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Abstract. For billiards in two dimensional domains with boundaries containing
only focusing and neutral regular components and satisfacting some geometri-
cal conditions ^-property is proved. Some examples of three and more
dimensional domains with billiards obeying this property are also considered.

Introduction

In the present paper dynamical systems with elastic reflections, usually called
billiards, are studied. From the point of the general theory of dynamical systems a
billiard can be considered as a geodesic flow on a manifold with a boundary.
Billiards give models for many problems of classical mechanics, statistical physics,
optics, and acoustics.

The statistical properties of one particular class of billiards were studied by
Sinai [1] who called them dispersing. The simplest example of such billiards is the
motion of a material point on a torus with elastic reflections from fixed spherical
particles. It was shown in [1] that the corresponding dynamical system is K-
system. In [2] this result was generalized to a wider class of dispersing billiards.

An intuitive explanation of the analogy between dispersing billiards and
goedesic flows in spaces of negative curvature is due to Arnold [3]. The
exponential expansion of trajectories, which is due in geodesic flows to negative
curvature, follows from collisions with the convex (from inside) components of the
boundary of the domain.

Hopf [4] established that a geodesic flow on a surface with the gaussian
curvature taking the values of different signs is ergodic if every trajectory spends
most of the time in the regions with negative curvature. The analogous result has
been proved [5] for domains with boundaries containing both dispersing and
focusing components.

In accordance with the traditional ideas stochastic properties of the billiard
follow from the scattering of trajectories which results from collisions with the
boundary. If small focusing parts of the boundary are also present and the
scattering is sufficiently large then the stochasticity is conserved. However, it is
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known that the billiard system inside the domain bounded by a smooth plane
convex curve has a set of positive measure consisting of the tori [6, 7]. Thus the
dynamical system generated by this billiard is obviously nonergodic.

In [8] it was proved that there exist convex domains on the plane whose
boundaries contain no focusing components at all, and nevertheless they generate
billiards which are ergodic and have the K-property. A necessary condition for
ergodicity in [8] was the presence of straight segments in the boundary. The
stochastic properties of such billiards arise of a consequence of successive
noncoordinate focusing of local small bundles of trajectories when they reflect of
the boundary. Such bundles contract after reflection from the focusing component
of the boundary, then it goes through conjugate point, after which it expands and
has time enough to expand sufficiently before the following reflection of the
boundary occurs.

In the given paper a general theorem is proved, which states sufficient
conditions for iC-property (and jB-property) for regions whose boundary has no
dispersing components. Some examples of application of this theorem to concrete
classes of domains are given (in particular for domains with boundaries pos-
sessing only focusing components). Possible generalizations of this theorem for
billiards in multidimensional (nonplane) domains are considered.

1. Description of the Class of Domains Under Consideration
and Main Properties of Billiards

Let Q be a closed connected domain on the Euclidean plane or on a two
dimensional torus with Euclidean metric. We assume that the boundary dQ
consists of a finite number of smooth nonselfintersected curves (of class C3)
intersecting only at their ends. A single curve of this collection will be called a
regular component of the boundary and will be denoted by 3g-(z = 1, ...,/c). The
points of intersection of regular components will be called singular boundary
points. The boundary dQ equipped with a field of inward (with respect to Q)
normals n(q\ where qeQ. The angle φ is measured with respect to n(q). Let us
denote by dQ + the collection of all regular components of the boundary with
positive curvature (w.r. to the chosen direction of the normal) in every point.
Analogously dQ~ is the collection of all regular components with negative
curvature and dQ° is the collection of all regular components with curvature zero.
It is assumed that the curvature of every regular component has a constant sign
and is either different from zero or equal to zero in all its points. We shall call
3Q + >dQ ~ •> a n d dQ° dispersing, focusing and neutral part of the boundary
respectively.

Let M be the restriction of the unit tangent bundle of the plane (or torus) to Q.
Points x = (q,\) of the space M will be called line elements and qeQ - the support
of line element x = (q, v). We denote the natural projection of M onto Q by π. It is
clear that M is also a manifold with boundary. The boundary dM is formed of
those line elements such that π(x)edQ. We define the regular components of the
boundary dM as dMi = π~1(dQi). On δM- we introduce a natural coordinate
system (r, φ) where r is the parameter of arc length along dQ{ and φ an angular
parameter.
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By billiard in Q we mean a dynamical system in M, generated by the motion of
a tangent vector x in M along a geodesic line with unit speed. When a line element
x reaches the boundary of the domain Q an instanteneous reflection from δQ takes
place according to the rule "the angle of incidence is equal to the angle of
reflection", i.e. the component of the vector tangential to δQ is preserved and the
normal component changes sign, after that the motion inside Q is continue along a
geodesic line. If a trajectory hits a singular point of the boundary we shall consider
that the following motion is not defined.

