.10) yields an inequality relating the specific heat exponents
α,α' and the energy-energy correlation exponent ηE'.2 — ηE^ dΰ/(2 — a) where
α = max(α,α') this improves (at least when α'^α) Fisher's inequality, 2 — ηE^doc'
[9]. A third application (see the remark following Proposition 2.11) yields in λP(φ)
field theory models an inequality relating the critical exponent of the vacuum
energy density 0 (̂1) as λ-*λc to the P(φ) — P(φ) correlation exponent. We
demonstrate in Sect. II that our general results are applicable to systems satisfying
either the FKG inequalities (Proposition 2.5) or the GKS inequalities (see the
discussion preceeding Corollary 2.9) or reflection positivity (Proposition 2.11).
These general results and their proofs are so simple that we feel the techniques may
very well be useful in treating other models not discussed in this paper (see [25]
and the discussion at the end of Sect. II).

In the general presentation of this section of the paper, we point out that Sn

typically represents the (random) amount of some extensive quantity (such as
magnetization, energy, or number of particles) contained in a finite region ΛncIRd

of volume Vn. We denote by z the intensive thermodynamic variable (such as
external magnetic field, inverse temperature, or (the negative of the) chemical
potential) associated with the extensive quantity Sn.

We next list several hypotheses concerning Sn, Vn, and

an^(var(Sn))i'2^E(S2

n)-(E(Sn)}2y2, (1.1)

which will be assumed at various points throughout the paper. A discussion of the
nature of these hypotheses follows Corollary 2.4 below.

Hypothesis A: 3ε>0 so that

ΛW = W"1 log£(exp(zSn)H/(z), ze(-ε,ε); (1.2)

f(z) is necessarily a real convex function on (— ε, ε) with /(O) = 0.

Hypothesis B: /'(O) exists.
Hypothesis C: E(Sn)/Vn is independent of n.
Hypothesis D: Vn -> oo.
Hypothesis E: σn>0 for all n.
Hypothesis F: σn -> oo.
Hypothesis G: σn -» oo and lim supn σn + 1/σn < oo.
Hypothesis H: fe(z)=f(z)+f( — z) satisfies

sup Aim supfe(tz)/(z*fe(t))\ < QO (1.3)
z > 0 \ t->0 /

here p is some real number.

Hypothesis I: fn(z) ^/(z) Vn, ze (- ε, ε).
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We write Xn-^>X (weak convergence or convergence in distribution) if
E(g(Xn))-*E(g(X)) for every bounded continuous function g, or equivalently if

^x) for every x such that P(Xr = x) = 0. We define (for σn>0)

Xn = (Sn-E(Sn))/σn (1.4)

and note that since supπE(Xr^)<oo, it follows that {Xn} is weakly sequentially
compact; i.e., every subsequence of {Xn} has a weakly convergent sub-
subsequence. We also define (when Hypothesis B is valid)

f_(z)=f(-z)+f(0)z = f+(~z). (1.5b)

Note that fe=f++f_ and that /+ and /_ are non-negative nondecreasing
functions on [0, oo) with /+(0)=/_(0) = 0.

Theorem 1.1. Assume Hypotheses A, B, and D. Then

Sn/Vn^f'(0). (1.6)

Theorem 1.2. Assume Hypotheses A, B, C, £, and /. Then

limmfVnfe(z/σn)>Qfor any Z Φ O . (1.7)
«-» 00

Theorem 1.3. Assume Hypotheses A, B, C, E, and / and assume also that

limsup Fn/e(z/σn)<oo, for some Z Φ O . (1.8)
H— >• OO

TTien

liminfV r

B/+(z/σπ)>0, /or any Z Φ O . (1.9)
«-> oo ~~

// in addition to the above assumptions, we assume Hypothesis G, then

0< lim inf ̂ 4^ ̂  lim suP:τirτ < °° I1-10)
- ~ ^

Theorem 1.4. Assume Hypotheses A, B, C, F, //, and / and assume also that (1.8) is
valid. Then pe [1, 2] (where p is the number appearing in Hypothesis H) and any limit
in distribution X of {Xn = (Sn — E(Sn))/σn} satisfies for some c>0:

E(20=0, £(Y2) = 1; (1.11)

|p/p), fe(- oo, oo); (1.12)

