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On the Proof of the Positive Mass Conjecture
in General Relativity

Richard Schoen and Shing-Tung Yau

Abstract. Let M be a space-time whose local mass density is non-negative
everywhere. Then we prove that the total mass of M as viewed from spatial
infinity (the ADM mass) must be positive unless M is the flat Minkowski
space-time. (So far we are making the reasonable assumption of the existence of
a maximal spacelike hypersurface. We will treat this topic separately.) We can
generalize our result to admit wormholes in the initial-data set. In fact, we
show that the total mass associated with each asymptotic regime is non-
negative with equality only if the space-time is flat.

0. Introduction

This is the second part of our paper on scalar curvature of a three-dimensional
manifold and its relation to general relativity. The problem in general relativity
that we address is the following: An isolated gravitating system having non-
negative local mass density must have non-negative total mass, measured
gravitationally at spatial infinity.

Mathematically, the positive mass conjecture can be described as follows: Let
N be a three dimensional Riemannian manifold with metric tensor g i j f Then an

initial set consists of N and a symmetric tensor field htj so that μ^ 1/2

where μ and J are defined by

a,b

nάb

where R is the scalar curvature of our metric.

If TV is a spacelike hypersurface in a space time so that gtj is the induced metric
and htj is the second fundamental form, then the above condition says that the
apparent energy-momentum of the matter be timelike.
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An initial-data set will be said to be asymptotically flat if for some compact C,
N\C consists of a finite number of components J V l 5 . . . , J V k such that each JV f is
diffeomorphic to the complement of a compact set in R3. Under such diffeo-
morphism, the metric tensor will be required to be written in the following form

where

and

The components of htj will also be required to be of order 0 -̂

The number M (Arnowitt, Deser and Misner [1], Geroch [9]) is called the
mass of the end Nt. This definition is motivated by the observation that the spatial
Schwarzschild metric can be written asymptotically in the previous form so that
the number M is precisely the Schwarzschild mass. From now on, we shall call Ni

an "end" of N and we denote the total mass of Nt by Mt.
In this formulation, the (generalized) positive mass conjecture (Arnowitt et al.

[1], Brill and Deser [3], Geroch [2]) states that for an asymptotically flat initial
data set, each end has non-negative total mass. If one of the ends has zero total
mass, then the initial data set is flat in the sense that the curvature tensor vanishes
and the second fundamental form htj is trivial.

In this paper, we will settle the major case of the conjecture assuming £ft" = 0.
a

The most general case will be discussed in a forthcoming paper.
There have been several contributions on this problem prior to our work. (We

learned most of these from the excellent survey articles of Geroch [2] and
Choquet-Bruhat, Fisher and Marsden [4].) In 1959, Brill settled the problem in

case Σ/z" = 0 and the data respect an axial symmetry. In 1968, Brill and Deser [3]
a

showed the conjecture is true up to second order perturbations from flat data. This
last result was greatly improved by Choquet-Bruhat and Marsden [5] to the effect
that the conjecture is true if the data is close enough to the flat data in a certain
smooth norm. In the Stanford conference in differential geometry, Geroch divided
the conjecture into several special cases. One case had a direct appeal to the
geometers. This case says that if a metric has non-negative scalar curvature in ,R3

and if the metric is euclidean outside a compact set, then the metric is flat. In her
thesis in 1977, Leite was able to settle this case under the assumption that the
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manifold can be isometrically embedded into R4. In 1976, Jang [6] was also able
to settle the conjecture if the metric gtj is flat. Finally the conjecture was also
known if the data is sperically symmetric (Leibovitz and Israel [7], Misner [8],
Jang [6]). However, none of these methods had been carried out to cover the case
that we deal with. (It should also be mentioned that Deser had a proof for the
supergravity setting and Geroch had an argument to settle the conjecture
assuming some statement that remains to be proved.)

The basic idea of our proof is quite simple. It is basically geometric in nature
which enables us to deal with the case where the manifold is not diffeomorphic to
R3. While there are more details to be carried out in this paper, the basic ideas are
already in our previous paper.

For simplicity, let us assume the manifold is diffeomorphic to .R3. Then
assuming the mass is negative we construct a complete surface embedded in R3

whose area is minimal among all compactly supported deformations of the
surface. By using the second variation formula, we prove that the surface is
topologically the plane. As in the previous paper, we plan to use the Gauss-Bonnet
theorem to arrive at a contradiction. However, as the surface is non-compact,
there are technical troubles involved which we are able to overcome. These
arguments provide a proof that the total mass is non-negative. If the total mass is
zero, then we have a way to reduce it to the previous case unless the Ricci tensor is
identically zero. Since M is three-dimensional, Ricci flat implies flat and the
reduction finishes the proof of the theorem.

1. Statement of Results

The theorems in this paper deal with asymptotically flat metrics on 3-manifolds.
Let N be an oriented three-dimensional manifold (with or without boundary)
which has the property that there exists a compact subset K of N so that N\K
consists of a finite number of components Nl,N2,...,Nr with each Nk being
diffeomorphic to R3 minus a ball. We call the Nk ends of N. We suppose that N is a
manifold of smoothness class C6. Let ds2 be a C5 positive definite metric on N.
We say that ds2 is asymptotically flat if each boundary component of TV has
positive mean curvature with respect to the outward unit normal, and on each Nk

there is a coordinate system x1, x2, x3 in which ds2 has the expansion
3

ds2 — ]Γ g^dx'dx ^ with the gtj satisfying the following inequalities for some kί9 fe2,
ίj=l

fc3 positive constants.

k

»-V M^ΪT?.
, (1-1)

/ 3 \ l / 2

where r = £ (x')2 and d is the Euclidean gradient. The number M = Mk is the
\ i = l /

total mass of Nk. We note that (1.1) implies that the Christoffel symbols



48 R. Schoen and S.-T. Yau

rl

jk = 0 ( l / r 2 ) and the curvature tensor is O(l/r3) as r->oo. Let R be the scalar
curvature function for ds2. We now state our first theorem.

Theorem 1. Let ds2 be an asymptotically flat metric on an oriented 3-manifold N. If
R ̂  0 on N, then the total mass of each end is nonnegative.

Our next result concerns the case when total mass on one end is zero. In this
case we wish to show that N is flat. In order to prove this we need to add the
following assumption to (1.1)

\dddhtjl + \ddddhijl + \dddddhtj\ ^ -̂  (1.2)

for a positive constant fe4.