Let S_ = {xeδM:(x,n(q))^0,q = π{x)}, where (x,y)-scalar product of line
elements x and y. The set

which consists of line elements tangent to the boundary or have support in
singular points of the boundary. S will be called the set of singular points of the
boundary.

In the space M we introduce a measure μ by letting dμ = dq dω, where dq is the
measure induced on Q by the Euclidian metric and dω is the natural measure on
the unit circle Sί(q). The one-parameter group of shifts along the orbit of the
billiard will be denoted by {St}, — oo <t< + oo. It is obvious that it preserves the
measure μ. Therefore {St} is a flow in the sense of ergodic theory.

Let ύiίι = S_ \ S and let τ(x) be the nearest negative moment of reflection of the
orbit of point x from the boundary. It is easy to see that τ(x) > — oo and that for
any xeΰtti there is a well defined mapping Tx = Sτ(x)_oxe%ί. The mapping Tis
discontinuous. It has singularities on the set ̂ 2 = T ~ ι SuS.

In <JUι we introduce a measure v by letting for any s^ QJlίι

. cdμ(y)

where J / = {y e M: y = Stx for 0 ̂  t > τ(x), x e <*/}, F(y) = τ(x). It is not hard to see that
dv(r, φ) = — const cos φdrdφ, where by const we denote the normalization constant.
The transformation Tpreserves the measure v and is the derived automorphism of
the flow {St} (see [9]). It is easy to see that (both for μ and for v) the measure of
trajectories containing singular points of the boundary of the domain Q equals
zero. Consequently from now on we shall consider trajectories which contain only
regular points of the boundary, since in ergodic theory one can neglect a set of
measure zero. It is not difficult to see that ergodicity of the flow {St} follows from
ergodicity of T.

In the present paper we shall suppose that dQ+ =0, i.e. the boundary δQ does
not contain dispersing components. It is assumed also that dQ contains at least
one focusing component, i.e. the domain Q is not a polygon. (It is well known
[10, 11] that the entropy of billiards in polygons equals zero.)

For domains studied by us the following two conditions are fulfilled:
1. The curvature of each focusing component Γf(ΐ=l,2,...,nF) of the

boundary δQ is constant, i.e. Γ? is an arc of some circle OrF>
2. Let %[ = {x:π(x)eδQ~} and τ(x) be the nearest negative moment of

reflection from the focusing part of the boundary of the domain Q of the trajectory
of the point x. Then the length of the chord of the circle O^F defined by the line
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Fig. 1

Fig. 2

element x is less or equal to |τ(x)|. The rigorous inequality is tulfilled on the set °UX

of positive measure (with respect to measure v).
One must mention that the conditions we introduced include the case, when

the circles OΓF and OΓF coincide for iή=j. It is obvious that the class of domains
satisfying our conditions is sufficiently larger than that considered in [8].

Examples of domains for which our conditions are fulfilled are shown in Fig. 1
in Fig. 2 we show domams for which they are not fulfilled.

We remind that a dynamical system with discrete time, generated by a
transformation Twith an invariant measure is called a 5-system if Tis metrically
isomorphic to a Bernoully shift. It is obvious that a 5-system is also a K-system. In
a recent paper [12] Ornstein has shown that inverse statement is false.

Consider for every natural number n the set A^ = {x:π(x)edQ,π(Tix)φ<^^ for
0<i<na}, where α>0.

The following main result is true.

Theorem. If a domain Q satisfies conditions 1,2 and there exists a positive number
00

α < 1 such that the series £ v(A*) is convergent, the billiard inside Q is a B-system.

Let d be the distance on ΰU1 generated by the metric ds2 = dr2 + dφ2. We set d(x)
= d(x,S1), and by φ(x) we denote an angle between x and n(q\ where q = π(x). In
complete analogy with the case of dispersing billiards (see [1], pp. 147-148) one
can prove the following inegualities:

|cosφ(x)\ £ Cxd{x\ C"2d{x) S |τ(x)| ̂  Jgr, |cosφ(Tx)\ ^ C3d(x).
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Consider a curve yCQ of class C2. By an equipment y of the curve y is meant a
continuous section of the tangent bundle over y such that at each point qey the
line element is orthogonal to the line element tangent to y at the point q. Each
curve γ has two equipments. After an equipment is chosen, one can speak of the
curvature of the curve y with sign. If the curvature does not vanish at any point of
the curve, then the indication of its value at a single point uniquely determines the
equipment.