, , (1.13)
-i V-Λ. ̂  — XjJ

where ^e[2,oo] satisfies (l/#) + (l/p) = 1 (and for the case p = I 9 q = ao,(ί.l3)istobe
interpreted as P(\X\>c) = Q). Thus, if pή^2,X is non-Gaussian. The conclusions of
the theorem remain valid if instead of Hypothesis H and (1.8) we assume the
existence off(z) such that fe(z)^f(z) for small \z\ and such that (1.3) and (1.8) are
valid with fe replaced by f .
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II. Applications to Various Models

In this section, we consider a simple d-dimensional cubic lattice of random
variables {Yt :ί = (iί , ...,zd)e2£d} and the corresponding "block" variables

Sa= Σ Yf (2.1)
i ι , . . . , id=l

Our results could be applied to rather general lattices and blocks, but we prefer to
restrict attention to the simplest interesting case. In this context, we take Vn = nd

and note that

°2n = Σ Σ (E(YiYJ)^E(Yί)E(YJ)). (2.2)
ί ι , . . . ,/d— 1 jι, ,jd-l

We will henceforth automatically assume Hypotheses A, B, C, F, and I. We note
that Hypothesis C is implied by the assumption that E(Yί) is independent of i.
When the summand in (2.2) depends only on i—j we may define the functions F on
TLά and G on [0, oo) by

cov(yί9 Yj)^E(YJj)-E(Yi)E(Yj) = F(i-j), (2.3)

G(r)= Σ F(i), (2.4)

where | | denotes Euclidean length in ΊRd. We also note that if full translation
invariance (of the joint distributions) of {Xt} is assumed, then the "block", {ί : 1
:gz' l5 ...,id^n}, can be translated to a block Λn centered near the origin so that
Λn-*ΊLά and f(z) represents a (full) infinite volume thermodynamic quantity. In
many applications F(ι)^0 Vi and then the asymptotics of σn are closely related to
those of G(R} as seen in the following easily proven proposition :

Proposition 2.1. Suppose (2.3) is valid and F(i)^0 V z (and F(ϋ)>Q) then 3c1} c2,
Kί9 K2e(Q, oo) such that for all n,

dG(c2π). (2.5)

// in addition, G satisfies

lim sup G(tR)/G(t) < oo , some R>1; (2.6)
f-+oo

then Hypothesis G is valid.

In order to relate (1.7)-(1.8) to critical exponent inequalities, we state several
corollaries of our theorems in which we assume various versions of the asym-
ptotics : f(z) ~ \z\p, small z σn ~n(d + 2 ~^)/2, large n (which, if Proposition 2,1 applies,
is rigorously equivalent to G(R)~R2~η and heuristically equivalent to F(ϊ)

~|ir(d~2+lϊ)).
Corollary 2.2. Suppose we define p and η by

p = limjnf log /e(z)/logz (2.7)

(d + 2 — η)/2 = lim sup logσ^/logn; (2.8)
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then p^l and

2-η^2^-d. (2.9)

Remark. As we explain below [see (2.24)], (2.9) in the appropriate context is just
the Buckingham-Gunton inequality [6,9].

Proof. If p<l then there is a sequence zn-^0 + , such that for some ε>0,
log/e(zj/logzπ<l — ε and therefore fe(zn)>(zn)

ί~ε for large n. But this contradicts
the fact that fe(zn)/zn-+Q [since /e'(0) = 0] thus p^ 1. To obtain (2.9), we note that
(2.7)-(2.8) imply that

fe(z)<\z\p\ any p'<p, small z, (2.10)

σnk>(nk)
r, any r<(d + 2 — η)/2, for some subsequence nk. (2.11)

Thus by (1.7) with Vn = nd, we have that d-p'r^O and so d-p(d + 2-η)/21>Q
which is equivalent to (2.9).

Corollary 2.3. Let Ne{l,2, 3, ...} be fixed and suppose the p and η defined in

Corollary 2.2 satisfy the equality, 2 — η= - d. Suppose in addition that there are

real valued constants, Θ l 9 . . ., ΘN, tp1 , . . ., ψN, such that for some K, εe (0, oo)

/e(z)^K|zΠlog|z||θl.|log2|z||θ2...|log]V|z|r-, small z, (2.12)

nfN, large n (2.13)

where Iog2n = log(logn), log f c + 1n = log(logfcn). If ιpj = 2θj/p(=(d + 2 — η)θj/d) for
7 = 1,.. . 9 ΛΓ-1, then

(2.14)

Proof. This corollary is a straightforward consequence of (1.7).

