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Instantons and Fermions in the Field of Instanton

A. S. Schwarz
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Moscow M 409, USSR

Abstract. The number of instantons and the number of zero fermion modes in
the field of instanton are calculated. The quantum fluctuations of instantons
are studied.

Section 1. Introduction

Let us consider gauge fields taking values in the Lie algebra of simple compact
non-abelian Lie group G. The topological number of the field 4, having finite

1
euclidean Yang-Mills action S= 35 [ {F,5 F**»dV can be defined as

1
T [ <F g xF*>dV . (1)

It is proved in [1] that S=8n%g~?%|g| and S=8n?g ?|g| if

F.y=+F,, 2)
forq =0
Faﬁ= - *Frxﬁ (3)

for g 0. Here F,; denotes the strength of the field A, and =F; the dual tensor.
Following [2] we use the name instanton for solutions of the duality Eq. (2) and
the name anti-instanton for solutions of (3). The Egs. (2), (3) are conformally
invariant and therefore we can replace the fields on the euclidean space by the
fields on the sphere $* in (2), (3). The instantons having topological number 1 were
found in [1] and used in many papers to understand the structure of quantum
gauge theories. The quantum fluctuations of such instantons were studied in
[2-4]. The examples of instantons having arbitrary topological number were given
in [5-7]. G.’t Hooft found a 5g-parameter family of instantons having topological
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number ¢; it is shown in [7] that a slight modification of 't Hooft’s construction
gives a (5q +4)-parameter family of instantons in the case g =3 and 13-parameter
family in the case g=2.

We have shown in [8] that the solutions of (2) having topological number ¢
depend on 8q—3 parameters in the case G=SU (2). The proof is based on the
Atiyah-Singer index theory this theory was used in [8] to determine the number
of zero fermion modes in the field of instanton too’.

After publication of [8] there appear many papers concerning the questions
discussed in [8]. The essentially equivalent proof of main assertions of [8] was
published in [11]. The considerations of the papers [12, 13] are also very near to
those of [8]. They are based on the application of the index theory to the Dirac
equation and on the connection between the Dirac equation and linearized duality
equation (this connection was mentioned in [8] too). The zero fermions modes in
the field of ‘t Hooft’s instanton were found explicitly in [14] for fermions
transforming according two-dimensional and three-dimensional representations
of SU (2). The duality equation in the case of arbitrary gauge group was studied in
[15] by means of methods of [8]. The relation between the local index theorem
and Adler-Bell-Jackiv anomaly established in [8] was rediscovered in [16].

An important progress has been made in the paper [17], where the solution of
duality equation was reduced to the problem of algebraic geometry. This problem
is solved in [18-19].

There exists a clear and short review [20] of applications of topology and
algebraic geometry to the study of instantons and more detailed reviews [21-23]
of the same subject.

In the paper [24] we have studied the quantum fluctuations of instantons. The
contribution of instantons in euclidean Green functions is expressed in [24]
through regularized determinants of elliptic operators. To study the behaviour of
this expression by conformal transformation of metric we apply the method used
in [25] to prove the topological invariance of analytic torsion. The conformal
properties of instanton determinants can be used to obtain information on two-
instanton contribution (only a factor depending on one parameter remains
indetermined in this contribution).

As we show in separate papers [26, 27] the Ray-Singer torsion as well as
instanton determinants can be expressed through the partition functions of
degenerate quadratic Lagrangians. This physical interpretation permits to con-
struct new topological invariants using the methods of quantum field theory.

In present paper we give the detailed proof of results of [8] and [24]. To
facilitate the reading to physicists we have included in present paper the
formulation of main mathematical results used in our proofs (Sect. 2, 3, 6, and
Appendix I). Some results we have not found in the literature though they are
perhaps well known. Most of results summarized in Sect. 2, 3, 6, and Appendix [
are explained in many books and papers, but it seems that these books are not very
easy for physicists. Of course the brief summary cannot replace detailed textbooks

1 In preliminary version [9] of the paper [8] we proved by means of index theory that the equation
for infinitesimal variations of instanton (linearized duality equation) has at least 8¢ — 3 independent
solutions. In [10] this result was confirmed by means of direct calculation for ‘t Hooft’s instantons
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on fibre space theory and theory of elliptic operators. However we hope that this
summary will be useful by reading of this paper and other papers (for example
[26-287]). We have defined some notions used in [26, 27] though they are not
necessary in present paper.

In Sect. 4 we calculate the number of instantons. The Sect. 5 is devoted to zero
fermion modes in the field of instantons. In Sect. 7 we use heuristic arguments to
obtain the expression of instanton contribution through regularized determinants.
In Sect. 8 we analyse the conformal properties of these determinants. In Sect. 9 we
consider shortly the two-instanton determinants (see [29]). The results of Sect. 8
and 9 overlap partially with the results of paper [30].

All manifolds, maps, bundles, sections, forms under consideration will be
supposed smooth.

Section 2. Topological Preliminaries

One says that a map p of the space E onto the space B is a trivial fibration with the
fibre F if there exists such a homeomorphism ¢ of B x F onto E that po(b,f)=b for
every beB, feF. The map ¢ is called a trivialization of the fibration p.

The map p of the space E onto the space B is called a locally trivial fibration
with a fibre F if the space B can be covered by open sets U, in such a way that the
map p of p~*(U,) onto U, is a trivial fibration, i.e. there exist homeomorphisms ¢,
of U,x F onto p~ }(U,) satisfying po (u,f)=u. If ueU,N Uy we can determine a
topological map g¥; of F onto F by means of formula

(pﬁ(u’f) = (p{z(ua Qgﬂf) .

The maps gy, will be called transition maps; one can say that the fibre space E is
glued from the direct products U, x F by means of maps gj,. It is evident that for
ue U,nU;NU, we have

Qup = 0p0p, - (1)

If F is a (complex) vector space and the transition maps gy, are linear we say
that ¢(E, B, F, p) is a (complex) vector bundle. If for every u the map g;,€ G, where
G is a subgroup of the group of linear transformations of F, we say that ¢ is a
G-bundle. (We suppose that the trivializations ¢, are fixed.)

The continuous map ¢ of B into E will be called a section of & if pg(b)=b for
every be B. If the fibre space is trivial then every section has a form g(b) = (b, (b))
where r is a map of B into F, ¢ is a trivialization. In general case ¢(b)= ¢ (b, r,(b))
where the maps r,:U,—F satisfy r,(u)=g},r,(w).

Let us consider a space E and a topological group G, acting in E on the right. If
the group G acts freely in E (i.c. eg+e if ecE, geG, g=+1) and the identification
map p of E onto coset space B=E/G is a locally trivial fibration we say that the
action of the group G determines a principal fibration &(E, B, G,p). (The last
condition is always fulfilled if G is a compact Lie group.) A principal fibration
having a section ¢ is trivial; the trivialization is given by formula ¢(u, g)=q(u)g.
Let us consider such a covering {U,} of the base B=E/G that the fibration £ has a
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section g, over U, ; for every o the map ¢ (u, g)=q,(u)g determines a trivialization
of & over U,. We fix the covering {U,} and the sections g,. It is evident that

@t 9)=q,(u)g = ¢ 41, 03,9) = 4 5(u)(05,9) -
We define a7, as an element of the group G satisfying
q,(u)=qyu)ay, .

Then the transition map ¢f, transforms ge G into aj,g.

Let us describe for example the tangential fibration of n-dimensional smooth
manifold M. The space E of this fibration consist of frames in M (the set (a,, ..., a,)
of n linearly independent vectors at the point of M is called a frame at this point). It
is easy to define a free action of the group GL (n) on E [a non-degenerate nxn
matrix g;; transforms the frame (ay,...,a,) into the frame (a},...,a,) where
di=Ya g ﬂ] This action determines the prmmpal fibration {(E, M, GL (n), p) which
is called the tangential fibration of B. The local trivialization of { can be
constructed by means of local coordinates in M ; the transition maps assign to
each point beU,nU, a Jacobian matrix (du(,/duly) where (ug,,...,uy,) and
(u(,,), ..., U(g) are local coordinates in U, and U respectively. If M is a riemannian
mamfold one can give another definition of tangential fibration. It is convenient to
consider in this case the space E’ of orthonormal frames in M. The natural action
of O(n) in E’ determines the principal fibration {'(E’, M, O(n), p’) which is called a
tangential fibration of riemannian manifold M.

For every representation T of the group G in the group of non-degenerate
linear transformations of the vector space F we define a vector bundle associated
with the principal fibration &(E, B, G,p) as a fibration ¢n(Ey, B, F,py) which is
trivial over'U, and has the transition maps T(g}4). One can give also an invariant
definition of the associated vector bundle. Namely, the space E; can be obtained
from E x F by means of identification (e, f) ~ (eh, T(h~)f) where he G, the map p;
is induced by the projection (e,f)— p(e).