Let y C Q be any smooth curve without selfintersections and let γ be its equip-
ment. We assume that y with the equipment y has strictly negative curvature.
We assume, further, that on y the parameter of arc length s has been chosen,
measured from some interior point. We can also consider 5 as the parameter
describing y. We denote by A(s) the curvature of the curve y at the point with
coordinate s. The equation A — A(s) is the natural equation of the curve y.

The following three lemmas can be easily proved with the help of elementary
geometrical considerations, the corresponding proofs can be found for instance in
[1] (see also [2], where some corrections and specifications are given).

We choose a ί < 0 such that during the time from t to 0 no point xey reaches
the boundary.

Lemma 1. The natural equation of the curve y1=n(γι), γι=Sty has the form A^s^
= A(s)/(l + tA(s)% where sί is the parameter o/arc length y1? which is naturally related
to the parameter s on % and ds1lds — 1 + tA(s).

We assume now that from time t to 0 each point of the curve y has exactly one
reflection from the boundary and that this reflection arises from one and the same
regular component of the boundary for all xey. It follows that y1 =Sty is a curve
lying inside M. For the point with coordinate s we denote by ί(s), φ(s) and Ai0)(s)
the moment of reflection from the boundary, the angle of reflection and the
curvature of the boundary at the point of reflection, respectively.

Lemma 2. The natural equation of the curve yx =π(Sty) has the form

„ , , 1

ί - ί ( s ) + -

cosφ(s

ds d(s)
where —^ = 1 4- ti{s) + 2 y-f- (1 + ί(s)>φ))(ί - t(s)).

ds cosφ(s)

Having the curve 7, which appears in Lemma 2, we consider for each point
x(s)ey the least t(s)>0 such that St{s) + ox(s)etf/v and we assume that
y1 = {St{s) + Ox(s)} is a curve on the boundary (%1 of M belonging to a single regular
component. Suppose, further, that in the system of coordinates (r, φ) the curve yx is
described by the function φ = φ(r). From Lemma 1 it follows that
dφ d(s)cosφ(s) .
Ύ~ ~ Ί ( \£( \' w n e r e 5 a n c * r a r e c o n n e c t e d by the relation π(St{s)x{s)) = r.

The following lemma is easily obtained from Lemmas 1 and 2.
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Lemma 3. Let the curve y1C
ύi/1 be given by the equation φ = φ(r) and T\y1 be a

smooth transformation. Then y\ = Ty1 is a curve on °UV If the curve y\ is given by the
function φ' = φ\r'\ where the -parameters r and r' are naturally related, then

dφ' ( 0 cosφ'

dr' f N cosφ
τ ( r ) - - ?—

dr

(d(p _
= \ι

dr cos φ'(r') [ cos φ(r) \ dr

From the preceding Lemmas it follows, in particular, that a bundle of parallel
trajectories after reflection from the boundary remains parallel, if the reflection
took place on a neutral component and is dispersed or focused if the reflection
takes place from a dispersing or focusing component respectively.

2. Some Properties of Series of Consecutive Reflections from the Boundary

Let the moments of consecutive reflections of the trajectory of the point x from the
boundary be 0 ^ ί 1 < ί 2 < . . . . The interval between two successive reflections is
τ. = tf — ti _ x (ί = 1,2,..., 10 = 0). We denote by k\0)(x) the curvature of the boundary
at the point of the i-th reflection, and by φ.(x) the angle of incidence of the f-th
reflection, π/2^φ f(x)^3π/2.

Consider for each point xeM the infinite continued fraction

(1)

cosφ^x)
,

cosφ2(.x) - τ 3 + ...

With the help of function κ{s\x) one can construct almost everywhere in the
case of dispersing billiards local orthogonal manifolds to the bundles of asym-
ptotic trajectories. These manifolds play a central role in exploring the ergodic
properties of billiards. In the following we shall show that analogous manifolds
exist also for billiards of the class studied in the present paper.

Somewhat later we shall study the question of convergence for this continued
fraction. Until then we shall consider (1) as a formal expression. (The proof of
convergence of κ{s\x) for dispersing billiards is trivial [1,2].)

Suppose that the first n reflections of the trajectory of point x are from neutral
components of the boundary. Then /(f\x) = dψ(x) =... = d^\x) = 0 and the cor-
responding continued fraction has the form
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Consequently by consecutive reflections of the trajectory of the line element
xey from the neutral part of the boundary of the domain g, the absolute value of
curvature of the curve Sty in the point Stx decreases inversely proportional to time
until the first reflection from regular component of the boundary dQt with nonzero
curvature takes place.

We shall formulate several results from paper [5], concerning properties of the
series of consecutive reflections from one and the same focusing component of
constant curvature.

Since a focusing component Γ[ is an arc of a circle the intervals between two
successive reflections in each series of consecutive reflections from Γf coincide,
because the angle of incidence is equal to the angle of reflection. Thus the
transformation Tfor such a series is simply a rotation of the circle by the angle
(180° — 2φ), where φ is a constant for the series of reflections under consideration
angle of incidence.

