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Abstract. We define geometrically two-cluster scattering states by their asymp-
totic space-time behavior. We show that these subspaces coincide with the
ranges of the two-cluster wave operators, or modified wave operators if both
clusters are charged. In particular this proves asymptotic completeness and
absence of a singular continuous spectrum of the Hamiltonian below the
lowest three-body threshold.

Introduction
It is common belief that two-cluster scattering and two-particle ( = poten-
tial-)scattering are closely related. Asymptotically it should not matter
whether two particles or two bounded subsystems move apart from each other
and become free. Indeed Combes [2] could prove asymptotic completeness below
the three-body threshold where the asymptotic breakup into more than two
clusters is energetically forbidden. Simon simplified [14] Combes' proof and
extended it [15] to include more potentials. Simon's treatment allowed charged
particles but at least one of the clusters had to be neutral1. Our method includes the
case where both clusters are charged (which requires the use of modified wave
operators), also more general short range interactions which may be velocity
dependent are included.

To avoid the energy restriction we introduce two subspaces (2in,2out) describing
the incoming or outgoing two-cluster scattering states. We characterize them
"geometrically", i.e. by their behavior in space and time. In these states the
particles within each of the clusters "stay together" asymptotically in the past or
future whereas the clusters separate (we give the precise definition below). This is a
natural extension of Ruelle's geometric characterization of bound states and
scattering states [13].

We show that 2in/out coincides with the direct sum of the ranges of the
corresponding two-cluster (modified) wave operators. Using compactness argu-
ments we can decompose any state from 2out at a sufficiently late time into a finite

* Present address
1 See "Note Added in Proof
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sum of simple parts: each component is a bound state in each cluster and the
clusters are arbitrarily far separated. These pieces can be further treated with the
methods developed for potential scattering in [5] and [6]. We assume distinguish-
able particles but the changes necessary to accomodate identical particles are
obvious.

We have not given the most general results. Combining this paper with the
detailed analysis of Simon [16] it should not be hard to include more general
Hamiltonians, Dirac-systems, highly singular repulsive potentials, absorptive
interactions, exterior static electromagnetic fields etc.

For a general ΛΓ-particle state the decomposition used here can be continued
such that only finitely many bound states have to be considered within each
cluster. This will be given in a separate paper.

N-Body Dynamics, Some Notation

We study a system of N distinguishable particles of masses m , each moving in
v-dimensional space. We separate off the conserved center of mass (CM) motion,
the n = v(N— 1) dimensional configuration space is

{
N \

x = (xί x2 xN)|x'ElRv V m x* — 0> (1)
i = l J

The very convenient JV-particle notation used here is taken from Appendix 1 in
[3], see there for details, some of our definitions differ by a factor 2.

The conjugate momenta p are elements of the dual space X*

(2)
i=l J

with the bilinear form

(P,X)= Σ Λ X'. (3)
p. x' the usual inner product in IRΛ The velocity ϋ = (v1,... ,\N) = dx/dteX. The
relation P; = m.v1' provides a natural identification oΐX with Jf* and thus from (3) a
scalar product on X

N

<*,j>> = Σ miχ' y' (4)
i — 1

dx denotes the volume element oίX w.r.t. the metric (4), then ffl = L2(X,dx) is the
state space. The free Hamiltonian H° on ̂  is the selfadjoint operator

H°= ΣWMp*)2- (5)
i = 1

Let D = (C, C") be a two-cluster decomposition of {1,2, ... ,JV} =
' = 0; C, C"Φ0. (In this paper D always denotes a non trivial two-cluster

decomposition.)

ieC ieC
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are the mass and the CM-coordinate of the cluster C resp.