Let us suppose that the base B of vector bundle #(E,B, F,p) is a smooth
manifold. The space of smooth sections of the bundle # can be considered as a
linear space; this space will be denoted by I'(y). If the bundle # is trivial the space
I'(n) can be identified with the space of F-valued smooth functions on the base. If
n={¢, one can identify a section fel'(¢;) with a collection of F-valued functions
f(u) defined for ue U, and satisfying

Jolu)=T(@gp)f (1)

if ue U,nU,. One can say that the section feI'({;) can be considered as a function
on the base taking values in the fibres of £;. The exterior differential p-form on the
base taking values in the fibres of ¢, can be defined as collection of forms

1
0¥ = o7 o (u)du . ~dulp 1)

satisfying
Al
_ Oufyy  ouig

T( )w(ﬁ)
R Qup
6u(a‘ Gu(a)

..........
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ifue U,nU, (here ™ is a F-valued p-form defined on U, the local coordinates in
U, and U are denqted b_y (u(la), ~~-,“2’a)) and (u(lm, ... U(g), the sign A denotes the
exterior product: du' A du/ = — du/A du’). The space of p-forms taking values in the
fibres of ¢, will be denoted by I'’(£); it is evident that I'°(&,)=T'(£;). It is easy to
construct a vector bundle £4 in such a way that sections of this bundle can be
identified with p-forms taking values in the fibres of &, [ie. I'(€5)=T"(¢4)]

Let us consider the open set U in the euclidean space &”, the trivial principal
fibration &(E, U, G,p) and the trivialization ¢:U X G—E of this fibration. The
vector field 4, defined on U and taking values in the Lie algebra & of the group G
can be considered as a gauge field. Let K denote a curve in U with beginning point
a(K) and ending point f(K). The T-exponent Texp(— | A,dx*) will be denoted by

K

hy. If the curve K consists of two curves K, K, and o(K ;) =o(K), f(K,)=a(K,),
B(K,)=PB(K) then hy=hy hy ; for infinitesimal curve hy=1—A dx" For every
curve K CU one can define a map by of the fibre over the beginning point «(K)
onto the fibre over the ending point f(K) transforming the point r = ¢(«(K), g) into
the point byr = @(B(K), hxg). Of course b(rh)=b(r)h for every he G. One can say
that the family of the maps by determines the connection in the principal fibration
¢ The map by can be interpreted as parallel transport of the fibre along the curve
K. The gauge field 4, determines also parallel transport along the curve K CB of
the field transforming according the representation 7T of the group G in the group
of non-degenerate linear transformation of the space F. The vector f; over f(K) is
obtained by means of parallel transport from vector f, over «(K) if f; = T(hg) f,. If
K(2) is the set of points {u(c)} where 0<oc=A and f,=T(hg;)f, then
df,/dA= — (A, (u(A) f,du"/dA, where ¢ denotes the representation of Lie algebra
corresponding to T. If the field f(u) satisfies

Vf=(0,+1(4,)f =0

then it is unchanged by parallel transport. The transformation law of gauge field
~ A, by the change of trivialization can be derived from the requirement that the
maps by do not depend from trivialization. We obtain that

hy=a(B(K)hgxq ™' ((K))
Ay (u)=qu)A, g~ u)—0,9)q ' (w)

if the trivializations ¢ and ¢’ are related by the formula
¢'(u, 9) = p(u, q(u)g).

We see that the fields 4, and A4, are gauge equivalent.

Let us suppose that &(E, B, G,p) is a principal fibration and the base B is
n-dimensional smooth manifold. We denote by {U,} the atlas of the manifold B
(i.e. we suppose that the manifold B is covered by sets U, and the coordinates
(u(la), ..., U(y) are introduced in U,). For every o we fix a section g, of £ over U,
Corresponding trivialization of ¢ over U, will be denoted by ¢, [ie.
@ u,9)=q,(w)g]. The fibration ¢ is glued from trivial fibrations by means of
transition maps g—oy,g. The gauge field 4 in £ can be considered as a collection of
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fields A defined on U, taking values in % and satisfying

0o,

ou;

@) (;,1 noy__ ) | au AR, 1 n uy—1_

AP Uy, -0 ) = oull a5, AP gy, - Ui )0,
)

!
The gauge field 4 determines the connection in £. Namely, if K is a curve in B one
must divide K onto curves K, ..., K, in such a way that each K lies in one of U,
and define the map by, of the fibre over the beginning point of K onto the fibre over
the ending point of K as by ... by where by are defined as earlier.

The transformation 4 of E is called an automorphism of principal fibration
EE, B,G,p) if Aeg)=Aleg), pMe)=ple) for ecE, geG. It is easy to see that the
automorphism of the trivial fibration can be represented in the form
Ap(u, g)= @(u, L(u)g) where L(u) is a G-valued function on the base. In general case
one can write that

Y
Jugg,

Mo (u, 9) =@, (u, L,(u)g),
where
ueU,, Lu)=dyLu)os,) " if ueU,nU,.

The automorphism A transforms the gauge field 4 into the gauge field 4" defined
as a collection of fields

OL,(u)
duf,

AP ()= LA, WL, ()~ ( )L{ Hu).
It is easy to see that the maps b, =b% and the maps by, =bj are connected by the
formula by =Ab ™.

We say that the field A’ is gauge equivalent to the field A4 if there exists an
automorphism transforming A into A"

Let us consider the set H, of elements ¢, € G satisfying bge =ecy [here ee E and
K is an arbitrary curve beginning and ending at p(e)]. It is easy to prove that H, is
a group; this group is called a holonomy group at point e [if e=¢ (1, 1) then H,
consists of elements A where K run over the curves beginning and ending at u].
The holonomy groups at different points of E are conjugate. One can prove that
the gauge field A is gauge equivalent to the gauge field taking values in the
subgroup G'CG if and only if there exists such a point that H,CG'.

The gauge field A in a principal fibration ¢ determines a covariant differential
d, in associated vector bundle &;. The differential d, acts from I'’(&;) into
I'"*Y(&,); namely on U, the operator d, transforms the form (1) in the form

1
A A
(d ) =1 Vo) duby nduih A Lo Adugs,

where V,= +1(4Y) (here ¢ is the representation of the Lie algebra %

Q
Ui

corresponding to the representation T of the Lie group G).

The sections of ¢; can be considered as fields transforming according the
representation T of G and the covariant differential d, coincides with usual
covariant differential of such fields. The gauge field determines the parallel
transport of the fiber of vector bundle £, along the curve K C B. If the space E; is



Instantons and Fermions 239

represented as space of pairs (e, f), eeE, feF with identification
(e, f)~(eh, T(h=")f) then the parallel transport along K transforms (e, f) into
(bge, ). If the field y transforming according the representation T (i.e. the section
of &;) satisfies d =0 then this field is unchanged by parallel transport and
therefore for every ee E there exists such an element feF, f#0 that the pairs (e, f)
and (bye, f)=(ecg, f) for every closed curve K determine the same point of E.
Using that (ecy, f)~(e, T(cg')f) we obtain that T(g)f=f for every geH, If
G=8SU(2) and T is an irreducible representation, we see that in the case under
consideration the holonomy group is abelian and therefore the gauge field is gauge
equivalent to a gauge field taking values in the abelian Lie algebra.

Let us consider the adjoint representation 7 of the group G in the Lie algebra ¢
and corresponding associated vector bundle & (E, B, %, p,). The strength of gauge
field can be considered as collection of 2-forms

(@) _ L (@) g1 v
F® =3 Fhdug, A dug, ,

where
(o) o (o a (o)
FO=0,A% —0,AQ+[AP, AP] .

It is easy to see that the forms F determine a 2-form taking values in the fibres of
the bundle ¢ The difference of two gauge fields (Aff‘)—flﬁf‘))du" can be considered
as a 1-form taking values in the fibres of ¢. The infinitesimal automorphism of &
can be considered as a set of %-valued functions w®(u) satisfying ©®(u)
=o' (u)(o4,) " ; the functions »® determine a section of &,

Let us suppose now that the vector bundle y(E, B, F,p) is provided with
hermitian structure [i.e. # is an U(m)-bundle and B is n-dimensional compact
riemannian manifold]. In this case one can naturally define the scalar product in
I'P(n) and the operator = acting from I'’(y) into I'" () the operator = transforms
the form (1) into the dual form

1
() ~ (@) u1 Un ~
O = @, duiy A A dufyr
(n—p)!
where
~a o (DA 150y 2p
w/ll ----- l‘n—p_ gg;tl ,,,,, Apsfis.ees ﬂn~pw

(as usual g=detg,;, a,=g,,4",g,, is the metric tensor). It is easy to check that the
adjoint operator to the covariant differential d, is equal to d% = —«d + if the
dimension of the manifold M is even. The operator d% can be considered as
covariant divergence ; for example d¥ transforms the 1-form w du” into the 0-form
-V,

Section 3. Elliptic Operators

Let A be a differential operator acting on vector-valued functions defined on
bounded domain D in euclidean space &~ The differential operator A of order N
transforms the function (f,(1),..., f, (1)) into function (f](u),..., f,(u)) where

Sfiu)= Y Y Afj‘ """ ‘"(u)@i‘...@;}"fj(u),

[A1+...F il SN 120 jSm



240 A. S. Schwarz

the coefficient functions A7 ~*"(u) will be supposed smooth. The differential
operator A will be called an elliptic operator if for every ue D and for every pe&”,

p=0 the symbol of this operator

o,{u, p)= » Afpe P
[Ag+...+in|=N
is a non-degenerate matrix. [t is convenient to consider differential operators as
operators in Sobolev spaces. The Sobolev space Wp"(D) is defined as completion of
the space of smooth functions on D with respect to the norm

Ilflli',?)= Z Ha'}l“'aﬁ"f“(p)

|21+ A<k

where |g|, denotes the IP-norm:
Il =(Zlocopdu)te.

The differential operator or order N can be continuously extended on W if k=N
and acts from Wy into Wy~ ".

We will consider the differential elliptic operators acting from the space I'(,)
into the space I'(¢,) where &(E, M, F,p,), i=1,2, are vector bundles, M is a
compact manifold. (These operators can be defined as operators satisfying locally
the requirements above.) If 4 is such an operator and the bundles ¢,,&, are
provided with hermitian structure one can construct formally the adjoint operator
A* acting from I'(¢,) into I'(¢,). It is easy to check that the operator A* is elliptic;
A*4 and AA* are non-negative self-adjoint elliptic operators acting in I'(¢;)
and I'(¢,) respectively.

