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Abstract. The inequalities for spin correlation functions of ferromagnetic Ising
models with pair interactions derived in a previous paper are studied in more
detail. It is shown that each of these inequalities is a positive linear com-
bination of a finite number of "extremal" inequalities, which can in principle be
determined and of which a number of examples is given.

1. Introduction

In a recent paper [1], to be referred to as I, two classes of relations between spin
correlation functions of Ising models with pair interactions were studied. One of
these classes consists of correlation-function inequalities, for ferromagnetic Ising
models, of the type ]Γ λB(σBy(σBσDy ^0, where A is an arbitrary set of spins of

Be A

the system, D a subset of A, and {λB}BcA a set of real numbers which are
independent of the coupling parameters of the system. In this paper this class of
correlation-function inequalities (called /1-inequalities) will be studied in more
detail. In particular, we shall show that for every set of spins A with \A\ even there
is a unique finite set of /[-inequalities with D = A from which all other
/[-inequalities with D = A which are generally valid (i.e. valid for all Ising models
containing the set A) can be derived by taking positive linear combinations. The
method by which these extremal /[-inequalities can, at least in principle, be found
will be sketched. Examples of extremal /[-inequalities valid for arbitrary sets A will
be derived, and for the cases |^4|=4 and |>4| = 6 all extremal /[-inequalities will be
given. The generalization to the more general case DC A will form the subject of a
subsequent paper.

2. Definitions and Notation

As in I, a graph G is defined as a pair (F(G), E(G)\ where V(G) is a set of elements
called vertices and E(G) a set of unordered pairs {v,v'} of distinct vertices, called
edges. G is finite if V(G) and E(G) are finite.

/A1 £H ΛPΛ") £Λ
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An I sing model on a finite graph G is defined as a triple (G, £f, K), where ̂  is
the set of all functions σ: F(G)-»{ —1,1} and K a complex function on E(G). The
spin variable σv is the value of σ at the vertex v, the coupling parameter Ke is the
value of K at the edge e. An Ising model is called ferromagnetic if Ke ^ 0 for all
eeE(G).

For any set ,4 C F(G) we define

for A = 0 we have σ0 = 1.
The Hamiltonian of the Ising model (G, £f, K) is defined by

eeE(G)

the unnormalized and normalized spin correlation functions (σA) and {σ^},
respectively, for any set A C V(G) by

* *** * ' (3)
<σA> = (σJZ-1 if Z Φ O ,

where Z, the canonical partition function, is defined by Z = (l); we have taken
kT=i. Since the Hamiltonian is quadratic in the συ, the correlation function (σA)
vanishes if \A\ is odd. Therefore, we shall henceforth consider only correlation
functions (σA) for even sets A, i.e. for sets with \A\ even. The family of all even
subsets of A will be denoted by 0*&(A).

Consider a graph G and a set A C V(G). By π(A, G) we denote the partition of A
induced by G, i.e. the partition in which two vertices of A are in the same block if
and only if they are in the same connected component of G. If H is a spanning
subgraph of G, i.e. if V(H) = V(G)9 E(H)cE(G\ the partition π(A,H) is a refinement
of π(/l, G), i.e., the blocks of π(A, H) are subsets of those of π(A, G). The set of all
even partitions of A (i.e. partitions of A into even subsets) is denoted by ΠQ

A, and
the set of all even partitions of A induced by spanning subgraphs of G by Πe

A(G).
We furthermore define for any set BcA and any partition neΠA

IT if the number of elements of B in every block of π is even
π [0 otherwise.

Observe that ηπ(A\B) = ηπ(B}. In I we have derived the following theorem.

Theorem 1 ( — Theorem 2 of I). If A is an even set of vertices of a finite graph G and
(^βlβe^eU) a family of real numbers such that λB — λA\Bfor all Be^e(A], then

Σ 4(σβ)(σΛ\β)^° (4)

for every ferromagnetic Ising model on G if and only if

Σ fπΦMjB^0 (5)

for every partition πeΠe

A(G). The equality sign in Eq. (4) holds for every Ising model
on G if and only if the equality sign in Eq. (5) holds for every partition
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Every inequality of the form Eq. (4) will be called a ΛL-inequality (with respect
to A). The set of Eq. (5) is a finite set of linear inequalities. In the following section
we shall present some general properties of such sets of linear inequalities.

