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Abstract. We prove that the interaction among neutral atoms in Thomas-
Fermi theory behaves, for large separation I, like Π~Ί. The constant Γ is
independent of the atomic nuclear charges, but does depend on the relative
positions of the nuclei. We also show that Γ is not a simple sum of pair terms,
i.e. in TF theory three and higher body terms persist into the asymptotic (in /)
region.

I. Introduction

We investigate the interaction among neutral atoms in Thomas-Fermi (TF) theory
and prove that the interaction is asymptotically (const.) I"7 for large separation, /.
The non-neutral case will not be discussed because there the interaction is
asymptotically (const.) l~x for elementary electrostatic reasons.

The TF theory is defined as follows (see' [1] for a complete discussion and the
basic theorems): Define the functional

δ{Q) = l$Q(x)5/3dx - J V(x)ρ(x)dx + \Jf ρ(x)ρ(y)\x - y\ ~ ιdxdy + U

V(x)= Σzjlx-RjΓ1 (1.1)
. 7 = 1

for positive functions ρ(x) on R 3 in L5l3nLι. S(ρ) is the functional appropriate to a
system consisting of k nuclei of charges z. > 0 and located at i^eR 3 . The TF energy
is defined to be

(1.2)
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which we shall frequently denote simply by e(z R). The important fact is that there
is a unique function ρ which minimizes $(ρ). It has the property that

(i.e. neutrality) and satisfies the TF equation

Q2l3{x) = φ{x)=V(x)-^ρ(y)\x-y\-ίdy. (1.4)

This ρ is also the unique non-negative solution to (1.4). Equivalently

-(4π)-1Aφ + φ2/2 = £ zflx-Rj). (1.5)
7 = 1

We want to investigate e(z R) as the \Rt\ -> oo. It is relatively easy to prove that
k

e(z;R)-> Σ eat(Zj) as |.R.|->oo and \Rt — i^|->oo, all zφ;, where βat(z) is the energy
J = I

(1.2) for an atom, i.e. k = l,z1=z (which is obviously independent of R.). Hence we

consider

/(/) = φ;/R)- £ea t(z f) (1.6)
i= 1

where ZR = (ZKl9... JRk\ corresponding to a uniform dilation of the molecule.
We will prove two principal results: If we write

/(/) = C(/,z,R)/-7 (1.7)

then

(A) C(Z, z,R) is an increasing function of Z, (1.8)

(B) limC(Z5z,R)ΞΓ(R)>0, Γ(R) finite (1.9)
/->oo

exists. Γ is independent of the nuclear charges z /

It is amusing to note that in the quantum theory there is also a n / " 7 long range
(van der Waals) interaction for closed shell atoms provided retardation effects in
the Coulomb interaction are taken into account. However, the sign of Γ(R) is
negative instead of positive in the quantum theory and its physical basis is
unrelated to that of the TF theory [9].

The fact that Γ(R) is independent of z in TF theory comes essentially from the
following fact: The ρat(x) for a neutral atom located at R = 0 is asymptotically
given by Sommerfeld's formula [5] (see also [1]) ρ(x)^(3/π)3 |xΓ6, which is
independent of z. The l~ΊΓ interaction comes, in some sense, from the overlap of
the tails of the atomics ρ's.

Previously obtained, related theorems include the following: (a) Teller's
theorem [6] (see [1]) which says that /(Z)>0 for all I; (b) The theorem [2] that if
e(z R) is decomposed (by means of successive substractions) into 2, 3, 4, etc. body
terms then the even-body terms are all positive and the odd-body terms are all
negative (assuming all zt>0); (c) The theorem [3] that the pressure and
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compressibility are positive, i.e. /(/) is a decreasing, convex function of / (the
convexity theorem is stronger than the statement that the compressibility is
positive).