We denote by /(A4) the number of linearly independent solutions of equation
Af =0, ie. the number of zero modes of operator A. In other words /(4) denotes
the dimension of the kernel of A4:

l(A)=dimker 4 .

(The kernel of 4 is the space of solution of equation Af =0.) It is easy to verify that
I(A)=UA*A) and [(A*)=1(AA*). The index of elliptic operator A4 is defined by
formula

index A =1(A4)—1(4%) (1)

[the numbers I(4) and [(A*) are finite therefore this definition is correct]. One can
check that the index does not change by continuous variation? of operator A ; this
assertion permits to use topological methods for calculation of index [31-33]. It
follows from this fact that index A does not depend on the choice of the hermitian
structures in bundles &,, ¢,.

Let us consider a non-negative self-adjoint elliptic operator K in the space I'(¢)
where &(E, M, F,p) is provided with hermitian structure. Let R be a differential
operator of order zero (locally R can be represented as operator of multiplication

2 One can say that operator depends continuously on parameter if the coefficient functions depend
continuously on this parameter in the C®-topology
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on matrix function). The asymptotics of Sp R exp (— Kt) for t—0 can be studied by
semiclasical method. One can prove that for t—0

SpRexp(— Ko~ ) P(RIK)x™*, )

n n—1 n—-2
N> N’ N
M. The coefficients can be calculated by means of Seeley formula [34], [33]. If 4 is
second order differential operator the coefficient ¥,(R|K) can be represented as an
integral over M and the integrand is a rational function of coefficient functions of
R and derivatives of coefficient functions of K.

One can take R=1; then we obtain from (2) that for t—0

where k= ,..., N is the order of B and n is the dimension of the base

Spexp(—Kt)~ Y ®(K)t ™",
where
D (K)=Y,(1|K) .

The index of elliptic operator A can be represented in the form

index A =@,(A*4)— P, (AA*) . (3)
Really,
Spexp(—tA*¥A)—Sp(—tAA*)=index A 4)

because non-zero eigenvalues of 4¥4 and AA4* coincide and their contributions in
(4) cancel. Taking the limit t—~0 we obtain (3) from (4). Combining (3) and the
Seeley formula one can get the integral formula for index. The elliptic operators on
compact manifolds can be considered as bounded operators in Sobolev spaces too.
The Sobolev space W,(¢) can be defined as a completion of I'(¢) with respect to the
norm

LGy = 1B fll 5y -

where B is a positive second order elliptic operator, |gl|, denotes the Lf-norm.
[The space W)(¢) and the topology in this space do not depend on operator B and
on the choice of hermitian structure in £.] One can prove that

1£1% <const | £11%) 5

it p=p), g = 57 — K. Tt follows from (5) that the space W is imbedded in the

space Wy. (This assertion is known as Sobolev’s imbedding theorem.) Let A be a
differential operator of order N acting from I'(¢,) into I'(¢,). The extension of this
operator gives a bounded operator 4%? acting from W¥(¢&,) into W)™ N(E,). If A is
an elliptic operator then [(4)=1[(A%P?). (Every solution of elliptic equation
A%P £ =0 is smooth and therefore can be considered as a solution of equation
Af =0.) Analogously [(4*)=[(4%?*), In particular if [(4*)=0 the operator 4%?)
maps W¥(¢&,) onto Wi~N¢,).
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At last we give the definition of elliptic complex. (This notion will not be used
in present paper.) The sequence

dy

0 I, JRLELEY 0 6)

I

of linear spaces I, ..., Iy and linear maps d, acting from I} into I, , will be called a
complex if

di-l— ldi:0 : (7)

It follows from (7) that the image of d,_, contains in the kernel of d; and therefore
we can consider the coset space H,=Kerd,/Imd, _,. The dimension of this space
(the i-th Betti number) will be denoted by h,. If h;=0 for i=0,1,..., N we say that
the complex is acyclic. The Euler characteric of the complex is defined as ) (—1)h,.

If I'=TI(n,), where 7, is a vector bundle provided with hermitian structure, and
the operators

A;=did;+d;_,df
are elliptic we will say that the complex is elliptic. It is easy to check that

didi=4;,,d;
df A=A, df
Ker4;,=(Kerd)n(Kerd#_ ).

One can prove that in this case I; is a direct sum of Imd,_,, Imd} and Ker 4,
(Hodge decomposition). In other words each element ael; admits unique repre-
sentation in the form x+y+z where x=d,_,u, y=d¥v, diz=0, d} ,z=0.

It follows from Hodge decomposition that Kerd,=Imd,_, +Ker 4; and therefore
h,=14,).

The Euler characteristic of elliptic complex can be interpreted as index of
elliptic operator. Namely, we can define the operator T acting from space
I.=TIy+1,+ ... into the space I, = + I} +... as an operator transforming the
sequence (dg, ds,...)e I, into the sequence (b, by,...)eT 44, Where by, =d%;_ a,;
+d,;_,a,,_,. It is easy to prove that T is an elliptic operator and index
T=)(—1)h,.

Let I'* be the space of k-forms on the manifold M. If d,=d is the exterior
differential, the spaces I'* and maps d, form a complex (de Rham complex of the
manifold M). The Betti numbers of this complex are equal to the Betti numbers of
the manifold M. If M is a compact riemannian manifold then de Rham complex
can be considered as an elliptic complex. An obvious generalization of de Rham
complex can be obtained, if we denote by I'* the space of k-forms taking values in
the fibres of an O(m)-bundle and d, denotes the exterior differential with respect to
the gauge field with vanishing strength (F=0)?.

3 Ifone can find such a field the bundle is called flat. There exists a natural correspondence between
flat bundles and representations of the group 7, (M) into O(m)
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Section 4. Instantons

Let us consider a principal fibration &(E, M, G, p) where M is four-dimensional
compact oriented riemannian manifold, G is a simple compact Lie group. The
euclidean action of the gauge field 4 in ¢ can be defined by formula

1 1

S()= 55 (F.F)= 5 5 | (o PV
where F is the strength of the field A. [As we have explained in Sect. 2 F can be
considered as 2-form on M taking values in the fibres of the associated vector
bundle ¢ (E,, M, %, p,) where 4 is the Lie algebra of G and G acts on % by means of
adjoint representation. The scalar product (F, F) is defined by means of invariant
scalar product in ¢ and riemannian metric in M.]

It is well known that (F,+F) does not depend on the field A; this number is
determined completely by topological type of the fibration & By appropriate
normalization of invariant scalar product in ¢ the number

1

=T6—n‘z(F,*F)

q
is an integer (see for example [35] or [1]). If G is an abelian group, then g=0. We
assume further that G is a simple compact non-abelian group. Using that
(+F,*F)=(F,F) and (F, «F)=(=F, F) we obtain that

(F—«F, F — «F)=2(F, F)— 2(F, «F) .

It follows from obvious inequality (F—«F,F—«F)=0 that (F,F)=(F,«F) and
(F,F)=(F,+F) if and only if F=xF. We see that S(4)=8n%*¢ %¢ and
S(A4)=8n?g " %q if and only if the gauge field A satisfies the duality equation

F=xF . (3)

Without loss of generality we can suppose that ¢ >0 because the sign of g depends
on the choice of orientation of M. [Ifg<O then S(4)=8n?g ?%|g| and
S(4)=8n%g~?|q| if and only if F= —«F.]

We consider here the instantons on compact manifolds. However it is essential
to note that the duality equation is conformally invariant and therefore each
instanton on the sphere $* with usual metric can be considered as an instanton on
the euclidean space.

Let A be a gauge field satisfying the duality Eq. (3). We will study the solutions
A" of the duality equation in the neighbourhood of A imposing the gauge
condition

d(A'~ 4)=0 . (4)

We consider for definiteness the case G=SU(2), M is a sphere S* with usual
metric.

Theorem L. There exists (8¢ — 3)-parameter family of solutions of duality Eq. (3)
satisfying the condition (4).
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To prove this theorem we search the solutions of (3), (4) in the form A'=A4+a
where a can be considered as a 1-form on M taking values in the fibres of the
bundle ¢(E,, M, %,p,). If A’ satisfies (3) then a must satisfy

P(d,a+[a,a])=0 (5)

(here P=3(1 —«)and [a, a]), where a = a,dx" is defined as a 2-form [a,, a,Jdx* A dx*.
The gauge condition (4) takes the form

d*a=0. (6)

Let us consider at first the Egs. (5), (6) neglecting the non-linear terms in (5). In this
approximation the Egs. (5), (6) can be written in the form Ta=0 where T is a linear
operator transforming 1-form a into a pair (f,g) where f=Pd,a is an antidual
2-form (f = —f) and g is a O-form d*a (all forms under consideration take values
in the fibres of &,). The space of 1-forms will be denoted by I, the space of 0-forms
- by I}, and the space of antidual 2-forms by I',. One can construct bundles #, and
17, in such a way that I'; can be considered as I'(y,) and space I', + I, consisting of
pairs (f,g) where f is antidual 2-form, g is O-form can be considered as I'(y,). It is
easy to check that T is an elliptic operator acting from I, into I',+ Ij. The
riemannian metric in M and invariant scalar product in % induce scalar products
in I and I,+ I so that we can consider the adjoint operator T* acting from
I,+ T, in I}. The operator T* transforms the pair (f,g)el,+ I into the form
aif+dugel,.

Lemma 1. The equation T*(f,g)=0 has only zero solution [i.e. (T*)=0].
Lemma 2. The index of the operator T is equal to 8q—3.

The proof of Lemma 1 will be given at the end of this section. The methods of
calculation of index will be discussed in the Appendix L.