-Xc \ίeC (7)
0 otherwise v '

defines an orthogonal projection on X, equipped with the scalar product (4),
moreover 77C, 77C,, and ΠD given by

ΠD = t-Πc-Πc, (8)

are paΐrwise orthogonal projections. They generate the splitting

X=XD.®XC®XC, (9)

leading to the decomposition

Xc = ΠCX is a v(K — 1) dimensional space if K particles are in the cluster. zc = Πcx
describes the internal configuration of the cluster in its CM frame.

|zc|
2 = <x,/7cx>= Σm/z')2. (11)

j'eC

The volume element or\Xc corresponds to (11). J>fc = (C if only one particle belongs
to C.

XD is v-dimensional, it can be parametrized by the coordinate

y = xc,-xc (12)

and has Euclidean metric.
The relative velocity of the centers of mass of the clusters is

and p is the conjugate momentum to y if

~1 , (14)

μ is the reduced mass of the two clusters which depends on the decomposition D.
Under the decomposition (10) the free Hamiltonian (5) splits into

= H0 (8)1(8)1 + l®Hg(

, (15)

where H£ is the kinetic energy of the particles in cluster C after separating off their
CM-motion, H0 = (2μ)~1p2 is the relative kinetic energy of the clusters.

The operators F( ) and F0( ) are the same as in [6], F( ) denotes multiplication
with the characteristic function of the operator and the region specified in the
parantheses. F0( ) is multiplication with the function obtained by convoluting the
characteristic function of the specified region with a fixed function ζe 5^(IRV). It

obeys fdvx£(x) = l, and suppf(p) is contained in a ball of radius /minμ\α/2;
I D I

0<α^l a constant to be fixed later. We will need one more multiplication
operator. Let ipeS)^) obey Q^ψ(λ)^l, ψ(λ) = ί(0) if λ^l (^2).
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Define for r > 0

vφ|/r). (16)

Then ||£|| = 1, Ee^(IRm)

l im| |FE| |=0, lim \\ΔE\\ = 0 (17)
r — > oo r— >• oo

no matter what the dimension m of the vector u is or which of the norms above is
used. We use the shorthand

The interaction is given by pair potentials Wtj and iΓ^ (also three-^nd more-
body forces can easily be included). Wtj describe possibly singular and velocity
dependent forces of short range given as multiplication or pseudo-differential
operators. We assume that on L2(1RV) they are form bounded relative to ( — A + 1)
and obey

(18)

The long range forces (like Coulomb forces in IR3) are given by Ί^ , the
multiplication with the once continuously differentiable function ̂ /x) vanishing
at infinity which fulfills

|FlT:/x)|^const(l+|x|Γ(1+y), l^y>(3v + 2)/(3v + 3). (19)

According to a construction of Hormander [7] any such function can be split
into a smooth function with specific decay properties of its Fourier transform and
a remainder of short range. If one decomposition of the interaction W^ + ̂ j obeys
(18) and (19) then we can replace it by a better one H^ -h^ . Thus without loss of
generality we may assume that i^.j has the specific decay properties, for details see
[6].

Ic=Σ Wij + ̂ /χί - χj) ' '> & C (20)

i<j

is the interaction within the cluster C. Our next assumption is that for all clusters C
(including that of all particles)

\\2 (21)

for all fej2(Hg), α<l.

//C = H° + /C (22)

is a selfadjoint semibounded operator with Ά(HC] = J(H°) (Theorem X.17 in [11])

HD = H0 + HC + HC, = H-ID (23)

is the Hamiltonian where the inter-cluster interactions

ID=ΣWiJ+ir tj(xί-χJ),' ieC, jeC (24)
i,j

are removed, H the total Hamiltonian.

Qxp(-iHDt) = Qxp(-iH0t)®Qxp(-ίHct)®Qxp(-ίHct) (25)

preserves the decomposition (10).
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The last assumption is technical, we have to exclude slowly decaying wave
functions of bound states. Let C be a proper subset of {1, ... , JV}. For any ΦeJ^c

with HCΦ = EΦ we require

]dr\\F(\zc\^R*)Φ\\<ao, (26)
o

for some α<y ̂  1, or α = 1 if no long range forces are present.
For big classes of interactions all bound states decay exponentially, but there is

also an explicit example in one dimension of a bound state at the threshold which
violates (26) [16]. We hope to remove this assumption eventually.