Theorem 2. Let N be an oriented 3-manifold having an asymptotically flat metric
ds2. Suppose for some end Nk, (1.2) is satisfied and the total mass of Nk is zero. If
R^O on N, then ds2 is flat. In fact, N is isometric to IR3 with the standard metric.

2. Proof of Theorem 1

Throughout this section we work on a fixed end ΛΓk, and suppose that x1, x2, x3 are
asymptotically flat coordinates on Nk. Suppose these coordinates describe Nk on
IR3VBσo(0), where Bσo(0) = {\x\<σ0} and r = \x\ denotes the Euclidean length of
x = (x1,x2,x3). We denote the total mass of Nk by M, omitting reference to k. We
will suppose that M<0 and K^O in contradiction to Theorem 1. The proof then
involves three steps, the first allowing us to assume R > 0 outside a compact subset
of IR3VBσo(0), the second is to use the assumption M<0 to prove the existence of a
complete area minimizing surface, and third to use second variation arguments to
show that this is impossible if R ̂  0.

Step 1. If ds2 is asymptotically flat on N with R ^0, and with the total mass of Nk

negative, then there is an asymptotically flat metric ds2 conformally equivalent to
ds2 having R ̂ 0 on N, R >0 outside a compact subset of JVk, and having negative
total mass for Nk.

Proof. Let IR3\Jβσo(0) represent Nk as described above. Let Δ be the Laplace
operator on functions, so that for a function φ on ΊR?\Bσo(Q)

1 Λ d I r •• Sφ
Aφ ——— > — r \ ] / 9 y l j — Γ

]/g ίf£ι 8xl \y 8xJ

where as usual, g = dQt(gij) and (glj) = ( g ί j ) ~ 1 . We calculate the asymptotic
expansion of Δj on IR3\^σo(0) using (1.1). We see that

) (2.1)

= +0( '/r').
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It follows that there is a number σ > σ0 so that

A- <0 for r^σ .
r

Choose ί0= — - — , and let ζ(t) be a C5 function which satisfies
8σ0

t for t< ί0

3ί0 , 2 2

- for

ζ"(ί)^0 for ί e (0,oo).

Define a C5 function φ Λf— »IR by

on

on βσ o0 = N k .

From (2.1) and (2.2) we see that

zlφ^O on N, and zlφ<0 for r>2σ . (2.3)

We now define a new metric

ds2 = φ*ds2 .

The metric J§2 is asymptotically flat since on all ends other than Nk it is a constant
multiple of ds2, and on Nk we have

M
Thus the new mass of Nk is M = — - < 0. The well-known formula for the scalar

curvature R is

Thus (2.3) implies that ^^0 on N and ^>0 for r>2σ on Nk. This concludes the
proof of Step 1.

We replace our original metric ds2 by ds2 but maintain the notation ds2, so that
we are assuming jR^O on N, R>Q outside a compact subset of Nk9 and M<0.

Step 2. There exists a complete area minimizing (relative to ds2) surface S properly
imbedded in N so that Sn(N\Nk) is compact, and SπNk lies between two parallel
Euclidean 2-planes in the 3-space defined by x1,*2,*3.
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Proof. Let σ > 2σ0, and let Cσ be the circle of Euclidean radius σ centered at 0 in
the x1x2-plane. Let Sσ be the smooth imbedded oriented surface of least Js2-area
among all competing surfaces regardless of topological type having boundary
curve Cσ. A discussion of this known existence result is given in the Appendix to
this paper. We wish to extract a sequence σ f — »oo so that Sσ. converges to the
required surface S.

We first show that there is a compact subset K0 Q N so that we have

Sσn(N\Nk)gK0 for every σ>2σ0 . (2.4)

That is, we show that the Sσ cannot run to infinity in an end other than Nk. To see
this, let Nk, be another end, with asymptotically flat coordinate system y1^2^3

associating Nk, with R3\£τo(0) where Bτo(ty = {y:\y\<τ0}. In this coordinate

system, the metric ds2 has the form ds2 = £ g'ίjdyίdyj with g'tj satisfying (1.1). We
ίj=1 52\y\2

calculate the covariant hessian of the function |y|2, that is D{j\y\2 —

-Dd .(M2). By (1.1) we see
W 8yJ

. .

Dtj\y\2 = 26^ + 0(1/1^) as \y\-+co

where otj is the Kronecker delta. In particular, we see that there exists τ1 >τ0 so
that the function \y\2 is a convex function for \y\ ̂ τ1. Since dSσ = Cσ which lies in
Nk, we may apply the maximum principle to conclude that

SσnNk,£Bτι(Q) .

Since Nk, was any end of N other than Nk, we have established (2.4).
We now analyze the behavior oΐSσπNk. In fact, we bound the height of S

in the x3 direction. For any /z>0, we let

We show that there exists a number h > σ0 so that

NknSσQEh for all σ>2σ0 . (2.5)

To accomplish this, we again use a maximum principle, this time for the function
x3 restricted on SσnNk. We must first compute the asymptotic behavior of the
covariant hessian of x3 on Nk. If D is the Riemannian connection for ds2, define Γ\

by

DeSΓ δx7 = ,?ιΓ' / δ?'

Then Γ\j has the following expression in terms of ds2

The hessian of any function φ is given by

d2φ d
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By direct calculation using (1.1) and (2.6) we have

, ~ Mxj Mx{ Mx3

). (2.7)

Let ft be the maximum for x3 on SσnJVk, and suppose this maximum occurs at the
point x0εSσ. If ft^σ0, we have established (2.5). So suppose ft>σ0. The tangent

space to Sσ at x0 is then spanned by -^-^(x0\ ^-^-Cx0) Let vί v2 be tangent vector
OX OX

fields to Sσ defined in a neighborhood of x0 and satisfying ί;f(x0) = — τ (x0) for

i=l,2. Let ( q ί j ) 1 < i j < 2 be the restriction of ds2 to 5 in terms of the base field ^1?^2

Let Fbe the induced connection on Sσ, and note

where v is the unit normal field of Sσ. Evaluating at the point x0 we have

where hij = (Dv.vj, v>(x0) is the second fundamental form. Contracting with respect
to (qtj) we have

Σ 3%*3= Σ ^%^3+ Σ «ίJV(x3).