It follows from the lemmas that [(T)=index T+ (T*)=8q— 3. We see that in
linear approximation the Egs. (5), (6) have (8¢ — 3)-parameter family of solutions.
To obtain rigorously the existence of (8¢q— 3)-parameter solution of (5), (6) we
consider the non-linear operator R which transforms 1-form ael} into the pair
(f,g)el,+ 1T, where

f=Pldsa+[a,a]), g=dja.

[tis convenient to regard R as an operator acting in Sobolev spaces. Namely R can
be extended on W"(n 1) if p>4 and the extended operator R acts from W"(nl) into
W" Y(n,). [This assertion can be deduced from Sobolev imbedding theorem.
Really it is easy to check that the non-linear part of R can be considered as an
operator acting from W"(nl) into W /2(;72) and for p >4 the space W"2 is imbedded
in W¥~']. Moreover the operator R is continuously differentiable (ie. Risa
C'-map); the differential of R at the point a=0 is the linear operator T obtained
by means of extension of T on Wk(’h) It follows from Lemma 1 that the operator
T maps WX(n,) onto Wy~ *(n,). We can apply therefore the infinite-dimensional
version of lmpIICIt functlon theorem (see for instance [33]) and obtain that the
equation Ra=0 has a family of solutions depending on (T parameters. The
solutions of elliptic equation Ra=0 are smooth and hence can be considered as
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solutions of equation Ra=0. To complete the proof of Theorem 1 we note that
{T)=1I(T) and use Lemma 2.
Now we must give the proof of Lemma 1. This proof is based on the following

assertion.

Lemma 3. If y is a non-zero field transforming according irreducible representation
V of SU(2) (i.e. y is a section of vector bundle &, associated with principal fibration
&) and there exists a gauge field A in & satisfying d ;=0 then the topological
number q vanishes.

Really as we have mentioned in Sect. 2 the holonomy group of the field A4 is
abelian if the conditions of the Lemma 3 are fulfilled. Therefore the field A is gauge
equivalent to a gauge field taking values in the abelian Lie algebra and hence g =0.

To prove that I(T*)=0 in the case M =S5* we note that (T*)=[(TT*) and
consider the equation

TT*(f,9)=0,

where fel,,gel,. The operator TT* transforms the pair (f,g)el,+I into the
pair (43 f, A43g) where the operator A% acting in I, and the operator Ag acting in I,
are defined by the formulae

A’; =Pd,d} ,
Af=d%d, .
The Eq. (7) breaks up into equations
43/=0, (8)
Adg=0. )

It follows from (8) that

(dofdof)=(d5d, L) =Cedbd o f, 5f) = (d4d5 /. [)=(45 1, f)=0

and therefore d,f =0. Now we obtain from (9) that (dg,d,9)=(449,9)=0 and
hence d,g=0. Using Lemma 3 we conclude that g=0 and hence /(45)=0. To
prove that [(4%)=0 we consider the form f corresponding to f into euclidean
space (one can say that f is the form f in stereographic coordinates). The form f is
smooth therefore the form f has the asymptotics

XMXQ

. C . XX,
7 (o ) o i v 1o

for |x|—oco. (To check this assertion one can note that the map xu—>]x|”2xu
transforms f into a smooth form.) The equations d,f =0, f'= —=f are confor-
mally invariant and therefore

d%d . f =0, (11)
f=—xf. (12)
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In euclidean space the Egs. (11), (12) breaks up into independent equations of the
form

VAvAu=0

for coefficient functions of f. (This fact can be verified by direct calculation. It
follows also from assertions of Sect. 5.) Using the asymptotics (10) of f we obtain
that (V'u, V)= — (V' V!u,u) =0 and therefore V;'u=0.

From Lemma 3 we conclude that u=0 and hence f =0, i.e. [(45)=0.

The operators 45, 4§ introduced above will be important in the Sect. 6 as well
as the operator

M =T*T=d%Pd , +d ,d%

acting in I;. We use the notations hi=I(4#) for i=0,1,2. Noting
that [(4¢)=I(T) we see that h{ =84 —3 in the case under consideration..

We have assumed that M is a sphere with the usual metric. However it is well
known that the number [(T*) cannot increase by small variation of operator T*
and therefore (T*)=0 if the metric on M is sufficiently near to the usual one. We
see that the assertion of Theorem 1 remains correct by small variation of usual
metric of the sphere.

We found that the solutions of (3) in a neighbourhood of 4 satisfying (4) form
(8g — 3)-dimensional manifold. It is important to note that the gauge condition (4)
eliminate the gauge freedom. Really, let us consider the infinitesimal gauge
transformation determined by we I, If A satisfies (3), (4) the gauge equivalent field
A'+d 4 o cannot satisfy (4) because the equation d¥d .« has only zero solution if
A’ is sufficiently near to A4 [the operator d%d, is obtained from Aj=d%d, by
means of small variation and I(44)=0 as it follows from Lemma 1]. One can
replace here infinitesimal gauge transformation by small gauge transformations.

Another proof of theorem using the elliptic complex

0 r,—“-r,-24r, 0 (13)

is given in [11]. This complex is equivalent to the elliptic operator T.

The main part of considerations above can be applied also in the case of
arbitrary simple non-abelian compact Lie group G. Generalizing the con-
siderations above one can prove that h{ is equal to the dimension of the largest
subgroup of G which commutes with holonomy group of 4 [11, 15]. If &5 =0 then
in the case M =S* our arguments show that h4=0 and the number o. instanton
parameters is equal to index 7. This index can be calculated easily (see Appendix I).
There exists also another proof of equality h% =0 which shows that this equality
is valid for arbitrary instanton on the sphere S* [11, 15].

Section 5. Fermions in the Field of Instanton

Let us consider now the euclidean Dirac operator D in the gauge field A where 4
takes values in the Lie algebra of the compact simple Lie group G and D acts on
the byspinor . We suppose that y has N isotopic indices and transforms
according to a representation of the group G which will be denoted by V. The fields
under consideration are defined on four-dimensional riemannian manifold M. We
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denote by B the operator D considered only on the right spinors. The operator B
transforms the right spinors into the left spinors and the operator B* coincides
with the operator D on the left spinors. We will study the zero modes of the
operator D (ie. the solutions of equation Dy =0). It is evident that /(B) is a number
of right zero modes of D and I(B*) is a number of left zero modes of D. By
definition

index B=1{(B)— I(B*) .

This index is well known [31-33]. (The methods of calculation of this index are
discussed in Appendix 1.) We obtain

Theorem 2. The difference between the number of right zero modes and the number
of left zero modes of Dirac operator on the compact riemannian manifold M is equal
to

N
yq+ g e(M) (1)
where q is the topological number of the gauge field, ©(M) is the signature of the

manifold M and a,, is the Dynkin index of the representation V.

The signature of riemannian manifold can be expressed through the Riemann
tensor R, ; by the formula

1
o(M)= 962 [ e R, RipdV . )

The Dynkin index of the representation is equal to

BRCONION
oy

where v denotes the homomorphism of the Lie algebra % of G into the Lie algebra
of SU(n), x,ye% and the scalar product in the Lie algebras is normalized by the
condition that the maximal length of the root is equal to 2. The Dynkin index
coincides up to trivial factor with the quadratic Casimir operator of the
representation V. [ The signature and the Dynkin index admit simple homological
interpretations. For example o, can be defined by formula

V.a=o,b,

where a and b are the generators of the homology groups H,(G,Z) and
H4(SU(n), Z) and V, denotes the homomorphism of homology groups induces by
V. It follows from (4) that o, is an integer.]

The well known formula (1) for index of Dirac operator was rediscovered by
Coleman (unpublished) and Kiskis [12] in the flat case by means of Adler-Bell-
Jackiv anonaly. As was mentioned in [8] the Adler-Bell-Jackiv anomaly can be
obtained from local index theorem and therefore the proof based on the index
theorem and the proof using Adler-Bell-Jackiv anomaly are closely related.

The signature of the sphere S* is equal to zero. The Dynkin index of the
l-dimensional irreducible representation of the group SU(2) is equal to
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L(I—1)I(I+1). Therefore in the case M =S* G =SU(2) the index B is equal to g if V
is the two-dimensional (spinor) representation of SU(2) and to 44 if V is the adjoint
representation of SU(2). Let us consider now the case when the manifold M is flat
(for example M is an euclidean space or M is a torus).

Theorem 3. If M is a torus then the Dirac equation in the field of instanton cannot
by satisfied by non-zero left spinor [i.e. [([B¥)=0].

The operator D on a torus can be written as in euclidean space in the usual
form

0
D=y"V,=y* (W + u(Ap) .

Hence
D2 =y vV, =" VA V) + 20" VY, = VW)
=—VV,+37"(F ).
Using that
AR S U

we obtain that the operator D? on the left spinors (i.e. the operator BB*) is equal
o =V, V,. Il y is a left spinor satisfying Dy=0 then (V,,V,p)=—(V,V,p,p)
=(D*y, p)=0 therefore V,p=0. If follows now from Lemma 3 that y=0.

The proof above shows that the assertion of Theorem 3 remains correct in the
case when M is an euclidean space. However in this case we must consider only
solutions decreasing fast enough to justify the equality (V,y, V)
=—(V.Vp,p)=0.