We are aware of only two previous analyses about the asymptotic nature of
f{l\ One is a preprint [4] by Lee, Longmire and Rosenbluth m which a numerical
evaluation of /(/) is carried out for two atoms of equal nuclear charge. They were
unable to determine the asymptotic form of/(/), but estimated that f(ϊ)^cl~Ί. The
other is a variational calculation by Roberts [10] of the same homonuclear
system. He derived variational upper and lower bounds to /(/) using (1.1) and
Firsov's principle [11]. The two bounds had a common term fo(l) and different
additional terms &l~Ί. Roberts claimed that fo(l)^l~6. If so, this would violate
the theorem of our paper. Upon closer examination, however, we were able to
show that fo(l)ϊzl~Ί, thus reestablishing consistency with our result.

We will also show that Γ(R), for fc^3, is not a sum of pair terms, i.e.

Γ(R 1,...,R k)Φ Σ Γ2(Ri9Rj),
l^ί<jSk

where Γ2 is the Γ for two atoms. All the many body terms are present, i.e. they
all have the same (non-zero) l~Ί dependence. By (b) above (Ref. [2]) we know the
sign of these higher-body terms. In the statistical mechanics of many-body systems
it is customary to assume that only two-body interactions are present, especially
for large distances. In TF theory this is not so. Admittedly, TF theory is not the
same as the correct quantum theory based on the Schrodinger equation, but it is
not entirely unrelated to it. In particular the TF energy is asymptotically equal to
the correct quantum energy as the z.-»oo, all i (see [1]). Therefore the result
obtained here may not be entirely without significance.

First we will prove that Pf(l) is bounded above (we know it is > 0 by Teller's
lemma). This upper bound is obtained by a variational calculation in Sect. II. It is
simpler than Roberts' [10].

In Sect. Ill, Theorem (A) (1.8) will be proved. The results of Sect. II and III
imply Theorem (B) (1.9). Section III also contains two different formulas for Γ(R).
These are not very explicit, however, for they require the solution of some TF
equations for the second formula this TF equation has strong singularities. Some
mathematical aspects of these equations are given in the appendix.

Section IV contains the proof that Γ(R), for fc^3, is not a sum of pair terms.

II. Upper Bound for Molecular Energy Differences

k

Here we obtain an upper bound for / = e(z;R)— ]Γ eat(zj) by a variational

calculation. Let Bv...,Bk be balls centered respectively at Rl9...,Rk, of radii
Άv...,Ak and such that the Bt are disjoint. Let ρ (x) be the atomic, neutral TF
density for an atom of charge z located at Rt. If χt is the characteristic function of
Bt, set ρi{x) = ρi{x)χi(x) and ρi(x) = ρi(x)[l — χi{x)']. As variational ρ for the molecule

take ρ{x)= £ ρ.(x). Although \ρ<Z, it is still true that ^ ( ρ ) ^ φ R) because
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k

e(z R) is the absolute minimum of g{ρ). Thus f^S(ρ) — Σ e^\zj) = Q- Since

ρί(x)ρj(x) = 0 for iφj, an easy computation (bearing in mind the TF equation for
neutral atoms and Newton's theorem for non-overlapping spherical charge
distributions) gives

f^g=Σ*j+ Σ QtQμt-RjΓ1, (2 i)
j=1 l£i<j^k

where

Since Qj(x)<(3/n)3\x — Rj\~6 for all x (see [1]), this latter function can be used in
(2.2) and (2.1). Thus

Qj<(6/π)2Aj\

If (2.3) is inserted in (2.1) and if the Rj are replaced by IRj (and likewise the A.
by lAj), we see that

...,Rk)ΓΊ. (2.4)

Note that (2.4), the bound (2.1), with the values (2.3) is independent of the z. for all
Rv ...,Rk, n o t j u s t large Rί, ...,Rk.

For two atoms separated by a distance R we can choose A1=A2=R/2 and
obtain [using (2.1) and (2.3)]

III. The Interaction at Large Distances

k

As before /(ί) = φ ; I R ) - X e ^ ).