Since Sσ is minimal we have Σ qijhij = Q> so applying (2.7) we see
ij=ί

Since M<0, we see that ft sufficiently large implies that Σ cfjVijx^>^ at x0

U=ι
contradicting the fact that x3 attains a maximum there. A similar argument gives a
lower bound on x3|Sσn]Vk? and we have established (2.5)

Now, let ρ > 2σ0 and define the set

For any σ>ρ, (2.4) and (2.5) imply

(2.8)

which is a compact subset of N. We now quote a local interior regularity estimate
for area minimizing surfaces which is discussed in the Appendix.

(2.1) Regularity Estimate. Let Ur(x) denote the geodesic ball of radius r about
xeN. There exists a number r0>0 so that for any point x0eSσ with
t/ro(x0)nCσ = 0, it is true that SσnUro(x0) can be written as the graph of a C3

function fσ over the tangent plane to Sσ in a normal coordinate system on Uro(x0).
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Moreover, there is a constant cί depending only on (N,ds2) which bounds all
derivatives of fσ up to order three in Uro(x0). (Note that both r0 and c1 are
independent of σ.)

It then follows from (2.8) and the Regularity Estimate that we can choose a
sequence σjρ)->oo so that Sσ(<?) r\AQ converges in C2 topology. Since this can be
done for any ρ>2σ0, we can take a sequence QJ-+CO and by extracting a diagonal
sequence we find a sequence σ.->oo so that Sffι->S, an imbedded C2-surface,
uniformly in C2 norm on compact subsets of N. The surface 5 is properly
imbedded by (2.8), and is clearly area minimizing on any compact subset of N.
From (2.4) we have Sπ(N\Nk)CK0 and hence Sn(N\Nk) is compact. From (2.5) we
have SnNkQEh which is the region between two parallel 2-plane in R3. This
completes the proof of Step 2.

The final step in the proof of Theorem 1 is to use the condition on the scalar
curvature to derive a contradiction.

Step 3. The surface S constructed in Step 2 cannot exist.

Proof. For any σ^σ0, let S(σ} be the set

The S(σ) form an exhaustion of 5, and we can see

2 (2.9)

for a constant C2 independent of σ^σ0. To prove (2.9), we note that if S has
transverse intersection with dBσ(0) then this intersection is a union of oriented C2

Jordan curves on dBσ(Q] which bound S(σ}. It follows that these curves bound a
domain Ω £ dBσ(Q). Thus we have dS(σ) = dΩ, so we can apply the area minimizing
property of S to conclude that

Area (S(σ)) ̂  Area (Ω) ̂  Area (dBσ(0)) .

Since (1.1) implies that ds2 is uniformly equivalent to the Euclidean metric on
JR3VBσo(0), (2.9) follows for those σ>σ0 for which SndBσ(0) is transverse. Since this
is true except for σ in a set of measure zero, (2.9) follows for any σ^σ0 by
approximation.

We can use (2.9) to bound the integrals of certain functions on S. For α>0 we
have

, 1 1 ϊ / d f 1 , .
•= j 7—T+ I I— I ^—n\dt

.?,_, iέ l +,» 5(1())1+r.
00 1 Id \

^ Area (S(σo)) + j -̂̂  ̂ - Area (S(f))j Λ .

If α>2, we can integrate by parts and apply (2.9) to get

, 1 „ '"-1
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It follows that we have

I - - - < oo whenever a > 2 . (2. 10)
s 1 + r

Applying similar reasoning, we have for σ 0<σ 1 <σ2,

J -4^2C 2 logσ 2/ σ ι . (2.11)
S(C T 2)\S ( C T l )

r

We now introduce the second variation inequality for S. This inequality
expresses the fact that up to second order S has smallest area in a one-parameter
compactly supported deformation of S. Let e l 5e2,e3 be orthonormal (with respect
to ds2) vector fields defined locally on N. We use the notation

Ktj = sectional curvature of the section {e^e^ .

The Ricci tensor can then be written

7 = 1

where we let Kit = 0. The scalar curvature R is then given by

Let v be the unit normal vector field of S, and choose a frame eί,e2,e3 = v adapted
to S. Let A denote the second fundamental form of S, i.e. the matrix in terms of
el9e2 is

It is well-known that A is a symmetric quadratic tensor on S. We let \\A\\2 denote
the length of A with respect to ds2, i.e.

Mil 2 - Σ hfj
U=ι

The condition that S is a minimal surface is

Trace(A) = fc11+ft22 = 0 . (2.12)

The second variation inequality (see [10]) for S is

for any C2 function / with compact support on S. After integration by parts we see

(2.13)

for any C2 function / with compact support on S. By approximation we see easily
that (2.13) holds for any Lipschitz function / with compact support on S. The
Gauss curvature equation expresses the Gauss curvature K of S as

K = K12 + h11h22-h2

12. (2.14)
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Applying (2.12) and the symmetry of A gives

Putting this into (2.13) gives

That is, we have

f2^$ \\Ff\\2. (2.15)

We now choose a suitable cutoff function for / in our inequalities. For σ > σ0

define a function φ by

φ=<

1 on S(σ)

σ2

r

log σ (σ (σ)

0 outside S(σ2)

Let g be a Lipschitz function on 5 satisfying |#|^1 and 0 = 1 outside a compact
subset of 5. Setting f = φg in (2.13) and applying the Schwarz inequality gives

£ Z Γ

-(logσ)2

 S(σ2;\5

Because of (1.1), there is a constant C3 with | |Fr||2^C3. Thus our inequality
implies by rearranging and using the definition of φ and g

r\ ^~\ -i

i
5(σ)

Applying (2.11) we have

S(σ ) S S

Letting σ->oo we conclude

(v)|g2 (2.16)

for any Lipschitz g with |g|^l, g = l outside a compact subset of S. By (1.1), we
have Ric(v) = 0(l/r3), so choosing g = ί on S and applying (2.10) and a = 3 we

conclude from (2.16) that J \\A\\2 < oo. (The formula (2.16) with gφί will be used
s

later.)
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Formula (2.14) implies that \K\^\K12\ + \\A\\2. By (1.1) we have K12=0(l/r3) so

(2.10) implies J|K1 2 |<oo. Thus we have
s

J | X | < o o . (2.17)
S

We now use the function f = φ in inequality (2.15) and let σ->oo as above to
conclude

s

Since #^0, and R>Q outside a compact subset of S, we conclude

(2.18)
s

Remark 2.1. The Cohn-Vossen inequality says that \K^2πχ(S), where χ(S) is the
s

Euler characteristic of S. Combining this with (2.18) we see immediately that S is
homeomorphic to IR2.