Consequently the segment of the continued fraction κ{s)(x) corresponding to a
series of reflections of length n from one and the same focusing component Γ? of
the boundary has the form

4
τ

where τ1 is the interval between the first (in this series) reflection from Γ( and the
previous reflection of the trajectory of point x from δQ~ and τ is the interval
between two successive reflections from the component Γ/\ The fraction X(/F(X)
contains 2n terms.

Further in [5, p. 59] the following lemma is proved.

Lemma 4. An infinite continued fraction Ka b of the form

1
a+

where a and b are real numbers and ot = ab<O, converges if and only ifctS —4, while

if oι= —4, then Kah= — - = -. Moreover the sequence of convergents PJQn is a

monotone numerical sequence.
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We will mention that for the series of consequtive reflections from one and the
same circle just the case α = — 4 takes place. Consider a bundle of trajectories
whose curvature at any of its points xeΰttι is equal to κ{s\x). From the definition of
the set %t it follows that κ(s)(x) is the curvature of this bundle (at the point x) after
reflection from the boundary dQ. Then it follows from Lemma 3 that the curvature
(at the same point) of this bundle at the moment before reflection from the
boundary is equal to

/(0)ω
cosφ0(x)

In [5, p. 63] the following proposition which is the fundamental for studying
reflections from focusing part of the boundary, is proved.

Proposition 1. Suppose that on an arbitrary component ΓF of the focusing part of the
boundary dQ~ there is incident a bundle of trajectories of zero curvature (i.e. a
bundle of parallel trajectories) which has n successive reflections from ΓF. Then for
any line element x of this bundle and for any number m (l^mt^n) the following
inequalities hold:

κii\Tmxo)<0, κ(s\Tm~ιxo)>0, κ{s){Tm~1xo)>\κi!}(Tnxo)\

while

m->oo
n~* oo

κis)(Tnx0)

1 ! )

Less formally, in Proposition 1 it is asserted the following: if on an arbitrary
focusing component ΓF falls a bundle of parallel trajectories and has a series of n
successive reflections from it, then after every reflection of this series this bundle
becomes contracting (i.e. has a negative curvature), after which on its way between
any two successive reflections from ΓF it passes through a conjugate point and
comes to the boundary before the following reflection as an expanding bundle,
moreover the time during which the bundle under consideration has a positive
curvature (expands) is more than half of the whole time interval (|τ|) between two
successive reflections from ΓF. So, by successive reflections from the boundary of
any focusing component (under the action of transformation T) the bundle under
consideration locally expands linearly along the length of the front, and its
curvature tends to a constant limit (when the number of reflections in the series
tends to infinity).

3. Proof of the Convergence of the Continued Fraction

The following proposition holds.

Lemma 5. // a domain Q satisfies conditions 1 and 2 then the continued fraction
κis\x) converges for every regular point
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Proof. First of all we mention that if a domain satisfies condition 1 then for any
regular point xe%1 the fraction κ(s)(x) has the following form:

X{S){X) = , } + r— 1 + I ' + . . . + ΓT-. '

1 i 1 I

where the element — Σ ?m + . corresponds to the ( m + l ) t h series of
j = o ί = i Ά ι ι J

consecutive reflections from the neutral part of the boundary dQ° or to the jump
from one focusing component to another, while a segment of continued fraction

1 I 1 1 1 1

between two following terms of such a form corresponds to the series (of the length
km+ x) of consecutive reflections from one and the same focusing component of the
boundary dQ. Here (ni — 1) is the length of i-th series of consecutive reflections from
the neutral part of the boundary, kt is the length of i-th series of consecutive
reflections from an arbitrary focusing component. (We will mention that if
km + 1~l then a corresponding segment of continued fraction has the form 4/τ^ + 1 ?

where, generally speaking, τ'm+i Φ τ g ( n + k ) + 1 ) . We recall that by elements of the
continued fraction •ι = 1

we mean the numbers fcί9 (/^
For convenience we consider instead of κis\x) the continued fraction - κ{s)(x).

Then all the elements of the continued fraction κ{s)(x) also change sign.
There are two kinds of elements in continued fraction (2): elements with odd

numbers correspond to the time intervals between two reflections from the
focusing part of the boundary and elements with even numbers correspond to the
curvature of the boundary at the point of reflection. In what follows we shall
denote a product of two successive elements b2n_1b2n by γn. We mention that all
the odd elements of the continued fraction — κ{s){x) are positive and all the even
elements are negative.