There exists a remarkable connection between linearized duality equation in
euclidean space and Dirac equation. It is easy to check that

TGy o(x) =(350"y" = 7"7")Bo(x), —GBa(x)) , (5)

where spinor ¢(x) transform according adjoint representation of the group G, o is
a fixed right spinor and ¢(x) is a right spinor depending on x. It follows from (5)
that

TG0 =7, Gw) =5y B*p ©
TT*GE(" ="y, 5y) = (360" —7'y*)BB*p, — GBB*)
[here y(x) is a left spinor, the antisymmetric tensor a(y*y"—7"y*)p(x) determines
antidual 2-form.]
We know that the operator D? =BB* on left spinors is equal to —V,V,. Using
this assertion and (6) we obtain that the equation T T*( f, g)=0 breaks up into four

independent equations of the form V,V,u=0 (this fact was used by the proof of
Lemma 1).
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Section 6. Determinants of Elliptic Operators

Let 4 be a non-negative self-adjoint elliptic operator on compact manifold. The
determinant of this operator in usual sense is infinite. We say that the expression

deteAzexp<— Yo t‘lexp(—lit)dt> (1)
is obtained from the (infinite) determinant of A by means of proper time cutoff
(here 4; run over positive eigenvalues of 4)*. The expression (1) for det, A can be
rewritten in the form

logdet,A=— | t~'Sp(exp(—tA)—II(A)dt .

Here and later I1(4) denotes the projector on the kernel of A [ie.
H(A)f =) .(f,¢)e; where ¢, run over zero modes of A]. The asymptotics of
logdet, A for e—0 can be obtained by means of asymptotics of Spexp(—tA) for
t—0. It is well known [34] that for t—0

Spexp(—tA)x) oyt~ (3)

[in notations of Sect. 3 o, =®,(A4)]. Using (2) and (3) we see that for e—0 the
divergent part of logdet, 4 can be represented in the form
~ ¥ ke 4 (ap—p)loge
k>0
where o, =@,(A4) and p denotes the number of zero modes of 4. The finite part of
logdet, A will be denoted by logdet' 4:

logdet’ 4= llm (log det, A+ Y k™ oae ¥ —(xy—p)log 8) . (4)

k>0

It is easy to check that logdet’ A can be represented in the form

logdetA——ft Y(Spexp(—tA)— ) oy t™"

k>0

—0(1 —t)a,—O0(t—1)p)dt . 5

In present paper we will define the regularized determinant of non-negative elliptic
operator by formula (4). There exists another definition of regularized determinant
based on the notion of zeta function (see [25] for instance). All our results remain
correct by this definition of regularized determinant too.

The zeta function {(s|4) of non-negative elliptic operator 4 for large Re s can
be defined by formula

fe o}

C(SIA)=Z/1,."S-— f =1 Sp(exp (—tA)— II(A))dt , (6)

0

4 The definition of det, 4 is prompted by the formula
logdetA—logdet Ag=— [ 1™ *(Spexp(—tA)—Spexp(—tA4,))dt
0

which is valid for finite-dimensional operators
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where A, run over positive eigenvalues of 4. For other s zeta function must be
defined by means of analytic continuation. For t— oo the integrand in (6) decreases
exponentially, the asymptotics of the integrand for t—0 is given by Seeley formula.
Using these facts one can prove that {(s|4) is meromorphic function; if the
asymptotics of Spexp (—tA) for t—0 contains a term o, ¢ ¥, k+0 then the function
I'(s){(s]4) has a simple pole at the point s=k with residue «,. For s—0 we have
sI'(s)—1 and therefore {(s|A) is analytic at the point s=0 and {(0|4) =« —p. The
regularized determinant D(A4) can be defined now by the formula

log D(A) = — (51— )

[This definition is correct because {(s|A) is analytic at s=0.]
The analytic extension of {(s|A4) in the half-plane Re s =0 can be written in the
form

0

1 _
{(s|A)= e (kZO soj(k + %S Py Q(Spexp(—tA)—p)tS”‘dt

+ j(Sp exp(—tA)— ) ockt”")ts‘ldt) . 8)
) K20

Using (7) and (8) we obtain

logD(A)= Y k™ loy +I"(1)(0tg—p)

k>0

— [ t7X(Spexp(—tA4)—p)dt
1
i

— [t (Spexp(—tA)— Y ock.t“") dt . 9)

0 k=0
Comparing (5) and (9) we conclude that
logdet'A=log D(A)—TI"(1)(oty—p) -

The eigenvalues of A are expressed through eigenvalues of A as A¥, therefore
{(s]A%)={(Ks|A) and hence

log D(A%)=K log D(A) . (11)
From {(s|oA)=0°((s|]4) we conclude that
log D(¢A)=log D(4)—{(0]4)loge . (12)

For arbitrary elliptic operator we define D(A4) by the formula
. d
log D(4)=Flog D(A*A)= — 3 75 SslAF A= - (13)

It follows from (11) that for non-negative self-adjoint operator A this definition
is equivalent to the definition by means of (7).



Instantons and Fermions 251

The definitions of regularized determinants given above can be applied for
some non-elliptic operators too. However the existence of determinants of non-
elliptic operators cannot be guaranteed.

One can replace det’4 by D(A) in considerations of present paper.

Section 7. Instanton Contribution in Green Functions

In present section we express the instanton contribution in euclidean Green
functions through regularized determinants of elliptic operators. Our conside-
rations in this section will be heuristic.

We consider the euclidean action

S={FD qpdV — [§ M pdV + Sy,

describing fermions 1 interacting with gauge fields 4, [ the gauge fields take values
in the Lie algebra @ of the simple non-abelian compact gauge group G; the
fermions fields transform according the representation T of G, Sy, is the Yang-
Mills euclidean action (4.1), D, is the euclidean Dirac operator in the gauge field,
the eigenvalues of the matrix M determine the masses of fermion fields].

The euclidean Green functions (Schwinger functions) can be defined formally
as quotient of two functional integrals. Namely if @(A4) is a gauge invariant
functional we define the euclidean Green function by the formula

_ [ ®d(A)exp (—S)dAdipdy {
? [exp(—S)dAdipdy )

(here i,y must be considered as anticommuting variables [36]). For example we
can take

D(A)=¢(x,)...&(x,)
where
a(x) = CF (), F(x))

Of course (1) is not well defined expression; the rigorous definition of (1) must
include cutoff and renormalization.
After integration over fermion variables we obtain

_ [ ®(A)det (D, — M) exp (— Sy, )dA ,
7 [det(Dy—.M)exp(—Sy)d4 2)

One can use the method of steepest descent for calculation of (2) in weak coupling
case. We study the instanton contribution in (2). [One can construct approximate
extremals as superposition of distant instantons and anti-instantons. These
extremals and other approximate extremals must be taken into account by
calculation of (2) but we consider the contribution of instantons only]. The
contribution of instantons having topological number ¢ contains a small factor
exp (—8n2g~ 2q) for >0, however this contribution is essential by calculation of
numerator of (2) (for example in the case when the long range correlations are
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studied). The contribution of instantons having non-zero topological number in
the denominator of (2) will be neglected. The constant factors in our formulae will
be omitted.

The method of steepest descent for integrals of invariant functions is studied in
Appendix II for finite-dimensional integrals. We will use formally the lemma
proved at the end of Appendix II for the infinite-dimensional integrals. (To be
rigorous one must make the lattice cutoff, apply the lemma in the finite-
dimensional case and remove the cutoff.) The euclidean Yang-Mills action Sy,
plays the role of the function d~'g(x) entering in lemma. The functional 3(F, F)
plays the role of the function g(x). To calculate the Hessian of this functional
on the manifold of instantons we note that for gauge fields having the form
A,+q, where 4, is an instanton one can represent (F, F) in the form

(F,F)=16n*q+ 3(F —«F,F — xF)
=16n%q+2(Pd a,Pd a)+ ...
=167?q+2(d*%Pd 4a,a) +

[here P=1(1—x), the terms having third and forth degree with respect to a are
omitted]. We see that the Hessian of functional 3(F,F) can be considered as
determinant of the operator 4’ =d*Pd ,=(Pd,)*Pd , acting in the space of 1-forms.
By calculation of determinant only non-zero eigenvalues of 4" must be taken into
account; these eigenvalues coincide with non-zero eigenvalues of the operator
A4 =Pd (Pd )*=Pd ,d%P acting in the space of antidual 2-forms: f= —=f [all
forms under consideration take the values in the fibres of the fibration
CT(E‘U M> ga pz)]

The group of local gauge transformations G, plays the role of the group G in
the lemma of Appendix II. The operator 4§ =d%d, acting on O-forms plays the
role of the operator T in lemma (this assertion follows from identity

(450, 0)=(d,,d, )

because the infinitesimal gauge transformation transforms the field 4 into d,¢).
Using the lemma we represent the g-instanton contribution in the form

8 AMA
t=g - exp = 1) [ o) 55 dno. o)
where
MA)=det(D,— M) (detA3)” V*(det 45)"*(volume H*) ™ * 4)

and A(0) is given by the same formula with 4=0. The integration in (3) goes over
the manifold R, obtained from the manifold N, of regular instantons® having
topological number g by means of identification of gauge equivalent fields, H*
denotes the group of gauge transformations leaving invariant the instanton A and
du, denotes the measure on R, corresponding to the natural riemannian metric. [1f

5 The instanton A is called regular if all instantons in the neighbourhood of A4 have equivalent
holonomy groups [15]. We do not take into account the irregular instantons because the measure of
the set of irregular instantons is equal to zero (this assertion can be derived from [197)
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A and A+ a are instantons, a—0, then the distance between the corresponding
points of R, can be defined as (a+d,p,a+d,p)"? where ¢ satisfies
d*(a+dp)=0.] In the notations of the end of Sect. 4 dimR,=h;=0 and
dimR =h{ where A4 is a regular instanton. Further, dimH*=h{ and
dim H® =h{=dim G. The number ¢ is equal to dim N,—dim N,. The (infinite)
dimension of N, can be represented as dimR, -+(dim G, —dimH*)=h{—ht
+dimG_, where A4 is a regular instanton with topological number g. In particular
dimN,=h)—hj+dimG  =dimG_ —dimG. We see that o=(h{—hy)
—(hY —h§) (one can avoid the operations with infinite quantity dim G introducing
the lattice cutoff).