By scaling [1] one has that

e(z;lR) = ΓΊe(l3z;R). (3.1)

Thus

C(/, z, R) = Γf{ϊ) = e(/3z R) - Σ ea t(/3^ ). (3.2)

Our problem is to show that the right side of (3.2) has a limit as /-> GO. In fact we
will show that

h(z) = e(z;R)- £ βat(z.) (3.3)
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is an increasing function of z [in the sense that h(z)^h(zf) if z^z'^ ΐ = l, ...,fc].
Thus, by Sect. II, h(z) has a well defined, finite limit as min {Z^-KXD. We call this
limit Γ(R). Since h is increasing, C{1, z, R) is increasing in /. Hence Γ(R) > 0 because
C is not identically zero.

We use the fact that e(z R) is differentiable in z [1] (in fact it is at least C 2 in z
[3]) and

et = de/dZi = lim [</>(z R x) - zt\x - RJΓx] , (3.4)
χ-+ Ri

where φ{z;R;x) is the TF potential for the neutral molecule at the point xeIR3.
Therefore

ht = dh/dz. = lim [</>(z R x) - φΛ\z{ Rt x)] . (3.5)
x ~~* Ri

This is positive (unless Zj = 0 for all j + i) by the strong form of Teller's lemma ([1],
Theorem V.6).

We can now derive explicit formulae for Γ(R). The first is to consider h(λz).
Differentiating with respect to A, using (3.5), and then integrating gives

Γ(R) = J dλ\ Σ zj lim ίφ(λz R x) - φ«{λZj ^ x)]l. (3.6)

It is not obvious from this formula that Γ(R) is independent of z. But we know that
it is independent of z (provided all zi > 0) by the previous remark (monotonicity of
z-+h(z)). Therefore we can take z = z° = (l, . . . , 1) on the right side of (3.6). Having
done so, it is then obvious from (3.6) that Γ(R) is a symmetric function of JR;.

A second advantage of formula (3.6) is that we will use it in Sect. IV to show
that Γ(R) is not simply a sum of pair terms (for k ̂  3). From [2] we know that the
3, 5, etc. body terms are :gθ and the 2, 4, etc. body terms are ^ 0 . The point we
want to emphasize is that all these terms are non-zero for large / in the sense that
they all have the same l~Ί behavior.

Next we present another formula for Γ(R) which is quite unsymmetric in the Rt

but which leads to an amusing variation of the TF equation in which strong
singularities appear. First suppose k = 2 and consider

hx= dh/dz 1 = lim {φ(zvz2;RvR2;x)-φΛ\z1;R1;x)}

= ψί(zvz2;Rί,R2). (3.7)

Then

ή(z)= jdsίψί(sί9z2;RvR2)9

o

because h = 0 when z1 =0. Now, for xή^RvR2,φ(zvz2;RvR2 x) is increasing in
z2 (by Teller's lemma). Let

φ{zl9 co ;RvR2;x)= lim φ(zvz2;R1,R2;x). (3.8)
z2-> oo
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We will prove in the appendix that the limit in (3.8) is finite, and it will be identified
as the solution of a TF equation with prescribed singularities at Rx and R2.
Moreover (Prop. A 5), as z 2 joo,

ψ1(zί,z2,RvR2)
J[ψί(zί,co;Rι,R2)

= \ϊmlφ(zva>;RuR2;x)-φ*Xz1;Ri;x)-]. (3.9)

Given this fact, and the monotone convergence theorem,

Γ(R)= ] dsίΨί(sv oo ;R19R2). (3.10)
o

The case k>2 can be handled in a similar way. We illustrate this for fc = 3.
Write

h(zl9z29z3) = e(zl9z29z3;Rl9R29R3)

We already discussed lim h{z2, z3) in the k = 2 case. The remainder of the right

side of (3.11) is, by a similar argument

00

$dsίΨl(sv co9co 9Rί9R29R3) (3.12)
o

where

ψ^s^co, co ;Rl9R29R3)

= ^[φ{sl9co9co9Rl9R29R3 9x)-φΛ\s1;Rί'9x)-] (3.13)

and

φ{sx, oo, oo ;R1,R29R3 ;x)= lim φ(svz2yz3;Rί,R2,R3;x). (3.14)