3. Polyhedral Convex Cones

Consider for any vector xeIR" the following set of linear combinations of the
components xk of x, where / is a finite index set,

n

Σ α;Λ; * e / > (6)
fc=l

with α e l R for all i and k. We define the set

C = xeR" Σ<x ί k x f c ^0, for all iel . (7)

The set Ca is a convex cone, i.e., if x(1), x(2)eCα then every positive linear
combination of x(1) and x(2) (i.e. every vector c1x

( 1 )-hc2x
( 2 ) with c1? c2^0) also

belongs to Cα. In view of its definition and the fact that / is finite Cα is called a
polyhedral convex cone.

For any J C / we define

α. fexk>0 for all zeJ; Σ αίkxk = 0 for all ieI\J\. (8)
fc=l fc=l J

If Fj is nonempty it is called a /αce of Cα; F0 is called the null-face. If dj is the
n

number of independent vectors satisfying Σ aikxk = ®> f°r a^ z eΛΛ we ca^ ^j a
k = l

face of dimension d,. It is clear that there are no faces of dimension smaller then
d = dϋ, that there is exactly one face of dimension d, and that there are at most 2 l / !

faces.
A face Fj of Cα is called an extremal face of Cα if no vector in Fj can be

expressed as a positive linear combination of two vectors in Ca\Fj.
We now state without proof the following facts about Cα [2]:
1) The extremal faces of Cα are the d-dimensional null-face Fϋ and the

(dΛ l)-dimensional faces (if any). Vectors in (d-fl)-dimensional faces we call
extremal vectors.

2) If in each extremal face Fj with dj^d + l we select an arbitrary vector xj,
and if the vectors x(1),..., x(d} form a basis of F0, every vector x in Cα can be written
in the form

d

x— y c χj + y cχ(r} (9)

with Cj^O for all J. For a given choice of x ( 1 ),..., x(d) and extremal vectors xj, the
decomposition is in general not unique. For d>0 the choice of the x j is not
unique either. For d = 0, however, it is unique, apart from a positive normali-
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zation factor in each of the r71 in this case, to which we shall restrict ourselves in
this paper, the r7 can be found by the following procedure. Select in all possible

n

ways a set of n — 1 linearly independent equations £ aίkxk = 0 if a vector x
fc = 1

satisfying these equations lies in Cα, it is an extremal vector. For a general reference
to linear inequalities see [2].

4. Extremal /(-Inequalities

In this paper we shall consider graphs G and sets A for which ΠQ

A(G) = ΠA (cf. the
remark at the end of Sect. 5), and in this section we shall investigate the set of
linear inequalities

Σ ηπ(B)λB^Q, πeΠ*A. (10)
Be0>eU)

Because ηn(B) = ηπ(A\B) and λB = λA\B for all Be&Q(A\ we select from the even
subsets of A a maximal family of subsets 3P'e(A\ such that if Be^(A) then
A\Bφ0>'e(A); we assume that Qe^(A).

Let us denote the two-block partitions of A by {B,A\B}9 Be^(A). If for
convenience we write the one-block partition {A} as {0,/!} we can introduce a
square matrix η with elements

%,B =>?(*, Wβ/); B,B'e^(A). (11)

From the definition of ηπ(B') it follows that

^,B'=έ(l+(-l) |βnβΊ); B9B
fe^(A). (12)

It is not difficult to see that η has an inverse η~i with elements

(^\B'=-δB,6δB^+2-^ + 3(-l)^^; B9B'e0%A). (13)

Let us introduce the family λ = {λB}B€^,e(A), considered as a vector in
W(n = \^(A)\ = 2|A| ~ 2). The set of vectors λ which satisfy Eq. (10) for all πe Π\ will
form a convex cone Cη. It is convenient to carry over the concepts "extremal" and
"positive linear combination" from the vectors λ to the corresponding
/(.-inequalities.

We can now combine the results of the preceding section with Theorem 1.
Since η has an inverse, we are in the case d = 0, and the following theorem holds.