The intercluster long range force is given by

^(yHΣ^ (y)> iεCΊ 7'ec. (2?)
For Coulomb forces ϋ^D Φ 0 only if both clusters are charged. If iΓD is short range
it may be treated with the short range part of ID and be disregarded below.

The "modified free" Hamiltonian [4] H'0(t) = H0 + ̂ (Vί) generates on j^D the
time evolution

I70(ί, 0) = exp - i \H0t + } dτi^D(Vτ)\ . (28)
I o J

On ffl the modified free time evolution corresponding to the cluster decom-
position D is

UD(t, 0) = [70(ί, 0)® exp( - zHcί)<g)exp( - ϊHc,t) . (29)

Denote by Pcont(/f ), Pp(H) the projection on the continuous resp. point - spectral
subspace of a Hamiltonian H. Then the modified two-cluster wave operators are

β? = s-lim exp(*Ht)iy t, Q)Pp(Hc)Pp(Hc,) . (30)

The existence of these wave operators is well known [12], it also follows as a
byproduct of our completeness proof. For different D the ranges are orthogonal.

Finally we remark that (H£ + z)1/2 and (Hc + ί)1/2 are bounded relative to each
other, the same is true for (H° + 01/2

? (HD + i)112, and (H + ί ) 1 1 2 . Consequently
F(\x\^K)(H + iΓ112 and F(\zc\^R)(Hc + iΓ1/2 are compact for any

Two-Cluster Scattering States, the Main Result

Ruelle [13] gave a geometric characterization of scattering states and bound
states, the latter were those states where all particles stayed together uniform in
time. He showed that these subspaces coincide with Pconi(H) and Pp(H) resp.
Amrein and Georgescu [1] extended the result and found that the crucial
assumption was the compactness of Fd^l^KX/ί + i)"1 for all R<co.

Applying Ruelle's ideas to the subsystems we define the incoming (outgoing)
two-cluster subspaces 2in (2out) (A V B : =A+B — AB for commuting operators A
and B).
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Definition. Ψe2out if ΨePconi(H) and for any ε>0 there is an r(ε)<co such that

sup i-V F(\zc\ ^(£))f (\zc \ ^Φ))l exρ(- ifft)!P
D \

<ε. (31)

Ψe2in if the same holds for ί^O.
Obviously 2in and 2out are closed linear subspaces, furthermore they are

invariant under finite time translations : assume (31) holds for ί ̂ τ. For any Ψ the
set {exp( — iHt)Ψ\0^t^τ} is compact because exp( — iHt) is strongly continuous
and thus all exp( — iHt)Ψ lie in an ε-neighbourhood of finitely many exp( — iHt^Ψ.
For a big enough r'(ε) < oo

sup \\[ί-F(\x\^r(ε))-]exp(-ίHt)Ψ\\<ε (32)

which implies (31) for ί^O with a possibly bigger r(ε). It follows that the states
from 2out with finite energy are dense in 2out.

We do not assume that the decomposition becomes stable. In fact one could
imagine for a potential as given by Pearson [10] that two clusters move away from
each other, come back, scatter and rearrange, move away, and so on indefinitely.
Such a state could well be in 2out. But for the interactions we consider this is ruled
out by our completeness result.

We will show :

Theorem. Let the interactions obey conditions (18), (19), (21), and (26) then for two-
cluster decompositions D

a) 2 i n=9RanΩ»
D

2 o u t=0RanΩ».
D

b) // Σ3 is the lowest three-cluster breakup threshold of H then

Corollary. Under the assumptions of the theorem H f^(JΪ)nspan(2ίn,2out) has no
singular continuous spectrum.