IV. Non-Vanishing of the Three and Higher-Body Interactions

The /c-body energy ε(z1 ?..., zk Rί9..., Rk) is defined by successive differences of the
total energy e. If a = {aί,... , α j (l^k) is a subset of the integers X = {1,... ,fc}, let
e(a) denote e(zaι,..., zaι Rai,..., RΛi), and |α| = / be the cardinality of a. Then

ε(K)= X (- l ) l £ l - l α lφ) (4.1)

with ^(Φ)ΞO. Thus,

ε({ 1,2}) = e(zί, z2;Rl9 R2) — eΆ\zλ) — eΆ\z2) = /ι(z1? z2;Rί, R2) (4.2)

is the two-body energy,

- e({2,3}) + βat({ 1}) + e"({2}) + βat({3}) (4.3)
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is the three-body energy, and so forth. In terms of h = e — Σ ea\ we can also write
(4.1), for | K | ^ 2 , as

ε(K)= £ (-1)1*1 -Wh{a) (4.4)
φQaQK

since Σ ( - l ) | δ | = 0 for \K\tl.

It was shown in [2] that the sign of ε(K) is (— l) ' x ' for all z and R. This was
done by noting that ε(K) = 0 when zί=0 and that

γ = lim ψ(K x)

where

ψ(K;x)= X (-1)1*1 -Hφ(α x). (4.5)
φQaQK

It was shown that (— l)^ψ(α;x)^0, for all x. Furthermore, it was claimed in [2],
but not explicitly proved, that (- l) | f l | φ(α;x)>0, all x, including x = Rv When
|α| =2, this is just the strong form of Teller's lemma [1].

As we saw in Sect. Ill, if R.-+IR. then h(ά)-*l~ΊΓ{α\ with Γ(α) = Γ{Rαi, . . , Λ J .

Furthermore Γ(α) = lim h(α). Therefore, the asymptotic form of the /c-body energy

is ΓΊεJK) with

U ^ H Σ (~l) |XMfl |Γ(α). (4.6)

In [2] we were content to prove that (— l) | κ | ε(K)^0, but now we must prove
that (— l)^εoo(K)>0 in order to be certain that the asymptotic dependence of ε(K)
on / really is Γ7 and not some higher power of 1//. For εoo({l,2}) = Γ({l,2})? we
already know this by the strong form of Teller's lemma. For the same reason,
Γ(K)>0 for all K.

In this section we will do two things: (i) We will prove explicitly (by refining the
method in [2]) that εoo({l,2,3})<0 for all distinct Rv R2, R3. The proof can be
extended to \K\ ^ 4 , but it involves the combinatorial lemmas given in [2]. (ii) We
will give a simple proof that ε^K) is not identically zero for all i^, ...,Rk.

To prove that εoo({l,2,3})<0, use the expression (3.6) (with z1=z2 = z3 = l) in
(4.6). Thus, it is sufficient to prove that

x) (4.7)

has the property that

lim ψ(x)<0. (4.8)
χ-+Ri

In (4.7) the notation is that φ123(x) = φ(λ9λ,λ;Rl9R2,R3ιx\ etc. If (4.8) is true for
all λ>0 then integration with respect to λ gives £^({1,2,3})<0. From now on we
set λ = 1 for simplicity.



238 H. Brezis and E. H. Lieb

By the TF equation (1.4), ψ is continuous everywhere since the |x — -RJ"1

singularities cancel (see [1]). We show that ψ(x)<0 everywhere as follows:

- (4π)" 1Δψ=-φ\'2

2

3 + φ\'i + φ\'i - φ\<2 (4.9)

everywhere in IR3.
First observe that if α, b, c, d are real positive numbers such that

dS(b and c)^a (4.10)

then

where

This is an easy consequence of the convexity of the function t—>ί3/2. If α = φ 1 2 3 ,
b = φ12,

 c = Φi3 a n d d = φv the inequality (4.10) (for each xeIR3) is just Teller's
lemma. Therefore we find,

that is

where c{x) = (3/2)φ{l2

3(x) on the set {x|tp(x)<0} and c(x) = 0 on the set {x\ψ(x)^0}.
Since [1] each φ behaves like |x —RJ" 1 near the singularities, ΔψeLfocϊor every
p<2. It follows from the U regularity theorem that ψeHloc; also φc)eLfoc for
every p<6 and in particular for some p>3/2. In addition ψ(x)-*0 as |x|-^oo the
strong maximum principle (see [7]) implies therefore that either ψ<0 every-
where or ΨΞΞO. If ψ = 0 we would have Φί2