In light of (2.18), the proof of Step 3 will be finished if we can show JX^O.
s

Since this is a very important part of our proof of Theorem 1, we give two proofs of
this inequality. The first proof is conceptually very clear, and has the advantage of
being more general than the second. The first proof, however, uses a deep theorem
of R. Finn [11] and A. Huber [12] concerning the Gauss-Bonnet theorem on open
Riemann surfaces, while the second uses no outside results and is special to our
situation.

Claim JK^O.
s

First Proof. We first note that inequality (2.17) and Remark 2.1 imply, by a result
of A. Huber [13], that S is conformally equivalent to the complex plane. Thus
there is a conformal diffeomorphism F:(C->S. Let Dσ denote the disk of radius σ in
(C, and let Cσ be the circle of radius σ. For i = 1, 2, . . . let Lί = length (^(Q)), and let
Aί = Area (F(Di)). The simply connected case of the theorem of R. Finn [11] and A.
Huber [12] says that

L2

f X = 2π-lim -f . (2.19)

Thus to show jKrgO, it suffices to show
s

lim -— > 1 . (2.20)
~ v '

Since S is properly imbedded in N with Sn(N\Nk) compact, we see that F(Ct) lies
outside any compact subset of Nk for i sufficiently large. Thus for large i, we let L{
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be the Euclidean length of F(C^). Inequality (1.1) implies

as i->oo . (2.21)

For the immersed disk Σi of least Euclidean area with boundary curve F(Ct), we
have the well-known inequality whose proof can be found in [14]

where A( ) is Euclidean area. Let Σt be an oriented surface of least Euclidean area
among all surfaces of boundary F(C{) regardless of topological type (see
Appendix). Since A(Σ^^A(Σ^9 we have

M)^ (2.22)

Because F(C ) lies outside any compact set for i sufficiently large, we can find a
sequence σ t -κx) with Σir^Bσι(Q)^Σi\F(Cί). Since from Step 2 we know that F(Q)
ζEh = {xeΪR3 :\x2\^h}, it follows that Σi^Eh by the convex hull property of
minimal surfaces. Since Σt does not retract onto its boundary circle, there is a point
x0eI;

i.n{(0,0,x3):x3eIR}. A well-known inequality (see [15]) implies
A(ΣinBr(x0))^πr2. Thus we clearly have

A(Σ^Bσt(0))^(ί+o(ί))πσf . (2.23)

We wish to compare the ds2-area of Σt with the Euclidean area, but we cannot do
it directly since Σfn5σo(0) may be nonempty, and ds2 is not defined on this part of
Σt. We get around this problem by modifying Σt near 0. Let σe [σ0, σ0 + 1] be such
that dB-(0) and Σt have transverse (or empty) intersection. We can then find a
domain Ω on 8 B ( 0 ) so that

We then define a new surface Σi by

Σί = (ZA^(0))uβ..

Now (2.23) implies /ϊ(Σ;)->oo, so we let Aί = A(Σί), and conclude

^.^(l+o(l)M(f;)

which combines with (2.22) to give

- . (2.24)
π

By the area minimizing property of Σi9 we also have A(Σ^Ai, so A^oo. By
choosing σt smaller if necessary, we take

A(ΣinBσi(0))^]/Ίί (2.24a)

and A(Σir^Bσ.(Q))^oo. This can be done because of (2.23) and (1.1). If the σ remain
bounded, say σ f^ρ for all i, then by comparison as in the proof of (2.9) we would
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have

which would imply that A(Σir^Bσ.(0)) is a bounded sequence. Thus we must have
σf-> oo. It then follows by asymptotic flatness

Combining this with (2.24 a) we have

A(Σi)^(ί+o(ί))Ai as i^oo . (2.25)

Using the area minimizing property of S and inequalities (2.21), (2.24), and (2.25)
we have

-- as i->oo.
4π

L2

We thus conclude lim — - l— ̂  1 establishing (2.20). This completes the first proof
ί^oo 4πAi

of our claim.

Second Proof. We now give a proof of the claim in which we directly apply the
Gauss-Bonnet theorem with boundary, and estimate the boundary terms. For any
xeIR3, let x' = (xl,x2,Q\ and let r/ = |x'|=((x1)2 + (x;2)2)1/2. Consider the cylinder

For any σ>σ 0 for which dPσr^S is transverse, we have by Remark 2.1, at least one
circle in this intersection which is not homologous to zero in JR3\Pσo. Choose one
of these circles, and let Dσ be the connected component of this circle in
Sn[(JVV/V fc)uPσ]. We claim that for σ sufficiently large, Dσ is a disk. To see this,
recall from the first proof that S is conformally equivalent to (C, so we have a
conformal diffeomorphism F :C— »S. Now F~ 1(Dσ) is a bounded, connected region
in C. By transversalίty, the function r' changes sign across each boundary
component of F" 1(Dσ). lϊF~ 1(Dσ) is not simply connected, then there is a bounded
domain Φ contained in (C\F~1(Dσ). Thus on dF(&) we have r' = σ, and inside F(Θ)
at some points we have r' > σ. Thus r' takes a maximum at some point of F(&). We
claim that (r')2 is a subharmonic function on S for r' sufficiently large, which will
give a contradiction. We calculate

ISίow β -X1 ~== \ c —r

Δχf= V V?eei,^\+hiί(v,^\-(Feep^-\}+0(l/r2)
j =ι [\ J J δx'/ J J \ 3x/ \ ' Sxl/\
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2

since ]Γ h^ = Q. Thus we have

Since both {el9e2} and l^-^, ^— 2! span 2-dimensional subspace of IR3, they must

intersect in at least a line, so the norm of their projection is asymptotically
2 / d \2

bounded below, i.e. ]Γ / e f j — -. \ ^ 1 — 0(l/r). So we have

zl(r')2^2-0(l/r) as r-^oo .

Thus for r sufficiently large, in particular for r' sufficiently large we have Δ(r'}2 >0.
Thus it follows that Dσ is a disk for σ large.