Theorem!. Let G be a finite graph and AcV(G). If ΠA(G) = ΠA, there exists a
unique finite set of extremal Λ-inequalities with respect to A, i.e. a set from which
every A-inequality with respect to A can be derived by taking positive linear
combinations.

To illustrate Theorem 2, we consider a set A consisting of four vertices, say
/I = {1,2,3,4}. ΠA consists of the following partitions (in an obvious notation)

(0|1234), (12|34), (13|24), (14|23). (14)

1 This proviso will not be repeated explicitly in the sequel
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Let ^(A)={&, {1,2}, {1,3}, {1,4}}. The matrix η has the following form

....
(15)

where the order of rows and columns is that of the partitions in (14) and the sets in
2P'e(A). The extremal vectors of Cη can be found by selecting any three linearly
independent equations from the set of four equations

Σ fjMΛ' = 0> BeP^A)
B'e0>e(A)

and requiring that the solution satisfies

Σ nB,B'λB'^
B'e0>'e(A)

for the remaining set B. In this way we easily find the following extremal vectors
(normalized so that |A 0 | = 1), with /l^ Ξ Λ{ί J} :

An = A-! Λ — Λ j O — A-! Λ — 1 512 13 14

; _ ; _ _ j _ Q _ ι v /

Λ0 — Λ12~ ~ Λ 13— ~Λ14~ -1'

AQ = —λ12

=: ~~Λ-13 = ~ A14= ~~ * '

The corresponding extremal Λ-inequalities are

(I)(σ1σ2σ3σ4) - (cr1σ2)(σ3σ4) + (σ1σ3)(σ2σ4) - (σ1σ4)(σ2σ3) ̂ 0 , (17a)

(I)(σ1σ2σ3σ4)-(σ1σ2)(σ3σ4)-((j1σ3)(σ2σ4)-f(σ1σ4)(σ2σ3)^0, (17b)

(I)(σ1σ2σ3σ4) + (σ1σ2)(σ3σ4) - (σ1σ3)(σ2σ4) - (σ1σ4)(σ2σ3) ̂ 0 , (17c)

(17d)

The inequalities (17a)-(17c) are special cases of inequalities derived by Sherman
[3] (see also [4] and [5], Theorem 5). The inequality (17d) is a special case of a set
of inequalities due to Newman [5], and is also a consequence of the stronger GHS
inequality [6] (see also [7, 8]). By adding up all four Eqs. (17) we obtain

(18)

by adding up Eqs. (17a) and (17b) we obtain

(I)(σ1σ2σ3σ4)^(σ1σ2)(σ3σ4). (19)

Inequalities (18) and (19) are examples of the first and second GKS inequality [6],
respectively, which are thus seen not to be extremal. We stress the fact that for the
given set A the set of inequalities (17) exhausts the class of extremal (i.e. strongest
possible) correlationfunction inequalities of the form (4). The example of the GHS
inequality shows that there exist stronger inequalities which are not in this class.
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To prepare the way for the examples to be discussed in the next section we find
it convenient to introduce a change of variables which enables us to write the
inequalities in a somewhat simpler form. We define, for Be

kB= Σ riB,B'λB' (20)
B'e&'e(A)

Using the inverse of η it is easily verified that

Σ (-l) |B"BΊ/cB,; BeP&A). (21)

Consider a partition π = {B1,...,Bk}eΠ*A, with B^...,Bk nonempty. From the
definition of η it follows that for Bε2?'Q(A)

>/*(*) = Π {^(1+ (-1)1*^)}. (22)
w= 1

Define £>{!,...,£}, and for LcK define

ZeL

(in particular, J50 =0); J?πCB) can now be written as

η,(B) = 2-kΣ(-l)V"B< \. (24)
LCK

Using Eqs. (21) and (24) and the fact that

Σ (-DlβnX|-2^-2{^0+^J (25)
Be^έU)

for allXε0>e(A)9 we find

-2-* Σ Σ(-i) I

(26)

C (£)= ι[0 otherwise

we finally obtain

2k~2 Y 77 (jgμ — _(2k~2 — l)fe -f y ζ (J5)fe . (27)

In the new variables the set of inequalities (10), with &e(A) replaced by ^(A), reads

(28)

If we introduce

f 1 if B is a nonempty union of (nonempty) blocks of π

Be0>'e(A)

Note that the set of inequalities (28) includes the set of inequalities fcβ^0, for all
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To find the extremal inequalities from (28), we select a set of n — 1 independent
equations of the form

Σ ζπ(B)kB = (2k-2-l)k^ πεΠ*A. (29)
Be^'e(A)

If the solution of these equations satisfies the inequalities (28) for all remaining π
in Πe

A, then it will be an extremal inequality.