Behaviour of Far Separated Clusters for Finite Times

Fix a two-cluster decomposition D. For big enough R the operator

(33)

singles out the component where the clusters C and C are far separated up to a
rapidly decreasing tail. For ieC", jeC

Ix^-x^ly + z^ + z^lyl-^minm.)-1/2 (34)

We first show that for any given time interval |ί| ^τ < oo the clusters remain far
separated if they were that initially. We choose the constant /?>0 such that the
clusters are separated at least by βR in the range of

(35)
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Remember that F0( ) depends on a constant 0<α^l to be chosen later.

Lemma 1. For any 0<α^l, r<oo, τ<oo, £<oo

lim sup \\F(H0^E)F(Hc^E)F(Hc^E)FM^R)E(\zc\^r)E(\zCf\^r)
R^oo |ί |^τ

• exp ( - iHDή(HQ + 0(1 - £(|y I ̂  Rβ)F(\zc\ ^ βR)F(\zc. \ ̂  βR)} || = 0 , (36)

where β'1 =3(1+ 4(minm.)~1/2).

Proof. The norm in (36) is bounded by

x { !| F(HC ^ E)E(\zc\ ^ r)exp ( - iίfct)F(|zc| ̂  βR)\\ + || C^C \\ }

(37)

F(Hc^E)E(\zc\^r) is compact on Jfc for all £<oo, r<oo, thus the set

c, ||Φ|| =1}

is compact in 3fc (compare the paragraph following the definition of 2out). Since
s-lim F(|zc|^£) = ί on 2/ec we have for any β>0

fi->CO

lim sup ||F(Hcg£)£(|zc|gr)exp(-iHcί)F(|zc|^j8R)|| =0 (38)
K ^oo | ί | iτ

on J ĉ and on 2tf.
For the estimate of the free relative motion of the clusters we use formula (8)

and Lemma Γ in [6].

^ || F(|y| ̂  2Rβ)F0(\γ + vί| ̂  ̂ (v))) (39)

if χe^(lRv), χ(v) = l on μ\\\2^2E.
For |ί|^τ S(ί) is contained in a ball of radins 2R/3 + const, the distance d

becomes arbitrarily big for big R. Thus by Lemma Γ

lim sup ||F(H0^£)F0(|y|^Λ)exp(-ifί0ί)£(|y|^R/3)|| =0 (40)
R^ao \t\£τ

on jeD and on Jf. The same is true if £(|y|^R/3) is replaced by
(Ho + O^dyl^-R^XHo + z)"1 because the difference of the two terms vanishes in
norm as R-^σo. Moreover

|| (H0 + ί)£(|y| ̂  Rβ)(H0 + i)exp ( - iH0ί)F0(|y| ̂  R)F(H0 ^ £)||

is bounded uniformly in R > 1 and ί, this implies

lim sup |

With (37) this completes the proof. D
As long as the clusters stay far apart the coupling between the clusters ID (24)

does not affect the motion.
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Lemma 2. For any 0<α^l, r<oo, τ<oo

a) lim

• {exp (-iHt)-exp(-;Ήflί)}(# + ίΓ1/2 11=0. (41)

b) For any φ with

lim \\(HD + ιT 1I2F 0
R-»oo

•{<p(ίί)-φ(HD)}(ί/ + ;Γ1 / 2 |!=0. (42)

Proof, b) The norm in (42) is bounded by

j Λ|φ(ί)| || (HD + 0 ' 1/2F0(|y| ̂  Λ)E(|zc| ̂  r)E(|zc,| ̂  r)

.{exp(-iHt)-exp(-iHDt)}(H + ί Γ 1 / 2 \ \ .