Consider the recursion formulas (see [13]) for numerators and denominators
of convergents Pn/Qn, (n ̂  3)

2, Qn = KQn-l+Qn-2- (3)
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From them it is easy to get the relations (n ̂  5)

n 4 1 I P n P— h h
n~\υnUn~l

\
P

°n-2

A-1 +

(4)

For the fraction - κ(s)(x) Formula (4) becomes

(5)

We write down the first four convergents:

P, \ P2 b2 P3 b2b,+

(6)

Hence, using (4), (5) it follows that sgnβ 2 n + 1 = — sgnQ 2 n_ 1 and sgnQ2n + 2

= — sgnβ 2 n . In fact, from the conditions 1, 2 it follows that for all yk\yk + 2^ —2.
It is easy to get required assertion from Formulae (4), (6) and condition 2.

Since we have the following recursion formulae (see [13])

2/c+l 2k-\ J2k+1 2k k~2 J2k

Q2k Q2k 62,-2 62,-262

we get that the sequences of even and odd convergents are increasing. Now using
the well known (see [13]) recursion relation

Qn+1

P

__

Qn

1

QnQn+l

and the property of interchanging of signs of denominators in the sequences of
even and odd convergents we proved earlier, we get that the sequence of all
convergents is increasing.

From relations (4) and (6) it follows that

where C^C2 are some constants.
Consequently

κ{s\x)\ ^
Qi

+ ~ι —
1

7 ^ - H Σ <OO.

Therefore the sequence of convergents {PJQn} has a limit, as it is monotone
and bounded, which completes the proof of the lemma.

It is not difficult to see that the function κ{s\x) is continuous almost
everywhere. In fact, suppose that the positive semitrajectory of the point x does
not contain singular points of the boundary dQ. According to the proof we gave
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earlier the continued fraction κ(s)(x) converges, therefore for every ε > 0 one can
g

find a number n = n{s) such that \κis)(x) — κ{*\x)\ <-, where κ{*\x) is the n-th

convergent. Owing to the fact that the semitrajectory under consideration contains
only regular points of the boundary there exists a neighbourhood Usx, such that

for every point yeU the following inequality holds: \κ{^(x) — κ(*\y)\ <-. Finally,

from conditions 1, 2 and from the proof of Proposition 1 it follows that for all
points zG^f whose trajectories contain no singular points the inequality

\κ(s\z) — κ{*\z)\ < - holds, where n depends only on ε and not on z. Therefore our

assertion is true.

4. Main Theorem

Now we shall construct two vector fields U{s) and lί(M) in the phase space M. In a
neighbourhood of point x = (q,φ) let us choose coordinates qvq2, and φ so that
the angle φ is computed from the axis qv The components of the tangent vector of
the field U(s) at the point x have the form ( —sinφ, cos φ, κ{s\x)). From Lemmas 1
and 2 it follows that the vector field H(s) is invariant under the action of the flow
{St} in the following sense: if {St} is the one - parameter group of transformations
of the tangent space to M onto itself induced by our flow, then the straight line
lί(s)(x), which has the direction of the vector field U(s) at the point x, is carried under
the action of St into the same line U^S^x).

We project the vector field H(s) onto the boundary °UV If x = (r, φ)e(%1, we set

— = — κis)(x)cosφ(x) — /(0)(x). The vector field U^ which we obtain has an

in variance property of the same type relative to the transformation T.
To construct the vector field H(u) we consider the involutive automorphism / of

the space M, which transforms the line element xeM into the line element with the
same support and opposite direction. We set κ{u\x) = — κis\Ix). It is easy to see
that the vector field defined by means of the function κ{u\x) will also be invariant.
Its projection on the boundary ^ has the form

dφ
—— — — κ{u\x) cos φ(x) + / ( υ ) (x) .
dr
It follows from Lemmas 1-3 and 5 that for U(s) we have: — > 0 if π(x)edQ~.

For the vector field U(u) the opposite inequality holds.
We remind that by a locally contracting transversal fiber (l.c.t.f.) of the point x,

in some neighbourhood U of x, is meant a curve in U consisting of points yeU for
which d(Stx,Sty)-+0 as £->oo. Letting t tend to ~oo, we get the definition of a
locally expanding transversal fiber (l.e.t.f.) The definition of locally transversal
fibers for the transformation Tis the same as for {St} except that in place St one
must write T1 and let n tend to + oo. Such fibers play a central role in studying of
ergodic properties of classical dynamical systems, such as Anosov systems,
partially hyperbolic systems, dispersing billiards and so on (see [14-16]).
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From Lemmas 1-3 describing the reflection from the boundary it is not
difficult to deduce that locally transversal fibers of the transformation Tare (if they
exist for the billiards we study) just the trajectories of the vector fields Uψ and Xtifi.