5. Examples of Extremal A -Inequalities

In this section we shall give several examples of extremal Λ-inequalities. The
examples given do not exhaust the class of all possible extremal /1-inequalities.

1) We shall first derive four types of extremal vi-inequalities which are valid for
arbitrary sets A with \A\ ̂ 4. To this end we first select a vertex veA and choose for
&'e(A) the set of all even subsets of A not containing υ. As in Sect. 4 we define

-a) Let C be an arbitrary nonempty element of &'Q(A\ and take

kB = \ for B = C, (30a)

fcB = 0 for βφC. (30b)

Obviously, since /cβ =0, all inequalities (28) are satisfied. Using Eq. (21) we see that
the /l-inequality corresponding to the choice (30), multiplied by a factor 2'^'~3 in
order to avoid fractional coefficients, reads

Σ (-l)|B"c|(σB)(σ^O. (31)
Be&'c(A)

Since the n — \ Eqs. (30b) are manifestly linearly independent, the inequality
(31) is an extremal /L-inequality. Any yl-inequality with fc0 =0 and /cBΦθ for more
than one Be^(A) is a positive linear combination of /ί-inequalities of the type (31)
with strictly positive coefficients, and hence not extremal an example is the second
GKS inequality (σjσj-(σβ)(σ^β)^0.

It is easy to verify that the inequalities (3 1 ) are of the type derived by Sherman
[3].

b) Select a vertex v'eA, ι/φι;5 and take

kB=l if v'φB and B*A\{v,v'}, (32a)

kB = Q otherwise. (32b)

Obviously, this set of ^-values satisfies the inequalities (28) for all π such that
fe = |π|^2. If \A\ ^6 we further consider a partition π = {B^...9Bk} with fc>2,
where the order of the blocks is chosen so that v, v'eB1uB2. There are two cases to
be distinguished : (α) υ and v' are in the same block, say B^ and (β) v and υ' are in
different blocks, say υ in B^ and v' in B2. In case (α), the left-hand side of Eq. (28) is
equal to 2 / c ~ 1 -l (if B^{v,vf}) or equal to 2k'1-2 (if B1 = {v,v'}}. Since k0 = l
and fc > 2, the inequality (28) is satisfied. In case (jβ), the left-hand side is equal to
2 f c~ 2 — 1, and hence the inequality (28) is again satisfied.
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We next show that the choice (32) of kβ-values satisfies a set of n— 1 linearly
independent equations of the type (29). This is obvious for |A| = 2 and \A\ =4. For
\A\ ^6, we consider the partitions π— {Bί,B2,B3}, with veB^, v'eB2. For such a
partition Eq. (29) reads

kB2uB, + kB2 + kB3 = kθ (33)

which reduces, by Eq. (32b), to the equation kB^ — fc0 . Since for any B Φ ̂ 4\{^, v'} not
containing v' such a partition with B3 = B can be found, and since the full set of
equations for the kB thus obtained is linearly independent and has (32) as a
solution, the corresponding Λ-inequality is extremal. By using Eq. (21) one easily
verifies that the coefficients λB (again multiplied by a factor 2\A\ ~ 3 in order to avoid
fractional values) are

if B contains v f , (34)

otherwise.

c) Take

fcB = 0 if |B|>-||,4|-1, (35a)

feβ = l if |J3|=iμi|-l, (35b)

feB = 2 if |B|<^4|-1. (35c)

Again, this set of kB-values satisfies the inequalities (28) for fc = |π| ̂ 2. If \A\ ̂ 6 we
further consider a partition π = {Bί,...9Bk} with k>2 and veBly and we define
M = {2, . . .,/c). Using the definition (23) we write Eq. (28) for this partition as

kBM+ Σ %kBL + kB^(2k-2-l)k,. (36)
LcM

L Φ 0 , M

Since for any LΦ0, M we have

\BL\ and \BM\L\ cannot be both larger than ^\A\ — 1. Hence we have, by Eqs. (35a)-
(35c) kBL + kBM^2. Since the number of sets LΦ0,M is 2 |M|-2-2/c~1 -2, and
since fc0 =2, the inequality (36) is satisfied.