JrΦί3 = Φi23JrΦi a n d
φ\12-\-φ3l2 = φ3/

2

2

3 + φl12. This is possible only ^Φ123 — Φ12 o r ^Φi23~Φi3- Since
Φ123>φ12 and Φ123>φί3 for all x (strong form of Teller's lemma: [1], Theorem
V.6) we conclude that ψ(x)<0 for all x.

As remarked before, a similar argument, together with the combinatorial
lemmas of [2], proves that (— l)^ψ(K x) (which is a continuous function) is
strictly positive. Thus (- l ) | κ | β o o (K)>0.

We turn now to the alternative proof that ε^K) is not identically zero. It
hinges on the following:

Lemma 1. Let Rv ...,Rk_ί be given and suppose that R^ι) is a sequence of vectors
such that R[n)->Rk_v Then

...,Rk^1)9 (4.11)

and

Γ(K1,...,Λk_2,JRW)->Γ(R1,...,Kk_1). (4.12)

To use Lemma 1, suppose | K | ^ 3 a n d l e t ε ^ Ξ ε ^ i ^ , ...,Rk_1,Rk

n)). Then, since

^ (_ l)lβl =0, we have from (4.6) and Lemma 1:
{k- ί,k}cacκ
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Lemma 2. lfRίk)-+Rk-1, and ifk^3, then

Corollary. Since εoo({l,2}) = Γ({l,2})>0, s^(K) is not identically zero.

The proof of (4.12) is easy. One can use (3.6), together with the continuity of the
TF φ in Rk and dominated convergence. Alternatively, one can use (3.10)—(3.14)
and the method of Proposition A.6 in the appendix. Next we consider (4.11).

fc-2

(4.11) is empty if \K\ g 2. If \K\ ^ 3, write the left side of (4.11) as £ A (n) where

We claim ΔJ(n)-+Γ{Rj9...9Rk_1)-Γ{Rj+l9...9Rk_1) = Δj9 for j<fc-2, while
Δk_2{n)-*Γ(Rk_2,Rk_1)~ΞΔk_2 in which case we are done. Now, as shown at the
end of Sect. Ill,

00

Δfn) = { dzj Urn ψβ. x n)
o χ~*Rj

Ψj(zj x n) = φ(zj9 oo,..., oo Rj9..., R[n) x ) - φ ^ R. x)

while
00

Δj= j dẑ  lim ψβj^x)
0 "̂"̂ ĵ

tp/z;. x) = (/>(zj? oo,..., αo Rp ..., # k _ , x) - φ*\Zj R. x).

To complete the proof of (4.11) we use Proposition A.6 together with dominated
convergence. •

Appendix

Our main purpose here is to study the function φ(zvz2,...,zk\Rv...,Rk;x) as
some of the z ^ o o . This will lead to a TF differential equation with "'strong
singularities" and we will study existence, uniqueness and other properties of these
equations. Some of these results were alluded to in the main text.

We begin with a Lemma about solutions to the TF equation away from
singularities (results of this kind, which are due to H.B., are quoted in [8]).

Lemma A.I. Let BR be the open ball of radius R in IR3 and suppose φ{x)^0 is locally
bounded in BR and satisfies the TF differential equation

— (4π)~1Aφ-}-φ3l2=0 (A.I)

in BR. Then φ(0)ScR~4for some universal constant c. In particular cg(20/π)2. (We
do not know the best constant c.)