Corollary 2.4. Let ΛΓe{l,2,3, ...} be fixed. Suppose for some p, 0 1 ?...,0N 5 and

gN|z||^, small z . (2.15)

Then for some Kf < GO

σl^K'n2dlp(\Q%n}2θίlp...(\ogΉn)2Θ»lp, large n; (2.16)

if for some ε > 0,

σ2^εn2dlp(logn)2Θ>/p...(\ogNn)2θNlp, large n, (2.17)

then pe [1, 2] and any limit in distribution X of {{Sn-E(Sn))/σn} satisfies (1.1 !)-(!. 13)
for some c>0. X is non-Gaussian z/

Proof. This corollary follows directly from (1.7) and Theorem 1.4.
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We now proceed to apply the above theorems and corollaries to various
statistical mechanical models, {Yt :ieZd}. Hypotheses A-F are ones which either
are or ought to be valid at any respectable critical point [except that Hypothesis B
should fail if the pure critical phase in question can coexist with some other
(critical or non-critical) pure phase]. Hypotheses G-H (which are not needed for
many of our applications) are perhaps not quite as reasonable as the previous ones
but are still fairly natural assumptions about the nature of f(z) and σπ [or G(K)] at
a critical point. Hypothesis I (which is essential for our results) stands out as the
only "technical" assumption of the lot and we view our results as applicable to any
reasonable (critical) system for which Hypothesis I is valid. We proceed to discuss
several such systems: Ising models, lattice gases, and Euclidean field theories. We
shall see that Hypothesis I can be derived from various correlation inequalities or
from reflection positivity it is thus in principle not restricted to any narrow class
of models (such as purely ferromagnetic ones) and may perhaps be valid even for
continuum models of fluids. The list of models we present here is not meant to be
exhaustive.

We first consider Ising models (and the related lattice gas models) in which the
FKG inequalities are valid. Suppose {Yj} is obtained as a limit (in the sense of
weak convergence of finite dimensional distributions) of finite systems {YJ",..., Y%}
whose joint distribution on IRm is proportional to

Σ hkyk + Σ -VA Π dβk(yk), (2.18)
\ f c = l j,k=l / fc= 1

where J^O, /ιkeIR, and ρk are arbitrary measures on IR1 then {YJ will satisfy the
FKG inequalities [12, 32] as defined in the next proposition. We say that a real
valued function g on lRm is increasing if g ( y ί 9 ...,ym)^g(x1, ...,xm) whenever y^Xj
for j — 1, ...,m.

Proposition 2.5. Assume {YJ :ie2£d} satisfies the FKG inequalities; i.e., for any m,
any z l 5 ...,ime2Zd, and any increasing functions gί9 g2 on lRm (such that

]2(Yii9...9Yim))^0. (2.19)

Assume further that { Y t : itTLd} is translation invariant in the sense that for anyje%d

{Yl = Yi+j: iel?} is equidistributed with { Y t : ieZd}. Then if Hypothesis A is valid, so
is Hypothesis I.

Proof. For fc=l, ...,d, we define Θk\TLd-^Tίd to be reflection about the plane

ik = l/2:

^ lf I Φ / C (220)
ί '+l, if ί = fe' l * j

and we define for / a finite subset of Tίd and T= T E, Θ,T= Y K> ,. For any such
/ > ί" K f -> vflζl *

iel iel

T, (2.19) for gί = ±exp(±|z T), g2= ±exp(±|z|6)fcT) implies

(2.21)
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We define iteratively T0=Sn, Tk = ΘkTk_1 + Tk_l and use (2.21) d times together
with the fact that because of translation invariance,

E(exp(zΘkTk_ί)) = E(Qxp(zTk_1)) for each fc, to obtain

£(expzT^[£(exp(zT0))]2d, zeR. (2.22)

Now T0 = Sn while by translation invariance, E(exp(zT^)) = £(exp(z1S2J). Thus
taking the logarithm of (2.22) and dividing by (2n)d yields