By the dominated convergence theorem it is sufficient to show that for each finite t
the norm in the integrand vanishes as R-*ao, which follows from Part a).

a) The semiboundedness of H0, Hc, and Hc, implies

lim ||(HD + 0-1/2[l-F(H0g£)F(/ίcg£)F(Hc,g£)]||=0. (43)

Thus it is sufficient to estimate (41) for finite energy E in each factor space.
Furthermore

ί
{exp ( - iHt) - exp ( - iHDt)} = - ί J dsexp ( - iHDs)IDexp ( - iH(t - s)) , (44)

o

thus (41) follows if for any 0 < 0 ̂  1 r, τ, £<oo

lim τsup |
R->oo | s |^τ

•E(|zc|^r)£(|zc. ίr)exp(-iHDs)ID(H + iΓll2\\ =0. (45)

The norm in (45) can be split

|| F(H0 £ E)F(HC £ E)F(HC, ^ £)F0(|y| ̂  R)£(|zc| ̂  r)£(|zc,| ̂  r)

• exp ( - ίHDs)(H0 + 0(1 - £(|y| ̂  R/3)F(|zc| g

1 / 2 l l (46)

By Lemma 1 the first factor in the first summand decays as R->co uniform in
|s| ̂  τ, the second factor is bounded. The first factor of the second summand is
bounded uniform in R. For any of the pairs ieC',jeC|x' — xj\^.βRiΐί the range of
E(\γ\^Rβ)F(\zc\^βR)F(\zc,\^βR). With the translation invariance of (H0 + iΓl

we obtain for the last factor in (46) the bound

^\\F(\»\^βR)\_~(2μΓϊΔu + iY1(Wίj + i^i}}(H + iΓm\\ (47)
i , j

which vanishes as R^co. Π
The following easy consequence of Lemmas 1 and 2 shows the stability of a

cluster decomposition for a finite time interval.
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Lemma 3. Let D = (C, C) denote the two-cluster decompositions different from D.
For any r, r', τ < oo, 0 < a ̂  1

lim sup || (HD + ΪΓ1 /2F0(|yI ̂  R)E(\zc\ £ r)E(\zc,\ ^ r)
K->oo |ί|^τ

exp(-iffί) V F(\zc\^r')F(\zc\^r')\\=Q. (48)
D Φ D

Proof. For any D there is at least one pair of particles which are within one cluster
of D but in different clusters for D. Thus for big enough .R

E(\y\^Rβ)F(\zc\^βR)F(\zCf\^βR) V F(\z-c\^r>)F(\z^r>) = Q . (49)
D Φ D

The application of Lemma 2a), (43), and Lemma 1 completes the proof. D

Corollary. Lemmas ϊ-3 remain true if for one or both clusters E(\zc\^r) is replaced
by E(\zc\^r)Pconi(Hc) or E(\zc\^r)Pp(Hc).

Proof. In the proofs of Lemmas 1-3 in jtfc we have used nothing but compactness
of P(Hc^E)E(\zc\^r). This is not changed by the additional spectral
projection. D

If a state belongs to the continuous spectral subspace of the Hamiltonian of
one (or both) of the clusters then that cluster will decay if it is far enough separated
from the other.

Lemma 4. For any 0<α:gl, r, ρ<oo, ε>0 there exists a τ(ε) such that

lim \\(HD + ιT 1/2FM^R}E(\zc\^r)Pcont(Hc)E(\zc,\^r)
R-+OO

|£ρ)||<ε. (50)

Proof. Choose E big enough such that the norm in (43) is smaller than ε/2.
F(HC ^ E)E(\zc\ ^ r)Pcont(Hc) is a compact operator on $ec. By the estimate of
Amrein and Georgescu [1]

|| F(HC ί E)E(\zc\ ί r)Pcon((Hc)exp (- iHct)F(\zc\ ^)ll (51)

tends to zero in the time mean. So we can find a τ(ε) such that (51) is smaller than
ε/2. This proves (50) for HD, and by Lemma 2a) for H. Π

Asymptotic Decomposition of Two-Cluster States

Let for some E<aoΨE2outπF(H^E)34f. We show first that it eventually splits
into far separated two-cluster components. From here on D is no longer fixed but
runs over the two-cluster decompositions.