Proof Consider the function ψ(x) = cRA'{R2 — | x | 2 ] ~ 4 in BR. It is easy to compute
that -(4π)~ίAψ + ψ3l2^0 in BR provided c^(20/π)2. We claim that φ^ψ. First,
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we can always assume that φ is bounded on BR (replace R by R — ε). Then
1 3 / 2 ^ 0 and therefore

Since (φ — ψ)+ =0 on the boundary of BR we have

-λ-\Δ{φ-xp){φ-ψ)+ = ±- J \V(φ-ψ)\2^0.

Therefore

and thus φ^ψ a.e. However Δφ is bounded and so φ is continuous. Hence

Corollary A.2. Suppose φ satisfies the TF differential Eq. (A.I) outside some
bounded set. Then φ(x) must go to zero at infinity at least as fast as c\x\~4.

Next, we consider the behavior of φ(z 1 ? ...,zk;Rί, ...,Rk;x) as z 2, ...,zfe-»oo for
fixed zί,Rί,R2, ...,Rk (we assume, of course, that the Rt are distinct). Our main
result is the following

Proposition A.3. As z2,...,zk\ + oo, φ ( z 1 } . . . , z k Rx, ...,Rk',x)|φ(x) where φ(x) is the
unique positive function which is locally bounded except at the R{ and satisfies, in the
sense of distributions, the TF equation:

-{4π)-1Aφ + φ3l2 = 0 (A.2)

m R3 \ U
i — 1

\φ(x) — z1\x — R1\~ι\ remains bounded as x-+Rγ, 1

\φ(x) — (3/π)2\x — Rj\~~4'\ remains bounded as x—>Rj(j>l).j

In fact

-Rj\
3 (A.4)

U i
i — 1

\~ι\

as x-*Rj (/> ϊ) for some constant c (which can depend only on min \Rt — Rj\).

Proof We will give the proof for k = 2; the extension is trivial. We know (see [1])
that

φ(z2;R2;x)^φ(z1,z2',Ri,R2;x)^φ(z1;Ri;x) + φ(z2;R2;x)

R)

By scaling and by Sommerfeld's asymptotic formula [5] (see [1])

4 as z 2 - + ^ ,
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if xΦK 2 . Consequently (A.2) and (A.3) follow immediately (use monotone or
dominated convergence theorem). We show now that the solution of (A.2) and
(A.3) is unique. Assume 0 ^ 0 , φ^O are two solutions of (A.2), (A.3) which are
bounded except near Rx and R2. It follows from standard elliptic regularity theory
that φ,φ are C 2 except near Rί and R2. Let ξ^O be a smooth function with
compact support such that Rίφsupp(ξ\ R2φsupp(ξ). We have upon multiplication
of the difference of the corresponding equations (A.2) by ξ(φ — φ\ and integration
by parts, that

(Φ-Φ)jr
OX:

Therefore, integrating by parts again,

Φ){φψ)ξ^l\ΦΦfΔξ.

We now choose ξ = ξn where ξn\l and ξn has the following properties:

ξn(x) = 0 outside Bn+1(0) and on Bίl2n{Rι)uBll2n(R2)9

ξn(x) = ί on BJflUBuJi

where Br(R) = {x\\x-R\<r}9 and

\Aξn\SCn2 on B^RJuB

\Aξn\^C for n<\x\<n + l,

with C independent of n.
Hence we find

%π\{φ^2-φi!2)iφ-φ)ξnύCn2 j \φ-φ\2

Bί/n(Rί)

+ Cn2 j \ψ-φ\2 + C j \φ-φ\2.
Bi/n(R2) « < | x | < n + l

As n-^oo the right side goes to zero (since \φ — φ\ is bounded near Rx and R2, and
\φ — φ\ goes to zero like |x|~4 at infinity (see Corollary A.2). Thus φ = φ a.e. The
fact that

follows by taking the limit in (A.5). The other inequality in (A.4) is a consequence
of our next proposition. •

Proposition A.4. Assume φ ̂ 0 , φ is locally bounded on the set {x\0 < \x\ < 2R} and φ
satisfies

2=0 (A.6)
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in the sense of distributions on {x|0<|x|<2JR}. Then

r\x\3

φ(x)^(3/π)2|xΓ4 + 4 f far \x\<R,
K

where c is the same universal constant as in Lemma A.I.