We will come now to the proof of the main theorem which was formulated in
§ 1. We shall not give here all the proofs of this theorem since it takes too much
place. Besides, many stages of that proof repeat almost step by step the proof of the
existence of the K-property for other classes of billiards (see papers [1,2,5] and
also the lectures [16]).

We shall prove in detail only facts that are directly connected with the specific
class of billiards we study, i.e. with geometrical properties of corresponding
domains.

In what follows we shall examine the derived automorphism T, unless we state
otherwise. The main fact which must be verified in the proof of ergodicity of an
arbitrary class of billiards is that for almost every point x of the phase space ^ the
local fiber tangent in the point x to the vector field U(s) (or U(u)) is in fact
contracting (or expanding). We shall point out the mechanism which generates
contraction (expansion) for the class of billiards under consideration.

Let the point xoe%1 be fixed, and set xt = Tlx0. We assume that x$S for
i = 0,1,2,..., i.e. the negative semitrajectory of the point x0 has no intersections
with the singular part of the boundary. We introduce the following quantities:

άi = d(x.), cos φ. = cos φ(xf), τ = τ(x ), κ\s) = κ{s\x.).

Then the (local) coefficient of contraction λ\s\x0) under the action of the

transformation Tat the point xi_1e%1 equals ' (5)

 t ~ 1 if πix^^edQ' and the

corresponding local bundle of trajectories during a time |τ | passed through a
conjugate point. In fact, this equality follows immediately from considerations of
§ 2 (a more detailed exposition can be found in § 3 of the paper [5]). If the local
bundle of trajectories under consideration during the motion from x 0 until xt did
not pass through a conjugate point, the local coefficient of contraction equals
(l + x ^ J τ l ) " 1 (see Lemma 1). However observe that both in the first and in the
second case, we are considering only contraction along the r-axis in phase space
6UV As to the change of "length" of the local bundle along the angle coordinate φ,
it is obvious that it can take place only under reflection from the focusing part of
the boundary.

Therefore it is convenient to introduce a new special representation of the flow
{St}=(f) τ). The transformation Tacts on the set %± and for any point x e t ^ the
number τ(x) is the nearest negative moment of reflection of the trajectory of the
point x under the action of the flow {St} from the boundary at a point belonging
also to the set 4([. Thus 7x = 5T(JC)_0x, where x e t ^ .

First of all we shall show that almost every trajectory of the flow {St} passes
through the set 4ί[. We mention that almost every trajectory of the flow under
consideration contains reflections from the focusing part dQ ~ of the boundary of
the domain Q. In fact, for an arbitrary polygon each trajectory of corresponding
billiard comes up as close as one wants to one of its vertexes (see [11]). The
reguired assertion follows easily now from the geometrical properties of the
boundary of the domain under consideration and from the results of § 3.
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Further, one can get from the conditions of the theorem that for almost all
trajectories reflections from the boundary of the domain Q take place sufficiently
often at the points of the set %[. In fact, according to the Lemma of Borel-Cantelli

00

from the convergence of the series ]Γ μ(AD one can get that the trajectory of almost
«= i

every point xe %[ hits the collection of sets Λa

n only for a finite number of values of n.

Consequently for almost every point xe%ι there exist positive numbers
C(x)<oo, A(x)<l, αx < 1 such that for all m>0 the following inequality holds

m

ΠίWΓ^αxxw1'1""'. (7)

Since the trajectory of almost every point hits the collection of sets Aa

n only a
finite number of times, for a set of points xeΰlίι of full measure the length of the
series beginning from the fc-th reflection and consisting of consecutive reflections
from the complement of the set %[ does not exceed Cka\ where C is a constant,
k>ko(x)7 (χ1 < 1. Let us now consider the segment of length m of the trajectory of
the point xeϋttι beginning from the first reflection of this point from the boundary.
Then, according to the conditions of theorem within such a trajectory segment not
less than Cm1'*1 reflections from the boundary at points of the set $[ must take
place. Inequality (7) follows from this and it means that for a set of whole measure
contraction (expantion under the action of X1"1) along the direction of the vector
field U^ does in fact take place.

This allows us to construct l.c.t.f. and l.e.t.f. for almost every point xeύl/v The
process of construction of these fibers is a variant of the proof of Hadamar-
Perron's theorem for manifolds (see [1, 14]). After which the whole leaves of the
contracting and expanding foliations can be constructed in the usual way. These
leaves possess singularities (cusps points), corresponding to trajectories which fall
on the points of intersection of the regular components of the boundary. One can
work out the following stages of the demonstration of the K-property for our
billiards, in analogy with paper [5] (see also [1,2]), with some minor modifications,
β-property can be concluded from K-property just in the same way as for dispersing
billiards (see [17]).