We may choose the Dσ to be increasing, so that D-^Dσ when σ>σ. Since S is
connected, the Dσ form an exhaustion of S1, and we apply the Gauss-Bonnet
theorem on Dσ, so that

J K = 2π- J fc
Dσ δDcr

where fe is the geodesic curvature of 5Dσ relative to the inner normal. Thus, our
proof will be complete if we can find a sequence σ.-»oo so that

j fc^2π-o(l) as i-^ao . (2.26)
8Dσι

In a neighborhood of dDσ, we choose a frame el9 e2, e3 where e1 the positively
oriented unit tangent vector of dDσ, e2 is the inner normal to Dσί and e3 = v is the
unit normal of S in IR3 relative to ds2. The geodesic curvature k is given by

Since r' = σ on <9Dσ, we have <e l 9Dr'> =0 on 5Dσ. Differentiating this with respect
to e1 gives

Now (1.1) implies that Dr'= -- hO(l/σ) and
σ

so we have

σ

Since Deίeί=ke2 — hlίv, this gives

(2.27)
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Suppose σe[σ,2σ]. We now apply the divergence theorem for the vector field

— 3 on the volume enclosed by D2d\Dd, dP25, dPs, and the plane annulus
(7.X

Ω- = {x:x3 = —h,σ^r'^2σ} where h is a bound on |x3| for xeSr^Nk (see Step 2).

By (1.1), div — -3 =0(l/σ2\ so we have

ί
D25\D5

where we have used the fact that ( — - τ, n ) = 0(l/σ) where n is the unit normal of

V . . /
δP2- and <9P5. Applying the area minimizing property of S on D2d\D^ as compared
with the union of Ω- and the part of dP2d^jdPd between 5 and Ωd, we have

. (2.28)

Combined with the above inequality this gives

j l-

The coarea formula (see [16, p. 258]) gives

ϊ ί (l-(v,^))ώΛ= J
σ D 2 αnδP t \ \ C/X // D2άn(P2 5\P

where ds is arclength on D2-nδPr Since

we can combine these inequalities

Again using the coarea formula we have

J L(D25ndPt)dt= I ||FrΊ| .
σ D2σ^(P2σ\P5)

Combined with (2.28) this gives

(2.30)

We must now bound the second fundamental form of S on dDσ. To do this, we
apply inequality (2.16) with the following choice of g

0 for

°J/f f for
log 1/T

1 for
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This implies

7 II pv || 2
f \\A\\^-^-=- S * - + ί

Pff] (lOg [/CΓJ Sn(Pff\

This implies by (1.1)

Mil**— j + ί 0(1Λ 3).
) (lOg |/σ j Sn(P5\P/5) V J

Similar reasoning as that used in deriving (2.10) and (2.11) using r' in place of r and
the fact that x3 is bounded on SnNk implies

It therefore follows that

ί

The coarea formula gives

ί ί

This then implies

ί" j M||2Λ = o(l). (2.31)
σ D 2 f f n d P t

Now (2.29), (2.30), and (2.31) imply that there exists σe[σ,2σ] satisfying

as

Applying the Schwarz inequality and the condition on boundary length we have

Since dDσ is one component of Z)2-n<9Pσ, we have shown

= O(σ) (2.32)

ί Mil =o(i)).
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We use (2.32) to estimate the terms in (2.27). Note that (2.27) and (2.32) imply

dDc

1 /k(e2,- \ Γ
1

σ 1? far
(2.33)

To bound the last term, we note that by (1.1) we have

/ _3_\2

 + / j_y . / d \ 2

which implies by (2.32) that

Γ /
\ ^'

We now give a pointwise lower bound on

sup

We first note that by (1.1)

(2.34)

. In fact we show that

(2.35)

cbr

Then applying (2.32) gives

f 1- Γ-,e2) =0(1). (2.36)

Now since e2 is the inner normal to D , and Dr' = h 0(l/σ) is the outer normal,
σ

we have
<7->-

), so

Combining with (2.36) then gives

(2.37)
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Since dDσ is not homologous to zero in IR2\Pσo, its projection onto the x1x2-plane
must be the circle of radius σ centered at zero. We therefore have

L(dDσ)^2πσ-0(l) . (2.38)

Now (2.37) and (2.38) together imply that there is a point x0edDσ with

. (2.39)

/ d

x' \
Differentiating 1 + ( — ,e2) along 8Dσ gives

Applying (2.32) and (2.34) we see

Ix'

dDσ
σ -2 = o(l) . (2.40)

We now write for any xedDσ,

Thus combining this with (2.39) and (2.40) we have established (2.35).
Now (2.33), (2.34) and (2.35) together imply

j IIIVJ. (2.41)
dDσ dDσ

Since Deιe1=ke2 — h11v we have

PVJglfcl + Mil,

so integrating and applying (2.32) we have

Combining this with (2.41) gives

j 11^^11=
d°° (2.42)

J |fc| = 0(l).
dDσ
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We may now rewrite (2.27) using (2.32), (2.34), and (2.42)

J k^ J ktl+(-9e})}+ί/σL(dDσ)-o(l).
dDσ dDσ \ \σ I I

Applying (2.35), (2.38), and (2.42) then gives

J /c^2π-o(l).

Since this holds for σ arbitrarily large (in any interval [σ, 2σ], σ sufficiently large),
we can choose a sequence σf-> oo for which (2.26) holds. This completes the second
proof of our claim.

This finishes the proof of Theorem 1.

3. Proof of Theorem 2

In this section we prove Theorem 2 which says that if for some end ΛΓfc, (1.2) holds,
the total mass of Mk is zero, and #^0, then ds2 is flat. We first note that by
throwing away the other ends outside a convex ball, we may assume that N has
only one end, so that N\Nk is compact.

We will need the following Sobolev inequality for functions with compact
support on N.

Lemma 3.1. There is a constant c1 >0 depending on N and the constants fel5 fc2, fe3

of (1.1) so that for any function ζ with compact support on N, we have the inequality

Note that we do not require ζ = 0 on 8N.

Proof. We prove the inequality by contradiction. If it were not true, we could find
a sequence of functions fi with compact support and with

Since Nk is identified with IR3\5σo(0) and ds2 is uniformly equivalent to the
Euclidean metric, we have the inequality which follows from the Euclidean
inequality (see proof in [17, p. 80-81]).