Proof. By scaling we can always assume that R = 1. The proof is divided into three
steps.

Step 1. Set ψ(x) = (3/π)2\x\~4 and u = msix{φ,ψ}. Then we have

S0 on {x|0 < |x| < 2}. (A.7)

This is a consequence of the following:

-(4πy1Aψ + ψ3/2=0 for |x |>0.

Since u = (l/2)(φ + ψ + \φ — ψ\% we deduce from Kato's inequality (see [12]) that

-ψ)Δ{φ-ψ))

Step 2. Let ΰ(r) = -—j | wbe the spherical average of u. We shall prove that
47ϋΓ \χ\=r

, for 0 < r < l , (A.8)

with the universal constant c:g(20/π)2. Indeed by averaging (A.7) we find

+ {4πy1(ΰ"+-ΰf)+~ΰ3j2S0, for 0 < r < 2 .

By the convexity of the function ίκ>ί3/2 we have ΰ3l2^u312 and thus for 0 < r < 2

- ( 4 π Γ 1 ( ΰ " + - ΰ / ) + ΰ 3 / 2 ^ 0 . (A.9)

We now introduce the function υ(r) defined by the relation

v{rΊ) = (πβ)2r4ΰ(r), 0<r<2.

It follows from the definition of u that v^.1 and by Lemma A.I, v(rΊ)^c(πβ)2 for
0 < r < l . Using the relation

ΰ(r) = (3/π)2r~4υ(rΊ) (A. 10)

and (A.9) we obtain

- r 1 V ( r 7 ) + (12/49)ί;(r7χ|ί;(r7)|1/2-l)^0.

With t = rη we find for 0 < α < 2 7
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It follows in particular that υ is convex. By Lemma A.I v(t) remains bounded as

t-+0. Thus lim υ(t) = v(0) exists. We must have v(0) = 1 otherwise for small t (A.I 1)
ί-* 0

leads to υ"(t) ^ at ~2 with some a > 0 and thus v(t) }£ c — αlog t, which contradicts the
boundedness of v. We deduce from the convexity of v that u(ί)^l+c(π/3)2ί, for
0 < ί < l , since υ(l)^c(π/3)2. By (A. 10) we have now for 0 < r < l

Step 3. For | x | < l define

It suffices to prove that w = max {φ,ψ}^Lω. For |x| = l u(x)^ω(x) because
ψ(x)^ω(x) and φ(x)^ω(x) by Lemma A.I. Next we observe that

^O for | x |>0. (A.13)

Indeed we have

- (4π)~ γAω + ω 3 / 2 = - (3/π)[(3/π)2r- 6 + or-]

+ ((3/π)2r~ 4 + cr 3 ) 3 / 2 ^ (3/2π)cr ̂  0,

[using the fact that (1 + α ) 3 / 2 ^ 1 +(3/2)α]. Combining (A.7) and (A. 13) we find for
0 < | x | < 2

Let ξn(x) be a sequence of smooth functions such that 0^ξnS 1>

1 for |x| > -
n

0 for | x | < l
2n

\Δξn\^Cn2.

Let θ(t) be a smooth function such that 0'|>O, 0(r) = O for ί^O, θ(t)>0 for t>0,
ί

) ^ 1 for ί^ 1. Set j{t) = $θ(s)ds so that 0 ^ ; ( 0 ^ ί + f o r a l l f Multiplying (A.14) by
o

ξn(x)θ(u — ω) and integrating by parts on | x | < l we find (using the fact that
u - ω ^ 0 on |x| = l)

4π)~ x J

Using the relation V{u ~ ω)θ{u — ω) = P/(M — ω ) a n d integrating by parts again we
obtain

f j ( t t - ω ) .