We shall now show that the set of kB defined by Eqs. (35a)-(35c) satisfies a set
of equations of the form (29) with k — |π|^3, among which n — 1 are linearly
independent. First, the Eqs. (35a) are of this form, and they are independent. If
\A\ ^6, we further consider the set of simultaneous equations of the form (29)
where π — {B1, B2, B3}, with J31 = {v, ί/}, where v' is an arbitrary vertex not equal to
v. They have the form

^B2uB3 + kβ2 + kB3 — /c0 ,

which reduces to

kB2 + kB = k9, (37)
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since \B2υB3\ = \A\-2>^\A\-L If \B2\>\B3\, then /% = (), and Eq. (37) further
reduces to the equation kB3> = k0. If \B2\ = |J53| we consider a vertex v"eB2 and the
sets B\ and B'2 obtained from B1 and B2 by interchanging υ' and v" '. For the
partition {J3'15F2,£3} Eq. (29) reads

kB>2 + kB3 = k9. (38)

From Eqs. (37) and (38) it follows that kB,2 = kB2. Repeating this argument we find

that kB, = kB for any two sets B,B' with |J3| = |^'I- In tne case I^IH^sl considered
we conclude that kB2 = kB3 = ̂ k&. This shows that if k0 is fixed, the solution of the
set of equations considered is unique. Putting k& =2 we obtain Eqs. (35a)-(35c).
Consequently, the corresponding /[-inequality is extremal. The λB can be found
from Eqs. (21) and (35), but the general expression is not very illuminating.

d) Take

kB = 0 if |5|ΞΞ2(mod4), (39a)

kB = ί if |J3|Ξθ(mod4). (39b)

Consider a partition π = {B ί , . . . , Bk} with k §; I and υ e B 1 . Let fcp, with p — 0 or 2, be
the number of blocks Bl of π with / φ l and |J3J=p(mod4). If M= (2, ...,/e}, the
number of sets L C M such that \BL\ = 0(mod 4) is equal to 2k° + k2 ~ 1 - 2k " 2 if fc2 > 0
and equal to 2/co + /C2 = 2k~1 if k2=0. In both cases, the inequality (28) is satisfied.

As in the examples b) and c), the set of /cβ-values defined by Eqs. (39a) and (39b)
satisfies a set of n— 1 linearly independent equations of the form (29) with
k= |π|5ί3. This can be seen as follows. In the first place, the Eqs. (39a) are of this
form, and they are independent. Consider a set B such that |5|^0(mod4), J5Φ0
and vφB. Obviously |5|^4, and there is a set B'CB such that |J3'| = 2, and hence
|B\F| = 2(mod4). Consider Eq. (29) for the partition π = {B',B\B',A\B}:

kB, + kB\B> + /Cg = /c0 .

By (39a) this reduces to kB = kQ, which determines kB uniquely in terms of k0.
Therefore, the set of n — 1 equations thus selected is independent, and the
corresponding /1-inequality is extremal. The /L-inequality (multiplied by a suitable
positive factor) reads

c £ (-l) |β|/2(σβ)(σ^)^0, (40)
Be&'e(A)

where c = 1 if \A\ = 0 or 2 (mod 8) and c = — 1 if \A | = 4 or 6 (mod 8). The easiest way
to see this is by verifying that the substitution of the values λB = (— l) | jB)/2c into
Eq. (20) yields for the kB the values (39). Using the fact that :

(41)
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we find indeed that

Σ WB = ' Σ (-D |BΊ/2

B'e&'c(A) B'e0>'e(A)
BnJ5'even

=c Σ (-i) |B i l /2 Σ (-i) |δ i l/2

B{ e^e(β) B'2e

which reduces to Eqs. (39a) and (39b) multiplied by

Remark. It is easily verified that for |A| ̂ 4 the first GKS inequality (σQ)(σA) ^0 is a
positive linear combination, with strictly positive coefficients, of any inequality of
type b), c), or d) and some inequalities of type a), and hence not extremal.