^ (const) I | |D/; | | 2 .
Nk

Thus by (3.1) we have J /J6^0, so we have /.->0 in L6-norm on Nk. If we choose a
Nk

precompact coordinate neighborhood (9<±N, for any C1 function g defined on (9
we have the following inequality which comes directly from the Euclidean
inequality of the same form

*^ (const) $ \\Dg\\2.
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Applying this inequality and (3.1) to the functions f^ we find a sequence βt so that

ίσ,-ft)6^o.
0

Since J /.6 = 1, the sequence βi is a bounded sequence, and by extracting a
N

subsequence we may assume βt^>β. Thus we have /f->/J in L6-norm on 0. Since
/.-»0 in L6-norm on JVfc, we must have /? = 0 on each coordinate neighborhood Θ,
so we have /J-»0 in L6-norm on N in contradiction to (3.1). This proves Lemma
3.1.

We will have need to study equations of the form

Av-fv = h on N (3.2)

where / h are functions which satisfy

i+rT 1,
l+' T1

on Nk. Let /+,/_ be the positive and negative parts of/, so that / = /+—/_ and

I/I =/++/-

Lemma 3.2. Suppose (1.1) /zoWs and ΛΓk ftas zero toίa/ mass. There is a number ε0 >0
depending only on N and kl9 fe2, fc3 o/ (1.1) so ί/iaί if

(3.2) has a unique solution v defined on N satisfying v = 0(l/r) as r-^ co and

— =0 on dN, where n is the outward unit normal vector to dN. Moreover, the
on
solution v has the properties

u=-+ω,

on Nk, where A = — — J fv + h, and the constants fc9, /c10, k1 1 depend only on fcl5 fc2,4π N

Proo/ Throughout the proof we use c l 5c 2,c 3 . . . to denote constants depending
only on fels /c2, k3.

To prove the existence of i; we solve the problem for σ > σ0

-/tf^ft on N°

vσ = 0 on θΰσ(0)

^=0 on δiV.



Positive Mass Conjecture 65

If vσ satisfies (3.4), we can multiply by vσ and integrate by parts to obtain an
integral bound on vσ as follows

\h\v

* I ί /-33/2 c - 3 + ί "Ή5'6 ί ί "/ \Nσ

We note that if h = Q, we can apply Lemma (3.1) to obtain

J \\Dv\\2ZBoCl ί

Thus if we choose ε0 < l/c1? we see that Δv — fv has trivial kernel for problem (3.4),
and hence standard linear elliptic theory (see [18, p. 262]) implies the existence of a
unique smooth solution vσ of (3.4). By (3.3) we have ( j |/ι|6/5\5/6^c2, a constant

independent of σ. Applying this, Lemma 3.1, and the hypotheses we have

, 6 \ l / 6

Choosing ε0 = - — , and using the inequality \ab\ ̂  ̂ α2 + ffc 2 we have
3cί

Nσ

which gives

where C3 = (|(c1c2)
2)3. Standard linear elliptic estimates (see [17, p. 161] for the

interior estimate and [17, p. 242] for the estimate on dN) now imply that
{vσ:σ>σ0} is equicontinuous in C2 topology on compact subsets of N. Thus we
may choose a sequence σf->oo so that vσ^v uniformly in C2-norm on compact
subsets of N. Thus v is a solution of (3.2) defined on N satisfying

— = 0 on dN , and
dn

(3'5)

(The supremum estimate follows from the L6 estimate and standard linear theory
[17, p. 161].)
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To analyze the asymptotic behavior of v, we derive a potential theoretic
expression for v. For x,yeNk let

Qx(y}=
1/2

By direct calculation we have

^[βxMΓ^ -4 ,̂00 + ̂ 00

where δx(y) is a point mass at x, and by (1.1) t/^y) satisfies

lv>,OOI^c5l*-:vΓ2M~3 for yeB^x).

Again by (1.1) we see that for yφB^x) we have

(3.6)

1 1
~"~

1

Also we have

lχ|2|χ-j;|3 (l + |y|)3|χ-}fΓ

•'glδ^OOIgcβ,

Multiplying (3.2) by [ρx(y)] 1, integrating by parts twice on the set
= {yeNk:ρx(y)^σ] where σε(σ/2, σ) and σ/2s>|x|, and applying (3.6)

(3.8)

ί ^ω- ί

- ί ί-(y)lQx(y)TldA(y)+ j ϋωί-

where ygdy is the volume element of ds2 and dA is surface area with respect to
ds2. Applying Stokes' theorem we see from (3.2)

dBσo(0) ^Π Da(x) dBσo(0) ^Π

From (3.3) and (3.5) we have

J fυ + h ^c9.
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Therefore,

ί
[Qx(y)=o

, dυ
J a^

From (3.8), Area {ρx(y) = σ}^c12σ
2, so we may apply (3.8)

ί *> —I

\{QX(y)=σ}

By (3.5) and the coarea formula we may choose σe(σ/2, σ) so that

^c13σ
 2 J \v\

{βχ(y)=σ}

^C13σ-2(c12σ
2)5'6ί f r^1/6

l(d«ω=σ)

Thus we have

J 4ι
We now let σ^oo and apply (3.10) and (3.11) in (3.9) to get

4πϋ(x)= J t
Nk

- ί

From (3.5), (3.6), and (3.7) we have

ψx(y)v(y)]/g(y))dy

Bι(x)
.

Nk\Bι(x)

I \ 6 / 5 \ 5 / 6

67

(3.10)

(3.11)

(3.12)

(3.13)
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The following inequalities are easily checked

dy

< dy 6

5/6

+ [ f "* '
J (Λ _ i _ h , h 1 2 / 5 l v _ ι?l 1 8 / 5

\R 3\(i?i;vi(θ)uB|;χ; |(:x)) \L~r\y\) IA y\
T T~

Similarly

Λ Λ , \ 5 / 6
1-2

f dy <c
3 J |χ_ yl 1 8 / 5 = 2 2

Thus it follows from (3.13) that

J Ψx(y)v(y) \/g(y)dy ^c23\x\~2. (3.14)

It follows from (3.3), (3.5), and (3.8) that

J (fv + h) (y) [ρxGO] ~ 1 ]/g(y)dy ^ c24|x| ~3

B|χj(x)
2

1^1 [ρ^M] ~ 1 ̂  ^2 s f°r

2

We may thus apply (3.8), (3.3) and the dominated convergence theorem to the

functions (fv + h)(y)\x\ [ρ^)]"1 ]/g(y)XNk\B^(X)
 where XA denotes

the characteristic function of A to conclude that

lim |x| J (fv + h) (y) [_Qx(yJ] ~1 ]/g(y) dy

(3.15)
Nk

Then by (3.12), (3.14), (3.8), and (3.15) we have

A = lim 4π|x|φ) = - J (fv + h) (y) ]/gdy
W-*00 Nk

/. 3ι;
- ί (3.16)
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so we may write