The determinants in (4) diverge. To obtain finite answer we must perform
cutoff and renormalization. To eliminate the infrared divergences we will consider
all fields on compact riemannian manifold M. (In other words we make the
volume cutoff. Further one can assume that M is a sphere of radius 1 for
definiteness.) The momentum cutoff is essentially equivalent to the proper time
cutoff of determinants if e = CA~ 2. (Here ¢ denotes the lower bound of proper time
and A is the maximal momentum.)

In the case when M is a sphere of radius R and the coordinates on the sphere
are dimensionless the dimension arguments show that C=KR™? where K is a
dimensionless constant. We see that the contribution of determinants in the
divergent part of (3) is equal to exp (x(A4)—x(0))log A where

HA)= = Po((D 4 — M) +(Do(43) = h3) = (Po(45) = h5) - )

[The linear and quadratic divergent terms cancel. To check this assertion we note
that the coefficients @(D,—.#)%), ®(A3), D{(45) can be expressed through the
Riemann tensor R, ; strength of the gauge field F,, and their covariant
derivatives. However simple dimensionality arguments show that the expression of
these coefficients for i=1,2 cannot contain the gauge field, therefore

(pi((DA - /%)2) = @i((DO - j/)z)’ d)i(A;) = @i(A,O), ¢i(461) = ¢i(A8)

for i=1,2]. One can see that du, and (volume H*)™! also contribute in divergent
part of (3), namely the contribution of dy, is equal to

AYimRa—exp (hflog A) (6)
and the contribution of (volume H*)™! is equal to
A724mH? —exp (—2hi log A) . (7)

To verify this assertion one can use the lattice cutoff. This cutoff is essentially
equivalent to the momentum cutoff if the maximal momentum A is connected with
the lattice spacing a by the formula A =a""'. (We suppose here for simplicity that
M is a torus.) We fix the direction of all lattice bonds and consider the gauge field
on the lattice as a G-valued function g, on the lattice bonds [37]. The
correspondence with the continuous case is given by the formula

gszexp<—£Audx“) . (8)
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The integration in the integral for Schwinger function in lattice case goes over all

g, (i.e. we integrate over the direct product [ | G of gauge group G assigned to each
.

bond of the lattice). The measure of integration corresponds to the riemannian
metric

ds*=7%"<g; "dg,.g; "dg,> .
v
If a—0 and g, is given by (8) then

ds?~a 2 [ (5A, 54"V = AX5A,54) .

w

We see that after the cutoff the integration over the manifold R, contains an extra

factor A%™R4, The lattice counterpart of the group of local gauge transformations
is the direct product || G of gauge groups assigned to each lattice point o Each
local gauge transformation g(x) generates an element {g(2)}e [ | G and in the limit

a—0 the riemannian metric in || G is connected with the metric in the group of

local gauge transformations by the formula
ds*=) <9, 'dg,.g, 'dg,>
~a ™t [ (g7 (x)3g(x), g 1 (x)dg(x)>dV .

We see that after the cutoff the (volume H*)™! contains an extra factor A~
The divergent factors arising from determinants, du, and (volume H*)™! give
together a factor

exp(e(4)—(0)In 4, 9)
where

0(A) =#(A) + I = 2hg = Po(A7) = 2Po(A5) — Do (D — M) -

2dimH4

[We have used here the equality
Po(4) =i =(Pg(43) = ) +(Po(45) — hg)

which can be derived from the coincidence of non-zero eigenvalues of operators
TT* and T*T where T is the operator considered in Sect. 4, T*T =A%,
TT* =A%+ A4 The last expression for o(4) does not contain the numbers h{. The
numbers @y((D, —.#)?), (A7), Po(A5) can be calculated by Seeley formula (see
Appendix I). We obtain from this calculation that the divergent factor (9) and the
divergent factor coming from usual one-loop renormalization of coupling constant
cancel. We use here the well-known formula [46]

— =

1 1 1 (11 2 ) A
g grz)hys 87.[2

3% log;
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giving the expression of the bare coupling constant g through the physical
coupling constant g, - and the subtraction point v.

In this formula o, denotes the Dynkin index of the adjoint representation of the
group G and o, denotes the Dynkin index of the representation T.

We can write now the expression of instanton contribution through re-

gularized determinants. In the case when M is a sphere of radius 1
2

8
I, =525 exp (— 244 (o, —20)qlog u) [ D(A)d(A)dv
Rq

phys

where
d(A)=(det'(D 4 —.4)*)"*(det' (D, —.4)*)~"/*,

e det’ 45\ V2 (det' 43\*/? (volume H*\ ™!
~ \det' 49 det’ 4§ volume H°

(10)

The constant K must be choosen from the requirement of coincidence of our
regularization procedure with the usual one. However the value of this constant is
inessential for us because we omit all constant factors in instanton contribution;
therefore we can take K=1.

Let us consider the case when the fermion masses are small. Without loss of
generality one can assume that the fermion fields y(x) consists of the fermion fields
P, (x),..., pylx) transforming according irreducible representationsV;,...,V, and
the mass matrix .# is diagonal, i.e. the fermion part of Lagrangian has the form

2 whiw— 2 mipy;,

LSjSN 15jsN
where D is the Dirac operator in the instanton field A acting on the fermions
transforming according the representation V. Let us denote by d; the number of
zero modes of the operator D;‘. In the case of small fermion masses m; one can
approximate det'(Df —m,) by det'(D{)-m$. Therefore

det'(D4—M)=m5"..my¥ det' D, . (11)

To check this assertion we divide log det'(D —m) on two parts: the contribution
of eigenvalues which have nonzero limit for m;—0 and the contribution of
eigenvalues tending to zero for m;—0. The first part give log det’D;‘ in the limit
m;—0. The eigenvalues of second kind can be calculated by means of perturbation
theory ; we see that there are 6, eigenvalues of second kind approximately equal to
—m; and therefore their contribution is equal to é;logm;.

Section 8. Conformal Properties of Instanton Contribution

The Yang-Mills action is conformally invariant. However the determinants arising
by calculation of instanton contribution do not admit conformal invariance,
because the renormalization disturbes the conformal invariance of quantum
theory. Nevertheless one can analyse the behaviour of instanton determinants by
conformal transformation and obtain from this analysis information on the
instanton contribution.
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Let us consider the variation of the expression
=1logdet' 45 —Llogdet’ 4] (1)
by conformal variation of riemannian metric
9op(X) =€Xp (0(x))g () - )

(All fields are defined on compact manifold M.) The variation of scalar product
(w,, w,) by infinitesimal conformal transformation is equal to

2K (6w, 0,) (3)
if wy,w, are k-forms.
The variation (d¥%)" of operator d¥= —xd,* on the k-forms by this trans-

formation is given by the formula
(d¥%) =(k—3)ed%+(2—k)d%e

[here ¢ is the operator of multiplication on the function o(x)]. The operator
P=%(1—=x) on 2-forms is conformally invariant. Therefore the variations of the
operators A5 =Pd ,d%P, A5 =d%d , can be represented in the form

(44) = —Pd,6d3P ,

Ay . . (4)
(45) = —26d%d ,+d¥6d, .
From (4), (5) we obtain that the variation of the expression
V(t)=%Spexp (—t43)—3Spexp(—145)
by infinitesimal conformal transformation is equal to
. t . t .
V()=—+Sp ((43) exp(—t43)+ 5P ((45) exp (—14p))
t
=3 Sp (6d%Pd ,exp (—tA4%)—t Sp(6d%d sexp (—1t43))
t
+3 Sp (6d ,d% exp (—t4%)
t
=55p (647 exp (—t41))—tSp (645 exp (—t47))
1 d A A A A
= =3t (Sp(Gexp(—147))—28p(Gexp(—idp))) , Q)

where A{=d,d%+ d%Pd, as earlier. [We have used the relations

A4 Pd = Pd A%, exp(—1tA5)Pd ,=Pd sexp (—tA47) ,
Ajdl =d5 A7, exp (—14g)d% =df exp (—147)

by calculation of V(z).]
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It follows from (7) that the variation &, of the expressions @,=1®,(4%)
—1®,(43), connected with the asymptotics of V(t) for t—0, is given by
D, =3k(¥(6147) - 2¥,(6145) . ®)
Using (6.5) one can express F through V(r)
_—jt V()= Dyt~ 2 =@yt !

— 01 =), —0(t— 1) (Ghy — Thg))dt . ©)

Now we can obtain the following expression for variation of F by infinitesimal
conformal transformation of metric:

F=—3(¥,(6147)—Sp 611(47) +(¥o(6145) — Sp 611(47) - (10)

To derive (10) we represent F in the form

F=— {17\ (V(t)—d,t ™2~ ¢~ V)dt

0
o0 d R B ) _
=%£ 7 (Spdexp(—t49) = Wy(6147) 7% = Wy (6]45) ™ e
— %(spaexp(—zm) W, (614d > — w6148 Yt (11)
0

combining (7)~(9). The asymptotics of the integrands r—0 are given by Seeley
formula and the asymptotics for r— oo is governed by zero modes:

lim Sp 6 exp (— tAM=Sp6I(4}) .

Using these asymptotics and (11) we get (10).