/2π(z)£/Λ(z), zeR, (2.23)

which, by Hypothesis A, implies Hypothesis I.
In the Ising model context, the critical exponent p (of Corollaries 2.2-2.4) is

usually expressed as p = l + l/<5 with <5e[l, oo) [for pe(l,2)]. Inequality (2.9) then
becomes the usual Buckingham-Gunton Inequality [6,9]:

The classical (mean-field) value of δ is 3 for an ordinary critical point (or 2k — 1 for
a "type-k" critical point) (see, e.g., [4,7,8]). The classical (Ornstein-Zernike) value
of η is η = 0 (for any k). For short range Ising models in ^-dimensions, it is believed
[10, 35, 36] that there is a critical dimension dc [with dc = 4 for ordinary critical
points, dc = 2k/(k—l) for type-k critical points] so that for d>dc, δ and η take on
their classical values [so that (2.24) becomes a strict inequality] and the Kadanoff
scaling limit is Gaussian [so that any limit X oϊ(Sn — E(Sn})/σn is Gaussian]. For d
<dc, it is thought (with some dissent [3]) that δ and η do not have their classical
values, that (2.24) is an equality (with no logarithmic terms, such as those given in
Corollaries 2.3-2.4, needed to describe the asymptotics of fe as z-»0 or σn as
n-H>oo), and that the scaling limit is non-Gaussian. The next corollary gives
sufficient conditions for proving rigorously that the scaling limit is non-Gaussian
according to the above discussion, it should be applicable to ordinary critical
points in 2 and 3 dimensions, and to arbitrary type critical points in 2 dimensions.
We discuss the case d = dc following this corollary. Recall that we automatically
assume Hypotheses A, B, C, F, and I. We also replace z by h since this variable
represents external magnetic field in the Ising model context.

Corollary 2.6. Assume the validity of (2.5) [/or some c1? c2, K1 ? K2e(0, oo)].
Suppose that for some <5e(l, oo) and some K < oo,

f(h)-f(Q)h^K\h\ί + ίlδ, small \h\, (2.25)

(5 — 1
and suppose that with 2 — η = d and some ε>0,

04-1

G(R)= Σ cov(Yί? Y.)^εR2~", large R. (2.26)

Then any limit in distribution X of {{Sn — E(Sn))/σn}, or equivalently of
{(Sn — E(St))/ndl2\_G(n}]ίl2}9 is non-Gaussian and satisfies, for some c>0:

(2.27)

λ f πΞ^^ FV \*ι^j / w > A /;J s » ' — \ j . (2.2o)
r(Λ ^ — X;
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Proof. This is an immediate consequence of Corollary 2.4 (with N = 1 and θ± = 0)
together with (2.5), since (2.25) implies that \fe(h)\^2K\h\1 + 1/δ.

When d = dc, it is believed that δ and η take on their classical values (as for d
>dc) and thus that (2.24) is still an equality (as for d<dc). The question of the
nature of the scaling limit is complicated in this case by the possible existence of
important logarithmic factors in the asymptotics of f(h) and G(R) [33]. The next
two corollaries are intended to treat this problem in the Ising model context for an
ordinary critical point in four dimensions and for a tricritical point in three
dimensions. Both corollaries follow directly from Corollaries 2.3-2.4 (with JV = 1)
together with (2.5).

Corollary 2.7. Assume the validity of (2.5) (for some c l 5 c2, K1, ^2e(0, oo)j. Let d
= 4, and suppose that for some K, εe(0, oo) and θ, φe(— oo, oo),

f(h)-f(Q)h^K\h\4/3\\og\h\\θ, small \h\, (2.29)

and

G(R)^εR2[\ogR]ψ, large R; (2.30)

then

ψ^θ. (2.31)

= 3θ/2, then any limit in distribution X of {(Sn — E(Sn))/σn} is non-Gaussian and
satisfies (1.11)-(1.13) for some c>0 with p = 4β and q = 4.

Corollary 2.8. Assume the validity of (2.5) (for some cl9 c2, K1,K2e(Q9 co)). Let d = 3,
and suppose that for some K, εe(0, oo) and θ', ψ'ε( — oo, oo),

f(h)-f\0)h£K\h\615 \\og\h\f, small \h\9 (2.32)

and

G(R)^εR2[logR]v>, large R; (2.33)

then

φ'gfθ'. (2.34)

p' = 5θ'β, then any limit in distribution X of {(Sn — E(Sn))/σn} is non-Gaussian and
satisfies (1.11)-(1.13) for some c>0 with p = 6/5 and q = 6.