A
v= —hω

r

where

4πω(x) = j ψx(y)v(y) jΛ/(y) dy — J (fv

(3.17)

We see directly that

which combined with (3.17), (3.3), and (3.8) shows that

(l + r2γl for xeNk . (3.18)

To estimate the derivatives of ω we record the following Schauder estimate
whose proof can be found in [17, p. 161]. Let L be an elliptic operator on the unit
ball of IR3 of the form

3 d2u 3 du
Lu = ̂  a^ 3ϊ3ξJ + .Σ ty0 W + c(ξ)u(ξ)

where ξ = (ξ1, ξ2, ξ 3 ) is the Cartesian coordinate in the ball. For any function φ(ξ)
defined on an open set Ω and real number λ with 0</1<1, define the following
norms

\φ(ξ)-φ(ξ)\
.. τa,ξeΩ |ς-ς|

\<P\2,λ,Ω = SUP \8(P(ξ)\ + sup \ddφ\(ξ)\ + \ddφ\0tλtΩ .
ξeβ ξeΩ

Let Er= {ξ: |ξ j <r}. Suppose there is a positive number /I so that

3

Σ K,l<u.βl+ ΣNo,Λ,
(3.19)

1^2^ Σ α;/ξ)ΛJ'VίeIR3\{0},
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It then follows that for any C2'λ function u on B1 we have

,Λ, B l +l"lθ,B 1 ) (3-20)

where C depends only on λ, Λ.
We now fix a point xeNk, and assume that σ = f |x0 >σ0. We then let

ξ=-(y-χ)
σ

where y is our asymptotic coordinate on Nk. If we let u(ξ) = ω(y\ a^ξ) = gij(y\ bk(ξ)
= σgij(y)Γk

ij(y\ and c(ξ)=-σ2f(y) we have

Lu(ξ) = fly(ξ) L

Now Δω — fco = Af\y\~l -\-h-AA\y\~1 by (3.2) and the definition of ω. From (1.1)
we see that

\A\yΓ ι\^c2S\y\-s, \d(A\y\-*)\^c29\y\-6

These together with (3.3) imply

It is clear from (1.1) that (3.19) is satisfied for our operator Lu with a constant A
independent of σ. Thus (3.20) gives

By (3.18) this gives for any A, 0<λ<l

\ u \ 2 , λ , B l / 2 ^c32σ"2 .

In terms of ω, this implies

This establishes the required growth properties of ω. The expression for A follows
by integrating (3.2) over (N\Nk)u(NknBσ(0)) using the boundary condition

—— =0 on dN, and letting σ^oo.
on

To prove uniqueness, suppose ϊ is another solution of (3.2) satisfying v = 0(l/r)

and —- =0 on dN. Then u = υ — v satisfies
on

Au-fu = Q, u = O(l/r), ^ =0 on dN . (3.21)

We show u = 0. Let <5>0 be any number, and let Eδ = {xeN:u(x)^.δ}. Because u
tends to zero at infinity, we see that Eδ is compact. We multiply (3.21) by u and
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integrate over Eδ

j uΔu= J fu2 .
Eδ Eό

Integrating by parts and applying (3.21) we have

Eδ dEδ Eδ

Eό \Eδ

Applying Lemma 3.1 with ζ = u — δ on Eδ,ζ = Q on N\Eδ we have

J (M-^W3^^ J I D i i l 2 .
Eό I Eδ

Combining these inequalities and recalling the choice of ε0

Eό Eδ

Since u = O(l/r\ we see that jw 6 <oo, so we may let <5-»0 and deduce a
N

contradiction unless wrgO. Since — u also satisfies (3.21) we must have w^O, so that
u = Q on N. This concludes the proof of Lemma 3.2.

The next lemma deals with conformal change of metric on N.

Lemma 3.3. Suppose ds2 is an asymptotically flat metric on N satisfying (1.2). Let
R be the scalar curvature function of ds2, and suppose R satisfies

\N )

where ε0 is defined in Lemma 3.2. Then there is a unique positive function φ with
rlfn

= 0 on dN so that the metric ds2 = φ4ds2 is asymptotically flat, scalar flat, and
dn
has total mass

Proof. In order for the metric φ4ds2 to be scalar flat, the function φ must satisfy

Aφ-±Rφ = Q. (3.22)

The function v = φ — i then satisfies

Δv-^Rυ = ̂ R. (3.23)

In order for φ4 ds2 to be asymptotically flat, v must satisfy the asymptotic
conditions of Lemma 3.2. Now Lemma 3.2 applies directly to give a v satisfying

dv 8(p
(3.23) with — = 0 on dN. Thus φ = υ + l satisfies (3.22) with -^- = 0 on dN. In order

dn dn
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to prove that φ is everywhere positive on N, we let E = {xeN\ φ(x)<0}. Since φ is
asymptotic to one, we see that E is compact, and if E is nonempty, we multiply

(3.22) by φ and integrate by parts on E using —— =0 on dN to obtain
on

\E I \E

Applying Lemma 3.1 to this inequality we have

j
which is a contradiction since ε0^ -—. We conclude that φ^O on N. That <p>0

on N now follows from the Hopf maximum principle. The usual proof works

directly on the interior of N, and the boundary condition —— = 0 allows an easy
on

modification to show φ>0 on dN (see [17, p. 61]).

To show that dN has positive mean curvature relative to ds2 = φ4ds2 we note
that if H is the mean curvature function relative to ds2 and H the mean curvature
relative to ds2, a direct calculation gives

φ2 \ φ dn) φ2

so H>ΰ. This_finishes the proof that ds2 is an asymptotically flat metric on N. The
formula for M follows from Lemma 3.2.

A special case of Lemma 3.3 is the following corollary which was proved by
O'Murchadka and York [19] in case N is diffeomorphic to IR3.

Corollary 3.1. If M = 0, R^O, and R is not identically zero, then there is a metric
conformally equivalent to ds2 which is asymptotically flat, scalar flat, and so that Nk

has negative total mass.