5. Some Examples of Applications of the Main Theorem

In this paragraph we shall consider several classes of domains, which satisfy the
conditions of Theorem 1. We shall suppose that the geometrical properties we
reguired are always satisfied,

5.1. "Stαdion"1*1 and Its Modifications

In this section we consider domains with boundaries consisting of two neutral, Γ1

and T2> and two focusing, Γί and Γ2, components with the end-points of every

1 The term "stadion" was introduced independently and almost simultaneous by D. V. Anosov and
Ya. G. Sinai
2 In the english literature the term "billiard on a football field" can be also met
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Fig. 3

focusing component belonging to the neutral part of the boundary. Some domains
of this type are represented in Fig. 3. The domain which is represented in Fig. la
also belongs to this class.

The most popular example - the "stadion" - a region whose boundary consists
of two identical half-circles and two parallel segments, is represent in Fig. 3a. It is
the first example of a convex region inside which the billiard is ergodic [8].

We now show that for the class of domains considered in this section all the
conditions of the main theorem are satisfied. Let us consider first of all what is in
our case the set %[. It is clear that the line element xe%[ if π(Tx)efί and π(x)
belongs to the neutral part of the boundary (excluding the case where Γ1 and Γ2

are arcs of one and the same circle, Fig. 3). In the latter case both here and for
classes of regions considered below the proof requires some obvious changes and
we shall not consider it separately.

Now let us see in which cases a trajectory does not fall on the set tf/[ for a long
time. It is clear that this can take place when a trajectory reflects from one and the
same focusing component of the boundary during a long time, or has very long
series of consecutive reflections from the neutral part of the boundary of the
domain. The first possibility occurs when the corresponding segment of the
trajectory under consideration goes near to a certain periodic trajectory of the
billiard inside the circle which contains this focusing component, if the component
is larger than a half-circle (Fig. 1), or when the trajectory is almost tangent to the
boundary, i.e. times between two successive reflections are very small.

We shall consider the first case, when the arc Γ is larger than a half-circle. We
shall mention that before the first reflection from Γt in the series under con-
sideration the trajectory must intersect with the complementary arc Of .V .̂ Let us
consider the set of all line elements with one and the same support qeOf. This set
is a half-circle which we shall denote by Oq.

Let Bn = {xe0q:π(Tj(x))efi for l ^ j ^ n } . It is easy to see, that vq(Bn)<C/n,
where vq is the regular Lebesgue measure on Qq and C is a constant. Now let Dn be
a subset of π~ ̂ Of^/V), such that Dn = {x:Sτ(x)_ox = xo, Tkxoefi for all 1^/c^n}.
Then μO£(Bn)<C"'/n, where μ0^ is a measure on OΓ. induced by the measure μ on
M and C" is a constant. Therefore a measure of the set of those trajectories which
spread inside Of on an angle larger than 2πn is not more than C'C"/n2. So the
condition of the main theorem for the set of such trajectories is satisfied. One
can get analogous inequality for the measure of the set of trajectories which go
along the boundary of Γ . In fact, since d\= —const cosφdrdφ, the measure of the
set of trajectories which have more than n successive reflections from Γ and are
quasi-tangent is less than C/n2 because the angle between any segment of such a
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trajectory and a vector normal to the boundary is close to π/2. Consequently, the
condition of the main theorem is satisfied for this set of trajectories.

Let us consider at last a trajectory which for a long time undergoes reflections
on the neutral part of the boundary. It is clear that this can occur only in the case
when neutral components of the boundary are parallel and the trajectory under
consideration reflects from them with a very small angle φ.

Let <5>0 and Eδ

tlii = {x = {r,φ):π{x)edQ°,\π-φ\<l/nδ,\r-rf

i\<l/nδ}, where r\
(i= 1,2,3,4) are r-coordinates of the singular points of the boundary. It is clear

GO

that v{Eδ

nJ) = const/n2δ. Let δ=± + Θ, where θ>0. Then the series £ v(E*ti)

converges. Let us consider to the following important circumstance: if in a series of
consecutive reflections from the neutral components the angle of incidence is small
and equals φ 0 , then after the end of this series and after the following reflection (or
series of reflections) from any focusing component of the boundary the angle of
incidence in the nearest following series of reflections from the neutral part of the
boundary will be strongly larger than φ0 (for example, in the case of stadion
Φ i ^ 2 φ 0 , in the nearest following series of "neutral" reflections φ 2 = 4 φ 0 and so
on). Therefore for a long time after a series of reflections from the neutral
components in furthered, only shorter series of reflections from the neutral
components take place. So all the conditions of the Theorem 1 are satisfied for the
class of billiards under consideration in this section and the corresponding billiards
generate dynamical systems isomorphic to Bernoullian flows.