The coordinate y which depends on D will be denoted by yD.

Lemma 5. For any R there is a 0 ̂  T(R) < oo such that with ε, r(ε) as given in (31) for
any r^r(ε)

lim exp (- iHT(R)) Ψ-Σ ίΌflyJ ^ R)E(\zc\ ^ r)E(\zc.\ ^ r)

exp(-iHT(R))Ψ\\<ε. (52)
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Proof. Since ΨePcont(H)j4f there exists by Ruelle's theorem for any R a T(R) such
that

lim \\F(\x\^2R)Qxp(-iHT(R))Ψ\\=Q. (53)
J?->oo

Then for each D, r(ε) ̂  r < oo

lim \\F0(\yD\^R)E(\zc\^r)E(\zc,\^r)exp(-iHT(R))Ψ\\ =0.
Λ — > GO

Finally \/ can be replaced by £ because the product of FQEE for two different
D D

clusters vanishes as R->co. D

Lemma 6. For every D, 0 < 0 5Ξ 1, r<oo

a) lim ||F0(|yD|£Λ)E(|zc|£r)£(|zc,|£r)
K-+00

•^cont(#c) V f con,(#c )exp ( - iHT(R))Ψ\\ = 0 . (54)

b) For any φ with φeZ^OR.A)

lim HFodyJ ^R)E(\zc\ gr)£(|zc,| ίr)Pp(Hc)Pp(Hc,)
J?->00

•{<K/0-?W}exp(-i/f7XΛ))ϊ1 =0. (55)

Proo/ a) For any ε>0 there is a r(ε) according to (31). By Lemma 4 there is a τ(ε)
such that

lim
#->oo

ε. (56)

(56) and the corresponding estimate for cluster C', the corollary of Lemma 3 and
(31) at time T(R) — τ(ε) give for any ε

lim \\(HD + i
JR->oo

• ̂ cont(^c) V PCOnt(^c')exp ( - iHT(R))Ψ\\ < 4ε . (57)

Observe that the expression (57) with || (HD + ΐ) + 1/2 . . . || is bounded uniform in R, T(R\
and r^l, this implies (54).

b) (55) follows from the Corollary of Lemma 2b) and the final argument in Part
a) of this proof. D

If φe0(IR), φ(ώ) = ί for |ω| ̂ E, |φ(ω)| ̂  1, one has φ(H)Ψ=Ψ and \\φ(H)\\ = 1.
For these φ and any r^r(ε) we have shown

lim || exp ( - iHT(R)) Ψ - X F0(|yB| ̂  R)E(\zc\ g r)Pp(Hc)
R-+CC

.E(\zc,\^r)Pp(Hc,)φ(HD)exp(-ίHT(R))Ψ\\ £ε. (58)

There is some E' such that the range of φ(HD) is contained in the range of
F(HC^E')®F(HC, <,E'\ Let {|αD>|αeN} be the orthonormal set of all product
eigenstates of Hc and Hc, simultaneously, then Pp(Hc)Pp(Hc.) =
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Since E(\zc\^2r(&)}F(Hc^E'}E(\zc, £2r(ε))F(Hc,^E') is compact on
there is an N(ε) < oo such that

E(\zc\£2r(ε))E(\zc,\£2r(ε)) Σ \*D><*D\F(Hc£E')F(Hc,^E')\\<ε. (59)
a>N(ε)

We use the Corollary of Lemma 2b) again and insert (59) into (58) to obtain for

lim
D

N(ε)

*DX*D\exp(-iHT(R))Ψ <2ε. (60)

In a last step we will eliminate the ^-factors by adding [1 — E(\zc\
^2r(ε))E(\zσ\^2r(ε)J] ... to the approximation in (60) with r = 2r(ε). To see that
this contribution is small observe that the ranges of E(\zc\^r(ε))E(\zc,\^r(ε)) and