To find the variation of the volume of the isotropy subgroup H* by the
conformal variation of the metric in M we must study the variation of the measure
in the Lie algebra of H*. This Lie algebra can be realized as Ker 4§ CI,. If the new
scalar product in euclidean space is expressed through the old one by the formula
{f,9>=(Bf,g) then the new measure can be obtained from the old one by
multiplication on (det B)"/%. If B=1+¢S, ¢—0, then (det B)*~1+1eSpS
=1+4¢) (Sf, f}), where f; run over the orthonormal basis. Using these well
known assertions and (3) we can calculate the variation of the measure in Ker 4
by infinitesimal conformal transformation [the operator 26 plays the role of
operator ¢S and ¢y (Sf; f)=3Sp2611(45)]. Therefore the variation of (volume
H*)™! is equal to

Sp 611(43) (volume H*) ™! . (12)
Let us consider now the manifold R obtained from the manifold of regular
instantons N by means of identification of gauge equivalent instantons and the

measure du, induced by the natural riemannian metric in R. The variation of the
measure du, by infinitesimal conformal variation of the metric in M is equal to

7Sp(GII(A7)dp, - (13)
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To prove this assertion we note that the tangential space to the manifold N can
be identified with the space of solutions of linearized duality equation; in other
words with the space Ker Pd, where Pd, acts from [ into [,. The tangential space
to the manifold R can be identified with the coset space Ker Pd,/Imd,. If
aeKer Pd,, beKer Pd, then the scalar product of corresponding elements d,b of
Ker Pd,/Imd, is equal to (II(4{)a, I1(4{)b). In other words the space
Ker Pd,/Imd, is isometric to the space Ker A{ [this isometry follows from the
Hodge decomposition theorem applied to the elliptic complex (4.13)]. The
conformal transformation of riemannian metric in M does not change the
manifold R but this transformation changes the riemannian metric in R. If the
element & of tangential space T(R) corresponds to the element ae Ker A4 then the
new length of & is equal to (exp (O)I1(A)a, IT(A'*)a)''* where A" is the operator 4%
in the new metric. Hence the variation of the length of & by the infinitesimal
conformal transformation is given by the formula 1 (6a,a). We see that the new
measure in T(R) can be obtained from the old one by means of multiplication on

143> (6a,a)=1+5SpéII(4}),

where a; denotes the orthonormal basis in I1(4%). This proves the formula (13).
Let us consider now the measure du="7(4)du, on the manifold N where
P(A)=(det' 45)” **(det' 4§)"/*(volume H*)™*

Combining the formulae (10)—(13), we get the following assertions.

Theorem 4. The variation of the measure dp by the infinitesimal conformal
transformation of the riemannian metric in M is equal to

(¥ (6148)— W, 61 40)du (14)
The variation of (0) is equal to

LW,(6149) — P, (6149) . (15)

The conformal variation of the measure

_4)
=50 M

entering in the expression for instanton contribution can be obtained from
Theorem 4.

Theorem 4'. If the riemannian metric in M is replaced by the conformally equivalent
metric g,,(X) = exp (a(x))g,4(x) then the measure dv' on the manifold R corresponding
to the metric g, is given by the formula

dv' =exp ({552, | o(x)<{F,, F*">dV)dv , (16)

uv?

where o, denotes Dynkin index of adjoint representation.

To deduce Theorem 4’ from Theorem 4 we note that the variation of dv by
infinitesimal conformal transformation is given by

(Y o(6147)—Wo(6]145)—F¥o(6]49)+ ¥ o(6]45)dv
= ({930, | 0(x)(F,, F**>dV)dv 17
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as follows from (14), (15) and from calculations by means of Seeley formula. Using
the conformal invariance of (17) we obtain from (17) the expression (16) for
variation of dv by finite conformal transformation.

Let us consider now conformal properties of the determinant of Dirac operator
D . One can prove that

exp(26)D,=D  exp(36), (18)
where D, is the Dirac operator corresponding to the metric g, ,(x) =exp(a(x))g,4(x).
[The usual proof of conformal invariance of the Dirac equation D ;=0 is based
on (18); see [39] for example.] It follows from (18) that the variation D, of the

Dirac operator by the infinitesimal conformal transformation of the metric is given
by the formula

D,=—-3%6D,+3D,6 . (19)
The conformal variation of W(t)=Spexp(— D3t) is equal to

W(t) =—1Sp ((DADA +DADA) exp (—tD3))
=—t % Sp (G exp(—D2t)) . (20)

Now we can study the variation G of

G=logdet'D,=%logdet' D}
=—4 [t (W(t)— @, (DY)t~ 2 =@ (DY)t~ = o(DF)O(1 —1)
0

—Sp II(DA)0(t — 1))dt .
We obtain that

G- _{’g £ W) — (D)2 — b (D3)~ Ve

—4{ 5 (Sp(Gexp (= D3~ V(61030 >~ ¥, (61D s
and therefore
G=—1¥,(6|D})+1SpII(DY) . 1)
The expression
f(A)=det'D (det' D)~}
=exp (5 logdet' D} — S logdet' D?)
enters in the instanton contribution in the euclidean Green functions.

Theorem 5. The variation of f(A) by infinitesimal conformal variation of the metric
is equal to

f(a)= (- ﬁ% [ 6()<F,,, F*">dV+ 1 Sp &H(Df,)) f(A) (22)

(the fermions transform according the representation T, o.p denotes Dynkin index).
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To prove this assertion one must use (21) and calculate RHS of (21) by means
of Seeley formula.

In the proofs of Theorems 4 and 5 some ideas of [25] are used. The physical
origin of theorems proved in present section is clear: the local formulae for
conformal variations can be obtained because the breaking of conformal in-
variance is a renormalization effect. We have shown in [26, 27] that the theorems
of [25,40] have similar origin. One can prove general assertions including the
results of this section and the results of [25, 407 (see [26, 27]).

Let us consider now the instanton contribution in the case M=S* The
15-parameter group K of conformal transformation acts on S*. It follows from
conformal invariance of duality equation that the group K acts on the manifold R.
The variation of instanton determinants by the conformal transformations of the
sphere can be studied by means of theorems proved in present section. If x'= F(x)
is a conformal transformation of the sphere then

ds'? =exp (a(x))ds? (23)

and the variation of dv and f(A) is given by the formulae (16), (22) where o(x) is
determined by (23). The density of the measure dv and the function f depend on m
parameters where m=dim R=h{. The conformal properties mentioned above
permit to express these functions on the orbit of the group K in R through the
values in one point of the orbit. Therefore these functions can be expressed
through an arbitrary function depending on m —d variables, where d denotes the
dimension of the orbit of the group K in R. In other words each of these functions
can be represented as a product of knwon function and conformally invariant
function on R. For example in the case G=SU(2) the manifold R is
13-dimensional and the orbits of the group K in R are 12-dimensional, therefore
the instanton contribution can be expressed through an arbitrary function
depending on one variable. In the case G=SU(2), g=1 we have m=d =5 and only
a constant factor cannot be determined by means of conformal properties.

Section 9. Two-Instanton Contribution

In this section we explain briefly how the results of the preceding section can be
used to get information on the two-instanton contribution in the euclidean Green
functions in the case G =SU(2), g =2. The results of present section are obtained in
collaboration with Frolov [42].

We are interested in the instantons in euclidean space. However it is
convenient to represent the euclidean space as a sphere of infinite radius. In other
words to find the instanton contribution in euclidean space we can study the
contribution of spherical instantons having small size with respect to the radius of
the sphere. In our case every instanton is gauge equivalent to the t'Hooft
instanton:

Ay=m,0,loge,
4 /3 3

T T T

Q
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where 1,,4,, 4, are positive numbers, y,,y,,y, are four-dimensional vectors (see
[7,437). The t'Hooft solution does not change if 4, is replaced by k4, and therefore
depends on 14 parameters. One of parameters is connected with the gauge freedom
[7]. The conformal group K acts on the manifold of parameters
V1> V2> V3r 41> Ay, A3 There exist two independent conformally invariant com-
binations of instanton parameters

u,=cyest, uy=cyert
where

=20, = v, =0 -y, =0 )
The expression

u=uuy(14u, +uy) >

is also gauge invariant. One can exclude the gauge freedom imposing the
conditions u, =1, O0<u, <1.

To study the instanton contribution in euclidean space we must calculate the
function f(4) and the measure dv only for instantons satisfying 4, <R, |y;| <R,
where R denotes the radius of the sphere.

We restrict ourselves by the case when the gauge fields interact with N fermion
isodoublets having small masses. Using the results of Sect. 8 and the zero fermion
modes found in [14] we obtain the following expression for two-instanton
contribution:

g;h;g 5 ¢()‘> y)

l6r* 22 2 2.2 ud 2
CXp{ — P +(’§‘—§N)10g0 p H(Wllp) dl’l'inva (1)

9ohys =1

where
pP=(cyc,03) (e +eytey) VAT H AT+ A3) T
du,,, 18 conformally invariant measure:

d“insz'(n (yk—yj)2>’1 [1 47 2dAzdy; .

K

F is a conformally invariant function. [This function can be taken in the form
@(uy)8(uy — 1)0(A2 + 22 + 23— 1) where ¢ is an arbitrary function and the factor
o(u, — 1) corresponds to the gauge condition u,=1. The integral (1) reduces in
this case to the 13-dimensional integral.] It is easy to check that p? is gauge
invariant. In the case when the instanton can be considered as superposition of
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two distant instantons having topological number 1 p* can be interpreted as
product of sizes of these two instantons. (One can verify that for such instantons
u=r0.)

The methods of Sects. 8 and 9 permit to calculate completely the instanton
contribution in two-dimensional non-linear o-model [44].

Appendix 1

The asymptotics for t—0 of SpQexp(—Kt), where Q is the operator of multi-
plication on the matrix function Q(x)=(Q; {(x)), were calculated by V. Romanov for
all operators used in present paper [i.e. in the cases K = A4, A4, 45, (D 4— A4)*] and
for other operators playing the role in quantum field theory [45]. In the cases
under consideration

SpQexp(—Kn)x¥,(QIK)t >+ ¥, (QIK)t ™'+ ¥o(QIK) .
It is convenient to represent ¥,(Q|K) in the form
P(QIK)= [ Qi) ¥, (x|K){dV, (1

where ,(x|K) = (y,(x|K)) is a matrix function, dV denotes the riemannian volume
element. [The operator K acts in the space of sections I'(£) of vector bundle
E(E, M, F, p). The matrix functions Q(x) and y,(x|K) depend on the choice of local
coordinates in the riemannian manifold M and of the local trivialization of &, but
the integrand in (1) does not depend on this choice.]