5.2. "Flowerlike" Regions and Circle Segments

The domains which are considered in this section have only focusing components
in their boundaries. Billiard in a circle segment is actually a special case of such
billiards (Fig. 4c) as it is equivalent to a billiard in a region which appears after
reflection of the arc of a circle relative to the chord (a neutral component). This
example is important also as it most clearly explains the necessity of condition 2
introduced in §1. In fact, condition 2 in our case means that the corresponding
region is a circle segment with a central angle more than π (i.e. contains a half-
circle). It is not difficult to prove, that if a circle segment is not more than half a
circle the corresponding billiard is nonergodic, i.e. for a half-circle it is obvious and
in the other cases there exists a stable periodic trajectory of period 2 (see Fig. 2b).

The proof that the conditions of our main theorem are satisfied is simpler in
this case than in the case of the preceding section, since here the third "bad" case is
impossible.
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In concluding this paragraph we mention, that there exist other classes of
regions satisfying the conditions of the main theorem. In particular one can
construct such domain by "putting together" pieces of different domains of the
type considered in Sects. 5.1 and 5.2. However, one can consider non singly
connected domains, i.e. from the interior one can exclude several subdomains and
the resulting billiards will still have the ^-property (one must look for preserving
of the properties 1, 2 and conditions of the main theorem). Examples of such
domains are represented in Fig. 5.

We shall mention that the billiard in the region represented in Fig. 5b does not
belong formally to the class considered in this paper since the boundary of the
subregion excluded is dispersing. But from the results of paper [5] and of this
paper it follows immediately that the billiard in this region is a β-system.

6. Multidimensional Generalizations and Consulding Remarks

Consider now any domain Q with peacewise smooth boundary in Euclidian space
Rn or on an π-dimensional torus with Euclidian metric. The billiard in Q is defined
in the same way like in the two dimensional case. The definitions of equipments of
unit normals of submanifolds of codimension one are defined analogously. Every
such equipment is a section of the unit tangent bundle. When the equipment is
defined one can introduce the operator of the second quadratic form of the
submanifold under consideration. The corresponding local bundle of trajectories
is in this case expanding or contracting if the operator of the second quadratic
form defined at the given point is positive or negative respectively.

One can define classes of billiards in multidimensional domain which cor-
respond to the classes we considered in this paper. First of all we make a simple
but very important remark: every trajectory of a billiard inside a sphere is flat and
moves along the circumference of a maximal circle of this sphere. The assertion of
this remark follows from the fact that three arbitrary points of the space define a
plane and from the law of reflection of billiard trajectories from the boundary.

Therefore, for example, billiards in regions with boundaries consisting only of
spheres possess the 5-property if conditions analogous to condition 1, 2 and to the
conditions of the main theorem hold. In particular, a billiard in a spherical
segment is a Bernoullian flow if this segment contains a half-sphere.

One can show also, that billiards in multidimensional domains which appear
under rotation of regions of Sect. 5.1. around the natural axis possess the B-
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property. In particular from the stadion we get a region with boundary consisting
of a cylinder and two half-spheres.

In conclusion we shall make some remarks concerning the connection between
the smoothness of the boundary of the domain and the statistical properties of the
dynamical system generated by the corresponding billiard. First of all we mention
that in all examples considered in this paper the smoothness of the boundary of the
domain Q was not more than C1. It is easy to see that if the boundary dQ is a curve
of the class Ck the corresponding derived automorphism Tof the flow generated by
billiard belongs to the class Ck~1. However in the paper of Lazutkin [7] it was
shown that a billiard inside a sufficiently smooth (Ck, /c^ 553) convex curve in the
two - dimensional plane possess infinitely many caustics which fill in a set of
positive measure. The new approach of Russmann [8] to the problem of small
denominators allows to relax the conditions in Lazutkin's theorem from C 5 5 3 bis
C8. It is obvious that the existence of a single caustic entails nonergodicity of
corresponding billiard. In this connection the following question arises: does there
exist for a generic sufficiently smooth convex curve in the two-dimensional plane
an ergodic component of positive measure of the corresponding billiard? [It is
natural also to mention here the paper [19], where the passage from an integrable
system (billiard inside a circle) to a stochastic system ("stadion") was studied with
the help of modelling on electronic machine. However every region in the interval
between these two extremes has a boundary of class C 1 only.] For an arbitrary
smooth curve this assertion is not right. For example, it is known [20] that the
billiard in ellips is a completely integrable system. The theorem by Dvorin and
Lazutkin on the existence of infinitely many periodic trajectories of hyperbolic
type for billiards inside a generic convex smooth curve in the plane can be
considered as an indirect support of this conjecture [21].

Acknowledgements. The author thanks Ya. G. Sinai for valuable discussions and C. Boldrighini for help
in translation into English.
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