] are orthogonal and that

Σ FodyJ ^R){E(\z c \ ^ r(s))E(\zc\ ^ r(ε)) +1

N(ε)

Σ

= 0.

lim

because

lim
ρ-» oo

Then a simple calculation shows

(61)

(62)

lim - £(|zc| ̂  2r(8))£(|zc,| ̂  2r(£))]

Λ/(ε)

(63)

We sum up the results of this section:

Lemma?. Let Ψe2outπF(H^E)j4f for some E<oo. For any
exists an N(s)<ao and for any R a O^T(R)<ao such that

^l, ε>0

a) lim

N(ε)

Σ \*DX*D\exp(-iHT(R))Ψ
α = l

b) For any φ with φεL1(]R^dt) and any D

N(ε)

(64)

lim \*DX*D\{φ(H)-φ(HD)}πp(-iHT(R))Ψ -0.
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The second statement follows from (62) and an argument like that in the proof
of Lemma 6b).

Note that the number of channels N(ε) depends on E and r(έ) but is otherwise
independent of Ψ. In particular it is independent of R and T(R).

From the properties of the interaction we have used so far only compactness
and that the forces decay at infinity, no matter how slowly. The specific decay
assumption will be used only in the next section.

Reduction to Potential Scattering

From now on keep ε>0 and Λf(ε)<oo fixed. Denote by εDα the eigenvalue of

lαί)Xαι>l f°r HC + HC' ^en for any φ

eJ)β)|αD><α1)| . (65)

For Ψ and ε>0 given, there is a φe^(IR) (which will also be kept fixed) such that

|φ(ω)|^l, \\Ψ-φ(H)Ψ\\<ε (66)

and φ(ώ) = 0 in an open neighbourhood of each of the finitely many points
ω = εDα. Then there is a sufficiently small 0 < a ̂  1 such that

φ(ω) = 0 on &Ό ^ω^εD + /maxμUl7α)2/2 (67)
\ D ί

for all D and all α^ΛΓ(ε). If in φ(H)Ψ the clusters are far enough separated then by
Lemma 7b) the relative velocity of the clusters in bounded below by 1 la.

From here on the remainder of the proof is almost identical to the potential
scattering situation, we refer to [6] for all details (or [5] if no long range inter-
cluster force is present). The position and velocity of the particle becomes in this
context the relative position y or the relative velocity v of the clusters. With respect
to these quantities the phase space decomposition is made, the intermediate and
final modified free time evolution are analogous with ifD (27) used as long range
potential, and the same estimates of the space-time behavior (in y and t) apply. The
only difference is that the potential decays with the distance of the particles \xl — x7|
instead of the distance of the clusters |y|. We take care of this with an additional
splitting of the cluster states.

In the case of one particle the splitting was made time dependent by projecting
to those parts of space where either the potential is small or the state, in both cases
the time integral over the future (or past) had to be small. In the two-cluster case
the same is true for the following splitting with α < y ̂  1 if long range potentials are
present or α = l otherwise; jS = (minm ί)

1/2/3:

F(|y I £ n + at)F(\zc\ rg β(n + atγ)F(\zc, \^β(n + at)«) (68)

and the orthogonal complement

F(|y I ̂  n + at) V F(|zc| ̂  β(n + at}*} V F(\zc, \^β(n + at}*} . (69)

The time integral of the part of the state with \y\^n-\-at is small due to the
estimate of the last two terms of (44) in [6] if we choose R = 65n. The other two
contributions to (69) are integrable and small as π-»oo due to assumption (26).
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It remains to estimate the short range inter-cluster forces, this corresponds to
00