2) After having discussed these general types of extremal /[-inequalities we now
turn to a special case, viz. \A\ = 6. Let A = {1, 2, 3, 4, 5, 6}. For this case we will give
all extremal /l-inequalities. Here it is convenient to abandon the convention for
@*e(A) followed thus far in this section and to choose for 3P'e(A) the subset of 0*e(A)
consisting of all sets B with |J3| rg2. Using the notation ktj = k{i j} we can write the
Eqs. (28) as

£ 0^0, (42a)

ktj ^ 0 for all pairs i, j such that 1 <; i < j g 6 , (42b)

^ij + fcfci + ̂ mn = ̂ 0 for all partitions (ij\kl\mn) of ^ . (42c)

To find an extremal A -inequality we select 2\A\~2 — i = l5 independent equations
from the following set of 31 equations:

k 0 =0, (43a)

(43b)

(43c)

and we verify if the solution of the selected set of equations satisfies the inequalities
(42a)-(42c). We denote the set of all solutions which can be obtained in this way by
S. For any solution {kB}Be^e(A)eS we define 0> = {B€0>ί(A)\B*β, kB>Q}.

Suppose first that Eq. (43a) is one of the selected equations. From the
discussion following Eqs. (30a) and (30b) we conclude that this choice leads to an
extremal Λ-inequality of type a), and we have \£P\ = 1.

Suppose next that fcβ >0. In that case it is easily verified that if \&\ < 5, at least
one of the inequalities (42c) is violated. Since further the rank of the set of all Eqs.
(43c) is 10, we must have 5 ̂  \^\ ̂  10.

A straightforward analysis (based on an enumeration of possible cases, which
fully exploits the permutation symmetry) shows the following.

α) There are, apart from permutations of the vertices, four solutions in S such
that ̂  does not contain any pair of disjoint sets, viz. one solution with \0*\ = 5, one
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Table 1. Values of the kB, Be^'Q(A\ for extremal /1-inequalities in the case ^ = {1,2,3,4,5,6}

/C0 /C 1 2 K 1 3 k-14 K 1 5 K 1 6 /C2 3 /C24 K 2 5 /C2 6

a 0

b 1

c 2

d 1

1
1

1
0
0
i
1
0

0
0
0
1
0
0

0
0
0
1
1
1

0
0
0
1
1
1

0
0
0
1
1
1

0
0
1
0
0
0

0
0
1
0
1
1

0
0
i
0
1
1

0
0
1
0
1
1

0
1
1
0
0
1

0
1
1
0 »

0
1

0
1
1
0
0
1

0
1
1
0
0
0

0
1
1
0
0
0

0
1
1
0
0
0

Table 2. Values of the λB, Be ^(A), for extremal /1-inequalities in the case A = {1,2,3,4,5,6}. The last
column gives the number N of distinct extremal inequalities obtained from the one represented by a
permutation of the numbers 1, 2, 3, 4, 5, 6

a
b
c
d

1 1
-1 7

-1 1
1 I

0 -1
1 -1

-1
1
1

-1
0

_ ^

-1
1
1

-1
0
1

-1
1
1
1

0
1

-1
1
1

-1
0
1

-1
1
0
1
0

-1

-1
1
0
1
0
1

-1
1
0
1
0
1

-1
1
0
1
0
1

1
1

0
1
i
1

1
-1

0
1
1
1

1
-1

0
i
1
1

1
j

0
1
0

-1

1
1

0
1
0

-1

1 15

-1 15

0 6

1 6

0 60

-1 10

with |̂ | = 6, one with \&\ = 7, and one with |̂ | = 9. The first two are special cases of
the examples d) and b), respectively, introduced above, the other two do not
belong to the general classes a)-d) discussed under 1).

β) There is, again apart from permutations, exactly one solution in S such that
^ contains pairs of disjoint sets it has \0>\ = 10, and is a special case of example c).