As was explained in the introduction to Sect. I, the above two corollaries can
be regarded as giving sufficient conditions for rigorously proving that the scaling
limit (at the critical dimension) is actually non-Gaussian. On the other hand, if one
believes that the scaling limit is Gaussian (as is natural in the renormalization
group approach) then these two corollaries can be regarded as simply giving
certain critical point inequalities (2.31) and (2.34), which "must" be strict.
Renormalization group calculations actually yield the value θ = l/3 [24, 29, 37]
and ψ = 0, the latter based on the fact that the ε-expansion for η has no terms of
order ε [26]. The calculations similarly suggest that ψ' = 0 while [30] Θ ;ΦO. It
should perhaps be pointed out though that the renormalization group calculations
in some sense implicitly assume a priori that the scaling limit is Gaussian, since
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they are based on bifurcation expansions about the Gaussian fixed point. Earlier
calculations [33] yield the relations, ψ = (3θ —l)/4 and ψ' = (5θ' —1)/6, which also
imply that (2.31) and (2.34) are strict inequalities.

The next class of models we consider are those satisfying the GKS correlation
inequalities [13, 23]. Suppose {F .̂ jeZ^} is obtained as a limit of finite systems

^1,..., W^} whose joint distribution on IRm is proportional to

exp Σ Σ Jl ..... h wjs wj, Π %K) (2.35)
k = l

1
where J™^ j. ̂ 0, and each ρk is an even measure on R1 then {Wj} will satisfy the

GKS inequalities; i.e., for any N, M, j1? ...JN, fe1? ...,kM,

(2.36)

suppose γk=Σ Σ JL...Λ ^> with JL..,^°> and Sn is defined by I2-1);
then it easily follows from (2.36) that cov(y j ι...Y/.]v, Yk ι...7k M)^0 and thus for
T= £ y:, (2.21) is valid for z^O. By the proof of Prop. 2.5, Hypothesis I will be
valid for ze[0,ε] under the additional assumptions of translation invariance and
the validity of Hypothesis A.

There are two situations in which Hypothesis I can be shown to be valid also
for z<0. The first situation occurs when J j i } , , . } j l = ̂  for i odd and ^,...,^. = 0 for i
even here each Yk and Sn has an even distribution so that/n and /are even functions
of z. In a typical such situation one would have Yk=Wk; this yields a generaliza-
tion of the FKG result of (2.18) and Proposition 2.5 to the case of multi-spin
interactions (although with hk = 0 and each ρk even in (2.18)). The second situation
occurs when for some ε>0, the random variables {t^Zk}} with joint distribution
propositional to expQ]zkiydμ0 satisfies the GKS inequalities providing
zk= — sV/c; here dμQ is the joint distribution of {Wj}. To see that this suffices to
obtain (2.21) for ze[ — ε,0), we note that letting

^k)=Σ Σ •'L...Λw£k)-wΛk)

ί 71, "Ji

we have for zk, zfc ̂  0, zk + zfc ̂  — ε, that

cov(exp [ΣzfcΓJ, exp [^]zk

(2.37)

One can now easily obtain (2.21) as desired. This second situation occurs in
particular when Sn is the energy contained in the block {/c:lrg/c f :gd} where one
may take ε to be the inverse temperature β for example, in the nearest neighbor

Ising model in zero external field, one would take Yk = J^WkWj where the sum is
7

over the nearest neighbors of fe. We state the next corollary in the notation
appropriate to this context; its proof is essentially identical to the proof of
Corollary 2.2. Recall that we automatically assume Hypotheses A, B, C, F, and /.
We also replace z by ί, where this variable is proportional to Tc — Tin this context.
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Corollary 2.9. Assume the validity of (2.5) (for some c l 9 c2, Kl, K2E(Q, co)). Define
α, α', and ηE by

2 - α = lim inf (log(/(f) -/'(0)ί)/log |ί|) , (2.38)
ί->0-

2-α'= liminf(log(/(ί)-/'(0)ί)/logί), (2.39)
ί->0 +

2-ηE= lim sup (logG(JR)/logR) , (2.40)
R-*oo

,α'):gl and

dδί
~. (2.41)

Remark. In [9] Fisher derives the inequality, 2 — ηE^da\ but notes that the
stronger inequality, 2 — ηE^doc'/(2 — a'\ should be valid. When α^α7, (2.41) gives
this stronger result. Theorem 1.3 states that when (2.41) is an equality (in the
refined sense), then α = α'. The next corollary gives one version of this fact along
with some other results.