J h(n + at)dt in the third term of (44) in [6]. One contribution comes from the long
o
range forces which have been approximated by i^D, but the difference is small in
the range of the projector (68) :

itr.μ - x') - ^/y)]F(|y I £ n + at)F(\zc\ ^ β(n + at)«)F(\zc, \^

^ sup (Iz'l +

1~y+^ (70)

where γ was given in (19). When α<y the time integral vanishes as rc->oo.
For the singular short range part any α ̂  1 may be used. Then in the range of

the projector (68) \^-^j\^(

|| (H + ίΓ 1/2 %(# o + 0" lF(\y\ ^ n + af)F(\zc\ ^ β(n + at))F(\zc.\ ^ β(n + at))\\

(71)

We have used the translation in variance of (HQ + ί)'1 on IRV: Since only finitely
many potentials are involved this shows that the full time evolution is arbitrarily
well approximated by the intermediate modified free one.

The remainder of the proof is exactly as in the potential scattering case, one
shows that the in-component disappears in the future and that the asymptotic time
evolution UD(t, 0) (29) is a good approximation of the total one for late enough
times. Thus we have shown that

For 2in analogously. The opposite inclusion is given in the next section.

Subspaces of2 in/out

It remains to show that Ranί2^ is contained in 2out for all D. For Ψe Ranί2^ there
is a Φ = Pp(Hc)Pp(Hc,)Φ such that for any c

ε for ί^T(ε).

Then there is an M(ε) such that
M(ε)

Φ- Σ |αD><αfl|Φ <ε and there is an r(3ε)

such that

M(ε)

α = l

This shows for ί^T(ε) that

<ε. (72)

The analogous argument for 2in and the time invariance of the spaces completes
the proof of part a) of the theorem.
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Choose now ΨePcont(H)F(H^Σ3)je. We will show that it belongs to both 2in

and 2out. For any ε there is a δ>0 such that

\\F(H^Σ3-2δ)Ψ- Ψ\\ <ε and a φe^(IR) with 0^

φ(ω) = ί(0) iϊωeσ(H) and ω^Σ3-2
For any two-cluster decomposition Dφ(HD] restricts the energy within each

cluster to an interval strictly below the continuum limit. Thus by the HVZ-
theorem [14] there is a finite number M such that for all D

M M
φ(HD) = φ(HD) £ |αD><αD|= £ φ(f/0 + εDJ|αD><αD| .

α = l α = l

Furthermore one knows for a very wide class of interactions that these |αD> have
exponential decay such that condition (26) is automatically fulfilled (see [3] and
the references given therein, also [16] for a two body result).

By the estimate (72) the extension of the clusters for states in the range of φ(HD)
is uniformly bounded.

An easy construction shows that one can split the configuration space of the
particles into several pieces : either all particles have a certain minimal distance, or
they are grouped in clusters where the distance between the clusters is large
compared to their diameters, or all particles are inside a big enough ball. For the
well clustered states one shows as in Lemma 2 that φ(H) differs little from φ(HD)
for the corresponding decomposition. (The details of this_ construction will be
given in a forthcoming paper.) For any decomposition D into three or more
clusters φ(H D) = 0. Thus up to a small error the state can be decomposed into a
piece where all particles are in some finite region or the remaining components lie
in the ranges of the φ(//D)'s. The error depends on δ only but is otherwise
independent of the state, so it is in particular time independent for
e\p(-iHt)φ(H)Ψ. This shows that <Fe2inn2out.

Our decomposition into well clustered states is convenient but not necessary.
One can make instead a decomposition into two-cluster states where the
separation of all particles in one cluster is at least d from all particles in the other
cluster, and a remainder where all particles are inside a ball of radins (N—l)d.
Then Hunziker shows [9] by a different method that with increasing d
\_φ(H) — φ(HD}~\ becomes small no matter how big the extension of the clusters is.
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Note Added in Proof
B. Davies kindly informed us that he recently extended Simon's application of the Kato-Birman trace
class theory [15] to treat centrally symmetric long range forces like Coulomb interactions even when
both clusters are charged.