Theorem 1 and Corollary 3.1 imply that an asymptotically flat metric
satisfying the hypotheses M = 0, R ̂ 0 must have R = 0 on N. We assume now that
ds2 is such a metric and that (1.2) is also satisfied. We define a one-parameter
family of metrics ds2 on N by

3

where S^ is the Ricci tensor of ds2. These metrics are defined in a neighborhood of
ί = 0 by (1.1) and (1.2), and ds^ = ds2. For t sufficiently small, ds2 is asymptotically
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flat by (1.2) and because dN has positive mean curvature relative to ds2, so by
continuity dN also has positive mean curvature relative to ds2 for ί small. Let Rt be
the scalar curvature function of ds2, so that we have ^0 = ̂  = 0. A known formula
(see [20]) gives

(3.24)

where Ric — (S^) is the Ricci tensor, and

d0Ric = Sft j Ί, \\Kic\\2 =

Since R = 09 we have AR = Q, and a direct application of the second Bianchi
identity shows

Thus (3.24) becomes

#'0=-||Ric||2 . (3.25)

Since R0 = Q, it follows from (1.2) that for t sufficiently small we have

1 / f R 3/2\2/3<
« \ -fV_ — on •,

N Ί =
where ε0 can be taken independent of t for small ί. Applying Lemma 3.3, we find a
function φt so that the metric φfds2 is asymptotically flat and scalar flat. The mass
M(t) of this metric is

(3.26)

where ]/gt is the volume factor for dsf.

We will prove that — — exists at t = 0, and can be computed by differentiating

(3.26) under the integral sign. For small h, let φ(h} be defined by

^

Let Δt be the Laplacian for the metric ds2, and let Δ(h) be the differential operator
defined by

Let R(h}= -(Rh — R0). The function φ(h} satisfies the equation

(3.27)

By (1.1) and (1.2), we see that this equation satisfies the hypotheses of Lemma 3.2.
Since φ(h} is 0(l/r), that lemma implies

Iφ^l^y^l + r)-1 on Nk (3.28)
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where y1 is independent of h. Standard linear theory applied to (3.27) shows that
φ(h} has a local C2'α bound depending on C1 bounds on .R0 and —Δ(h)φh + ̂ ^(h)φh.
Since these bounds are independent of h, we can find a sequence {/ιj tending to
zero so that φhι converges in C2'β norm for any β<u uniformly on compact
subsets of N to a C2'α function φ'0 which satisfies

where

A'o=foAt\t = o> and R'°=dtRt^°'

By (3.28) we have φ'Q = 0(l/r) so the uniqueness part of Lemma 3.2 implies that the
limit φ'0 is independent of the sequence {ht} we have chosen. Thus it follows that

— φt exists at ί = 0 and is equal to φ'0. From (1.1) and (1.2) we have constants 72,73

independent of h so that

\R(h}\^y2(l + r3+«Γ1gw = y3(l + rί+aΓ1 on Nk (3.29)

where g(h) = - (gh — g0). We now apply (3.28), (3.29), and the dominated con-

vergence theorem to conclude that M'(0) = — M(ί)|f = 0 exists and

M'(0) = - — J R0(φt γgt}'dx - — f R'0φ0 ]/g~0dx .

Since R0=^ and φ0 = l, we may apply (3.25) to conclude

. (3.30)

If Ric is not identically zero, (3.30) implies that M'(0)>0 and hence by choosing a
suitable ί0<0 we. would have M(f0)<0. The metric φfQdsfo would then be
asymptotically flat, scalar flat, and Nk would have negative total mass in
contradiction to Theorem 1. Hence we conclude that Ric^O, and because we are
working in dimension three, ds2 is flat. This completes the proof of Theorem 2.

Appendix

In this appendix we give a brief discussion of the Regularity Estimate (2.1), and the
existence of smooth solutions of the two-dimensional problem of least area for
surfaces (regardless of topological type) having a given boundary curve in a
Riemannian 3-manifold with boundary of positive mean curvature. These results
are well-known so we mainly give references and briefly indicate a few of the
simpler arguments involved. The (interior) Regularity Estimate (2.1) and the
existence theorem are part of the powerful approach to minimal surfaces which
has developed through the use of geometric measure theory. A thorough account
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of this field is given by Federer [16] where Chapter 5 discusses the applications to
variational problems of area type. We refer the reader to the introduction to that
chapter for an account of the people involved in the developments of this theory.
The Regularity Estimate (2.1) can be extracted as a very special case of the
material in Section 5.3 and Theorem 5.4.15 of [16]. A more differential geometric
approach to this estimate can be found in [21].

The existence of an area minimizing current Sσ (surface with singularities)
having boundary curve Cσ follows from 5.1.6 of [16]. The above mentioned
regularity theory implies that Sσ has no singularities in the interior of NnSσ. We
will show that the positive mean curvature of dN implies that Sσ lies entirely in the
interior of JV, and hence SJCσ is completely regular. To see this, consider a
boundary component B of N. For ε >0 sufficiently small, the open set &t = {xeN:
dist (x, B) < t} for 0<ί<ε retracts smoothly onto B, and the parallel surfaces
Bt = {xeN: dist (x, B) = t} for 0 ̂  t < ε are smooth surfaces diffeomorphic to B = B0.
Let v be the outward unit normal vector field to B, and for 0<ί<£, extend v as a
vector field on (9t by parallel translation along geodesies normal to B. Thus on Bv v
is a unit normal vector field. The fact that B has positive mean curvature with
respect to v says that div(v)>0 on B where div( ) is divergence of a vector field
taken on N. By continuity we then have

div(v)>0 on βt

for some ίe(0,ε). The theory of Chapter 5 of [16] also gives us an open set Vσ^N
so that

in the sense of geometric measure theory. Let η be the outward (to Vσ) pointing unit
normal vector field of Sσ (which exists almost everywhere with respect to
Hausdorff 2-dimensίonal measure), and apply the divergence theorem, Theorem
4.5.6 of [16] to the open set Φtr^Vσ. If this set is not empty we have

J Of,vX^2- J Idjf 2>0
Sσn&t BtnVσ

where 2tf 2 is Hausdorff 2-dimensipnal measure on JV. This implies Area^nFJ
< Area(5'σn^ί) contradicting the area minimizing property of Sσ. This shows that
Sσ lies strictly away from dN as claimed.
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