Corollary 2.10. Assume the validity of (2.5) and (2.6). Suppose for some α, K, and

fe(t)^K\t\2~*\log\t\\\ small t (2.42)

then for some K' < co

G(R)^K'Rd*/(2-~Λ} (log#)2κ/(2-δ), large R. (2.43)

If for some & > 0,

G(Λ)^εKdα"/(2-δ)(logK)2κ/(2-δ), /αr0e j R , (2.44)

αe[0, 1],

(2.45)
- p '

so ί/iαί oί = tt' = δί (e.g., as defined by (2.38)-(2.39)J, and any limit in distribution X of
{(Sn-E(Sn)}/σn} satisfies (Ul)-(1.13)/or some c>0 with p = 2-ά.

Proof. This corollary follows directly from Theorem 1.3 and Corollary 2.4 (with

# = 1),

Remark. In the standard two-dimensional Ising model at its critical point, the
exact formula of Onsager for the free energy /(ί) (see, e.g., [34]) yields the fact that
(2.42) is valid with δ = 0 and κ = l ; thus G(R) is O(logR) according to (2.43).
GCR)/log,R can in fact be bounded away from 0 as jR-> oo by using the calculations
of [19] it follows that the asymptotic distribution of the energy fluctuations in a

cube of volume n2 (scaled by σn ~ }/n2logn) has a "Gaussian tail" : P(X rg x)
= 0(exp( — (x/c)2/2)). This does not necessarily imply that X has a Gaussian
distribution.



Critical Point Inequalities 191

The third class of models we consider are those satisfying reflection positivity
[11,20]. Reflection positivity is closely related to Osterwalder-Schrader positivity
[27] and the existence of a transfer matrix. It is valid for a large class of classical
models (and some quantum ones) including ones with multi-component spins
[11]. We shall say that {YJ:/eZ d } is reflection positive if for each k— 1, ..., J, any
n= 1, 2, ..., any choice of i1, ..., ineZd with (ij)k^ 1 for all j, any real function F
on R" such that E([F(Yίί9 ..., Y;n)]2)<oo,

E(F(Yθkiί9 .., YΘkin)F(Y^ ..., iy)^0, (2.46)

where Θk\Έd-*TLd is reflection about the plane ΐ f c = 1/2 as defined by (2.20).

Proposition 2.11. Suppose {Y^.iel?} is reflection positive, translation invariant (as
in Proposition 2.5) and satisfies Hypothesis A. Then Hypothesis I is valid.

Proof. Reflection positivity and the Schwarz inequality together imply that if
T= Σ y., with the (finite) sum only over fs with ik^ 1, then letting ΘkT= ]Γ ΎΘ^

ί i

one has

£(ezΓ)^[£(ez(Θ*Γ+Γ))]1/2, zeR. (2.47)

Comparing (2.47) with (2.21), we see that the proof of Proposition 2.5 directly
yields the desired result.

Remark. Euclidean field theories from a particularly interesting class of models to
which Proposition 2.11 and our other results can be applied. For example, we may
define for i<=Έ2,

Yi=
llΓlT'P(Φ)'(^y)dxdyί (2.48)

ίl Ϊ2

where φ(x, y) is the generalized random field corresponding to an infinite volume
λP(φ)2 model. The validity of reflection positivity in this context is a well-known
fact [32] and the existence of phase transitions has been established [18] so that a
critical phase should exist at some particular value λc of λ. In this context (and
using the notation of [32])/(z) = αQO(λc-z)-α00(λc) so that (1.7) and (2.9) relate the
behavior of α^λ) near λc to the long-range correlation of the (interaction) energy
density, : P(φ) :(r) = H j(r) for example, if