γ) There is no solution in S such that £P contains a triple of pairwise disjoint sets.
Summing up, we have derived that for \A\ = 6 there are six extremal inequalities

(counting cases which differ by a permutation of the vertices as a single case). They
are represented in Tables 1 and 2. Table 1 gives the values of the feβ, Be^(A\
Table 2 those of the λB (multiplied by a common factor in order to avoid fractional
values). Observe that the notation for the kB differs from the one used under 1) as a
consequence of the different choice of ^(A). The entry in the first columns
indicates the general type of extremal inequality to which the represented
inequality belongs. The inequality labelled d) is just the inequality (62) of I. The
inequality labelled c) is a special case of Newman's inequalities [5], referred to in
Sect. 4, and also mentioned in I, Sect. 6, example (3) (see also the discussion given
below).

3) We conclude this section by a discussion of the /1-inequalities derived by
Newman [5]. Let A be an even set of vertices and XA a subset of ^(A) such that
every partition of A into pairs is a refinement of some two-block partition
{B, A\B} of A with BeXA. Newman's inequality reads

(σf)(σj^ Σ (σB}(σA,B). (44)
BeXA
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Evidently, this is a /[-inequality. We consider in particular the case where XA

consists of all sets Be^A) - where ^(A) is chosen as in 1) - such that
\B\ = \A\ — 2 the corresponding inequality was derived in Theorem 2 [Eq. (3.4)] of
[5]. It is readily verified that XA satisfies the requirement mentioned above. The
corresponding values of the λB and the kB are

ί-1 if B = 0

λB=\ 1 if |B| = μ|-2 (45)

I 0 otherwise,

kB = \A\B\-2. (46)

We have seen that for p4| = 4 and \A\ = 6 the corresponding A -inequality is
extremal. We shall now show that for |v4|>6 it is a convex combination of an
extremal inequality of type c) and a different inequality (which in general is not
extremal).

To this end we consider a set of real numbers kλ (I even, 0^ /^ \A\ — 2) satisfying
the following inequalities:

/c 0 ^/c 2 ^.. .^ μ l _ 2 ^0, (47a)

kι + k\A\~ι-2^ko for i = 0,2,...,|,4|-2. (47b)

Consider now the family {kB}Be^(A} defined by kB = k\B\. We assert that this family
satisfies the inequalities (28) and hence corresponds to a /[-inequality. To show
this, we write again π = {B l9... , BJ with veBί. The case fc=l is trivial; therefore,
let fc^2. If I5J = 2, Eq. (36), and hence Eq. (28), is satisfied in virtue of Eq. (47b). If
IBJ^ we consider the sets B\ = {υ,υ'} with υΈB^ i/φυ, and B'2 = B2v(Bί\B'ί\
and the partition π' = {B'19B'29 B3,..., Bk}. Since \B\ \ = 2, Eq. (28) is satisfied for π'
since \B2\ <\B'2, Eq. (47a) guarantees that it is also satisfied for the partition π.

Obviously, the special Newman inequality considered above is an example of
this class of /l-inequalities, as is the inequality of type c). Let us denote the
corresponding values of the coefficients fcB, given by Eqs. (46) and (35), by /c|N) and
kf\ respectively, with l = \B\.

It is easily seen that the numbers kj0 ) = /cjN) — k\c) satisfy the inequalities (47a)
and (47b) and are not all zero for |/L|>6. Hence, /c|N) is a positive linear
combination of k\0) and k\c\ and the corresponding inequality is not extremal.

For |^4|^6 there exist other Newman inequalities than the one discussed
above. For |/1| = 6 they are not extremal. We conjecture that this is also true for
\A\>6.

Remark. In this paper we have restricted ourselves to graphs G and even sets
AcV(G) such that Πe

A(G) = ΠQ

A. E.g., G may be a complete graph and A an
arbitrary even subset of V(G) for other graphs not every set A C V(G) satisfies this
condition. The extremal /L-inequalities valid for a set A in a graph G satisfying the
condition are, of course, also valid for the same set A in any spanning subgraph H
of G. However, if Πe

A(H) is a proper subset of Π&

A, they need not be extremal. The
extremal inequalities in this case can be determined along the same lines as in the
case Πe

A(G} = ΠQ

A; details will be given in a subsequent paper.
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