244 H. Brezis and E. H. Lieb

But j(u — ω) S {u — ω ) + ^ (u — ψ)+ = u — ψ (since ψ ^ ω). Consequently,

j (u3l2-ω3/2)ξnθ{u-ω)SCn2 J (M-y>)

by Step 2. As w-»oo we obtain

j (u3l2-ω3l2)θ(u-ω)^0
\x\< 1

and therefore u ̂  ω for |x| < 1. Π

Remark. One can improve the conclusion of Proposition A.4. In fact, let p denote
the positive solution of p(p + l) = 18 (p>3). Assume (A.6) holds with JR = 1. Then

fi) \xΓ4 + c\x\» = ώ(x)

for [x|< 1. Indeed, using the same argument as in Step 3, it suffices to verify that
ώ(x) satisfies

which follows from an easy computation.
Next we prove Proposition A.5 about the interchange of limits that was used at

the end of Sect. Ill and which will also be used in Proposition A.6.

Proposition A.5.

lim lim tφ(zι,z2,...,zk;RvR2,...,Rk;x)-φ*t(z1;Rι;x)-]
Z2~> GO X-+Rι

= lim lφ{z1,ao,...,co;R1,R2,...,Rk;x)-φ'\z1 ,R1 ,x)],

Proof. For simplicity we assume k = 2.

Step 1. The right side of the last equation exists. To simplify matters set:

(x) = φ(zι,ca;R1,R2;x)

We know that in the sense of distributions in R3\{K2}

Recall that [1]

\x-R2Γ
4.
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Clearly

Therefore we can pass to the limit in (A. 15) using dominated convergence. This
leads to

-—Aψ + ψ'i^Ziδix-RJ
4π

in the sense of distributions in IR3\{JR2}. It follows that

4π

in the sense of distributions in IR3\{JR2}.
Finally observe that φ3 / 2-(φa t)3 / 2eLf0 C(IR3\{K2}) for each p<2. Now we rely

on the regularity theory for elliptic equations: if a function u satisfies ΔueLfoc(Ω)
n

with p > - o n an open set ΏclR" then u is continuous on Ω.

It follows that φ — φai is continuous on R 3 \{JR 2 } .

Step 2. Recall Dini's Lemma: Let fn(x) be a sequence of continuous functions on a
compact space K such that fn{x)]f{x) (pointwise) as n->oo. If f{x) is continuous,
then in fact /„-»/ uniformly in K.

[In particular lim lim/M(x) = lim lim/n(x)].

In our context choose

= φ(x)-φat(x)

and K any small ball around Rx. •
Finally, we consider the behavior of the solution of the TF Eq. (A.2), (A.3) with

strong singularities as two of the strong singularities coalesce.

Proposition A.6. Suppose k^3 and Rv .. .,Rk_ί,zί are given. Let R^ be a sequence
of points in R 3 such that R(£)->Rk_1 as n->oo. Ifφn(x) is the solution to (A.2), (A.3)
for jRl5 ...,l^w) and φ(x) is the solution for R1,...iRk_ί then φn(x)-+φ(x) as n->co
(xή=R ) . Moreover,

lim i φ ^ - φ ^ R. xn^lim lφ(x)-φa\z1;R1;x)-].

Proof For simplicity, we give the proof for k = 3. As in the proof of Proposition
A.3 we have

( 3 / π ) 2 | x - K 2 Γ 4 ^ φ n ( x ) , Vx. (A.16)

Also we have [1]

2nx-R2Γ
4 + \x-RfΓA-]. (A. 17)

It follows that φn is bounded on every compact subset K of ]R3\{Λ1}u{K2} and so
is Δφn. Therefore φn is bounded in Cι(K) and by the Theorem of Ascoli we may
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extract a subsequence φnk which converges to a limit φ uniformly on every
compact subset of lR3\{Λ1}u{K2}. Clearly φ satisfies

in the sense of distributions on IR3\{K1}u{JR2}. In addition we deduce from (A.17)
that \φ(x) — zι\x — R1\~1\ remains bounded as x-*Rv Also, we know by
Proposition A.4 that

for x near R2. Combining (A. 16) and (A. 18) we see that

\φ(x)-(3/π)2\x-R2Γ+\

remains bounded as x->R2. We know by Proposition A.3 that these conditions
determine φ uniquely and thus φ must coincide with the solution obtained in
Proposition A.3. Π
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