αjλ) - αjλ,) - α'Jλ,) (λ - λc) ~ \λ - λc\
p ,

and

then 2 — ηj^(2 — p)d/p (where d = 2 for the two space-time dimensional model).
We end this section by noting that since Hypothesis / is valid for such a varied

class of models, there is some hope that it may also be true for continuum models
of fluids so that critical exponent inequalities could be rigorously proved for them.
We also note that since reflection positivity is valid for certain quantum statistical
mechanical models [11], it may very well be possible to modify the techniques
presented here to obtain exponent inequalities for such quantum models. We
similarly expect that there should be applications to various gauge field theories in
which reflection positivity is valid [5, 1, 17, 28].
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III. Proof of General Results

We begin by giving three lemmas. In the first two lemmas, Wn is a sequence of
random variables and Φn(t) = E(Qxp(tWn)).

Lemma 3.1. Suppose for some ί1? ί2 >0, Φn( — ίj and Φn(t2) are bounded uniformly in
n; then Wn is weakly sequentially compact. Moreover, if Wnk — > W9 then
Φnk(z)-+E(exp(zW)) uniformly on compact subsets o f { z : —t1 <Rez<£2} and for any

Proof. Φn(t) is convex for real ί and |Φn(z)|^Φn(Rez); thus

|ΦB(z)|^max(Φn(-fJ,Φn(ί2)), -ί^Rez^, (3.1)

so |Φπ(z)| is uniformly bounded for —tl ^Rez^ί2. Since Wnk— + WΊί and only if
Φnk(iy)-*E(Qxp(iyW)) for all real y. the conclusions of the lemma follow by
standard complex variable arguments.

Lemma 3.2. Suppose lim sup Φn(t) rg 1 for ί=-~t 1 <0 and for t = t2>Q; then

wn-^o.
Proof. By the compactness part of Lemma 3.1 it suffices to prove that if Wnk-+W,
then Φ(i) = E(exp(tW))=l for t~iy, all real y. By (3.1) and Lemma 3.1, we have
Φ(ί)^U for ίe(~ί l 9ί2). But Φ is convex and Φ(0)=l; thus Φ(ί)=l for tε( — tί9t2)
and thus by analyticity Φ(iy) = 1 for all real y.

Lemma 3.3. IfX is a random variable such that for some c>0 and pe[l, oo),

£(exp(ίX))^exp((cOp/P), ί^O (3.2)

then

P(X ^ x) ̂  exp( - (x/cγ/q) , x ̂  0 , (3.3)

where qe(l, oo] satisfies (l/q) + (l/p) = l. (For the case p = l, q = oo, (3.3) is
interpreted to mean P(X>c} = 0.)

Proof. This is a standard result. It can easily be derived by using Chebyshev's
inequality to obtain the estimate

P(X ^ x) - P(etx ^ etx) ^e~ txE(etX)

<,Qxp(-tx + (ctY/p), t^O, (3.4)

and then minimizing the last expression over t.

Proof of Theorem 1.1. Let Wn = SJVn-f'(G). By the convexity of /„, it follows that
fn(y)^fή(y) y for all ye( — ε,ε) so that for all real z,

E(exp(zWn)) = exp(VJn(z/Vn) ~/'(0)z)

^exp(z[/;(z/KJ-/(0)]). (3.5)

Since /'(O) exists and Fπ->oo, and /„->/, standard convex function arguments show
that /;(z/FJ->/'(0) for all real z. Thus limsupE(exp(zW;))^l for all z and

π ~* oo

consequently by Lemma 3.2, H/"n-»0 as desired.
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Remark. The above proof can be easily modified to show that if Hypotheses A and
D are valid and E(Sn)/Vn=f'+(0)= lim (f(h)-f(0))/h for all n then SJVn — >/;(0)

even if/'(0) doesn't exist. A similar result holds with the right-hand derivative /+ (0)
replaced by the left hand derivative. "One-sided" extensions of Theorems 1.2 and
1.4 can also be made providing some additional hypotheses are assumed (such as

Proof of Theorem 1.2. We let

Xn = (Sn - E(Sn))/σn = (Sn - Vnm)/σn = (Sn - Vnf(Q))/σn . (3.6)

Now by Hypothesis /, Φn(t) = E(Qxp(tXn)) satisfies

Φn(t) = exp(Vn\Jn(t/σn) -/'(0)ί/σ J) rg exp(7J+ (ί/σj) . (3.7)

If (1.7) were not valid, then since /+ is non-negative and fe(i)=f+(t)+f+( — 1\ we
would have for some subsequence nk and some £>0 that Vnkf+(±t/σnj)-*Q so that
by (3.7) and Lemmas 3.2 and 3.1, £((XJ2)-»0. But E((Xnj)

2) = 1 for alΓfe; thus (1.7)
must be valid.

Remark. If one defines σn = lE(Sn-E(Sn))2j']1/2j wi th j>l and Xn = (Sn - E(Sn})/σn,
then a slight variation of the above proof shows that (1.7) remains valid with σn

replaced by σn. This is (in principle) an improvement since σn ̂  σn.

Proof of Theorem 13. If (1.8) is valid, then Vnf+( + t0/σn) and Vnf+(-t0/σn) are
uniformly bounded for some ί0 >0 and thus by (3.7) and Lemma 3.1 any limit in
distribution X oϊXn has E(exp(ίAΓ)) φ 1 analytic in the strip Reί <ί0. On the other
hand, if (1.9) is not valid, then by (3.7) and the monotonicity of/+ on (0, ε) and on
( — ε,0) we would have for some limit X oϊXn that E(exp(tX)) = 1 either on [0,s] or
on [ — s,0] for some s>0; this contradiction shows that (1.9) must be valid. We
now assume (1.8) and Hypothesis G and note that by the monotonicity of/±, we
have for some fixed ί>0 and any s>0, constants K, <5e(0, oo) such that for all n, all

(3.8)

so that

δ/K ^f+(z/σn)/f_(z/σn) ^ K/δ . (3.9)

To obtain (1.10) from (3.9), it suffices to show that for some r>0, {[s/σw,ί/σj}
covers (0, r). But this will be the case if for all sufficiently large n, s/σn ^ t/σn+ x. This
inequality will be valid if we choose s<ί/limsup(σn + 1/σM), which completes the
proof of Theorem 1.3.

Remark. A slight modification of the above proof shows that (1.10) remains valid if
in Hypothesis G, we only assume that for some subsequence nk,
\imsupkσnk+jσnk<co.

Proof of Theorem 1.4. LetX be any limit in distribution oϊXn. By (3.7), Lemma 3.1,
and the fact that 0 ̂ /+ ^fe, we have that

E(exp(ίX))^exp[limsupl//e(ί/σπ)], all real ί , (3.10)
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if the right hand side is finite for all real t. Now by (1.8),

limsupFn/β(±ί0/σπ)<oo, (3.11)
«-> oo

for some ί0>0 and so by (1.3) there is a finite c so that for any ίφO we have

lim sup Vnfe(t/σn) = "-M lim sup VJe(t0/σn)

^ -1) lim sup [FJe(ί0/σ„)] lim sup -
\r o y

-lim^sup [Fn/e(ί0/σJ] sup I Hmsup fe(SZ}

(3.12)

In the first inequality of (3.12) we have used Hypothesis F. Thus we have (1.12) and
by Lemma 3.1, since E(Xn) = 0, £[0Γn)

2] = l for all n, we have (1.11), while (1.13)
follows from Lemma 3.3 applied to +X and to -X. To see that p^ 2, we note that
since E(X2) = ί, E(eκp(ίX}) = ί + t2/2 + o(t2) as ί^O so that (1.12) would be
impossible for p>2. To see that p^l, we first note that if p<l, then it would
follow from (1.12) that log£(exp(fX))/|t|-»0 as |t|->oo. On the other hand, it is a

standard fact that lim — log£(exp(tX)) = PΊL an<3 PΊIoo>° since £(X2)ΦO;

thus pΞϊ l . The last sentence of the theorem is proved by making slight modifi-
cations of the above arguments.

Remark. If in Theorem 1.4 one makes the additional "balancing" assumption that

(3.13)

exists then by (1.9), ye(0, 1) and a slight modification of the above proof yields an
improved version of (1.12) (and consequently of (1.13)):

(3.14)
f<;o'

where (c±)p/p = liminfk Vnkf±(ί/σnj) and nk is any subsequence such thatXnk--*X.
We also note that if in (1.3), the supremum over z>0 is replaced by a lim sup as
z-»oo, then (1.12) (resp. (1.13)) remains valid for large |ί| (resp. for large x).
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