For example one can check that in the case K=D?

w,(x|DY)=1,
pi(xIDH) = —F5R =3 —"y)(F o) -
wo(xID2) =755 R* — 155 R pR o — 7250 RuvcaR abea
— 136 DR+ 78R iR cany”
+30" =" [25 R peal (Fea) = 35 RUF 1) + 15 Rey L(F )]
= 15 HEHF 7"y + 5t R)UF )y " ®)

We assume that the fermions transform according the representation T of the
gauge group G; the corresponding representation of the Lie algebra is denoted by
t. We use the Vierbein formalism; for instance, F,,=F*®=F I“l;, where I(x)
denotes the Vierbein (orthonormal frame) at the point x. The expression #(F ;) is
considered as a matrix with respect to the isotopic indices.

The coefficients ¥,(Q|K) can be used for calculation of one-loop renormali-
zation and anomalies. Conversely, partial information on these coefficients can be
extracted from well known results concerning anomalies; this information is
sufficient to derive the assertions of present paper.



Instantons and Fermions 263

The index of the Dirac operator considered only on the right spinors can be
represented as ¥ (y°|D?) [this follows from the formula (3.3) proved in Sect. 3].
Hence this index can be obtained from (2). The index of the operator T defined in
Sect. 4 is equal to @y (45)+ D (45)— D,(47) and therefore can be calculated in a
similar way. However there exists a very simple method of calculation of index in
the cases under consideration. Namely, the symbols of our operators are generated
by universal construction (see [32] for example) and therefore its indices can be
expressed through the characteristic classes. It is too lengthy to describe the
expression for index in general case and therefore we restrict ourselves by the
special case which is sufficient for the aims of the present paper. Let us consider the
elliptic operator K transforming the field ¢, into the field ¢,. We suppose that the
fields ¢, and ¢, are defined on four-dimensional oriented riemannian manifold M
and have isotopic and spatial indices. The isotopic indices transform according the
N-dimensional representation V' of simple non-abelian compact Lie group G, the
spatial indices of ¢, transform according the L-dimensional representation W, of
SO(4). In other words the field ¢, can be considered as a section of the vector
bundle &, 4y, associated with principal fibration &(E, M, G x SO(4), p), which is
defined as product of principal fibration #(E,, M, G,p,) and tangential fibration
{(E;, M,SO(4), p,). [The tangential fibration of oriented riemannian manifold can
be considered as principal fibration with the group SO(4). The representation V®
W, of G xSO(4) is defined as tensor product of V' and W..] We assume that the
symbol of the operator K is G x SO(4)-invariant in the natural sense. Then one can
express the index of operator K through the weights of representations ¥, W,, W,
and topological numbers of fibrations 1. J. The group SO(4) is locally isomorphic
to the product of two simple groups SU(2). Therefore the tangential fibration can
be characterized by two topological numbers; these numbers can be expressed
through the Euler characteristic

1 v f oA 00
y(M)= e [ emrebere 3Ru‘,ZQRO[M(SdV
and the signature of the manifold M

1
(M) = 962 | a”““”RW‘gRjng.

Namely, the index of the operator K can be represented in the form:

indexK:aoch+Nbx(M)-—N(3c— g) (M) .

Here g denotes the topological number of the fibration #, o, denotes the Dynkin
index of the representation V.
The numbers a,b, and ¢ are defined by the formulae

Zviz" Zvéz =2a0,0, ,
Y=Y vi*=2400,(bo,0,+c(0? +02)),
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where v;, v; denote the weights of representations W,, W, respectively, the weights
of vector representation of SO(4) are denoted by +o,, +0,. (The weights of
representation are considered as linear functions on the Cartan subalgebra.) For
example in the case when the operator K coincide with the operator T of Sect. 4
the representation W, is the vector representation and has the weights +o,, + 0,
and the non-zero weights of the representation W, are equal to +(o, —0,).
Therefore in the case under consideration

a=2, b=-4, c¢=1

index T'=20.q—+dim G(3(M)+t(M)) .

The index of operator T was calculated in [8] by means of this method. We have
mentioned in [8] also that if it is known that the index of T has the form
2q+ 9y + wt then the coefficients 4, ¢ can be expressed through the values of index
T for M=S% g=0 and g=1. This approach was used in [15].

If K is the Dirac operator considered only on the right spinors then a=1, b =0,
¢=54. We obtain Theorem 2 of Sect. 5.

Appendix I

Integration of Invariant Functions

Let T be a homomorphism of compact Lie group G in the isometry group of
riemannian manifold M. We consider the integral

if@ﬂu, (1)

where f(x) is a G-invariant function on M [ie. f(T(g)x)=f(x)] and du is the
measure on M induced by riemannian metric. The isotropy subgroup at the point
xe M [ie. the set of elements G satisfying T(h)x = x] will be denoted by H(x). The
orbit of the point xe M [i.e. the set of points T(g)x] where ge G will be denoted by
N(x). It is well known [41] that one can find such G-invariant open subset M, CM
that all isotropy subgroups at the points xe M, are conjugate and the measure of
M —M, is equal to zero. By consideration of (1) one can replace M by M,. We
assume therefore without loss of generality that isotropy subgroups at the points
xe M are conjugate. The space of orbits will be denoted by V; the distance between
the orbits N(x) and N(y) can be defined as the distance between the nearest points
of these orbits. In the case under consideration V is a riemannian manifold and the
identification map of M onto V is a locally trivial fibration (see [41] for instance).
The measure on V determined by the riemannian metric will be denoted by dv. The
riemannian metric in M induces the riemannian metric in N(x); the volume of N(x)
with respect to this metric will be denoted by n(x). The integral of G-invariant
function can be transformed into integral over the space of orbits; namely

Aﬁl J(x)du= £ JIn(x)dv 2)
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[the functions f(x) and n(x) are G-invariant and therefore can be considered as
functions on V7.

Let us denote by ¥ the Lie algebra of the group G. We fix a scalar product in
% ; this product induces a left invariant riemannian metric in G and we normalize
the scalar product by condition that volume of G is equal to 1. The homo-
morphism T generates a homomorphism of % into the algebra of vector fields in
M ; therefore for every xe M a linear map 7, of 4 into tangential space at point
xeM is determined. We denote by D(x) the determinant of 7¥7_(the operator ¥t
can be degenerate; in this case we define the determinant as product of non-zero
eigenvalues). The map 7, vanishes at the Lie algebra s#(x) of the group H(x) and
determines therefore a linear map 7. of /s#(x) into tangential space at the point
xeM ; the map 7, is non-degenerate. It is easy to see that D(x) is equal to the
determinant of T¥7,.

One can check that

n(x)=(D(x))*'* (volume H(x))~ !, 3)

where volume of the isotropy subgroup H(x) is calculated with respect to the
riemannian metric in G defined above. To prove (3) we consider the coset space
G/H(x) provided by the riemannian metric induced by the riemannian metric in G.
The group G acts transitively on the manifold G/H(x). The manifold N(x) is
homeomorphic to G/H(x); there exists a homeomorphism ¢, of G/H(x) onto N(x)
commuting with the action of the group G on these manifolds. Let w, be the
exterior form defined by the volume element in G/H(x); analogous form in N(x)
will be denoted by w,. The homeomorphism g, transforms the form w, into the
form ¢¥w, on G/H(x). The forms w,, w, and g¥w, are G-invariant. The G-invariant
m-form on the homogeneous m-dimensional manifold is determined up to constant
factor therefore g*w,=K(x)w;. To find the constant K we can consider the
differential (q,),, of the map ¢, at the point of G/H(x) determined by the coset
H(x)C G. The tangential space at this point of G/H(x) can be identified with the
space ¥/ (x) where #(x) denotes as earlier the Lie algebra of H(x) and the
differential (q,),, coincides with map 7. From this fact we get

K(x)=(det t*% )2 =D(x)"/* .
Using the identities

volume G/H(x)= | o,

G/H(x)
volumeN(x)= | w,= | qfw,=K [ o,
N(x) G/H(x) G/H(x)

we obtain

n(x) =volume N(x)= D(x)'/?(volume G/H(x)) . 4)
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To calculate the volume of G/H(x) we can apply (2) to the case f(x)=1, M =G
[the space G/H(x) can be considered as the space of orbits of the group H(x) acting
in G on the right; all orbits have the same volume]. We obtain from (2) that

volume G/H(x)=(volume H(x))" ! . 5)

Let us consider the most important case when the scalar product fixed in ¢ is
invariant. Then the corresponding riemannian metric in G is both left invariant
and right invariant. The volume of the isotropy subgroup H(x) does not depend on
x in this case because all isotropy subgroups are conjugate to the fixed subgroup
H. The determinant D(x) is G-invariant in this case and can be considered as a
function on the coset space V. We see that

jf =(volume H)™ ! | f(x)D(x)""?dv (6)

At last we study the asymptotics of the integral

J fenp =2 g0 )

for «—0. We suppose that f(x) and g(x) are smooth functions on n-dimensional
euclidean space, f(x) is finite, g(x)=v. The set of points where g(x)=y will be
denoted by M; we assume that M is non-degenerate r-dimensional critical
manifold i.e. the matrix 0%g/0x'0x’ [the Hessian of the function g(x)] has n—r non-
zero eigenvalues. The product of these eigenvalues will be denoted by A(x).

One can check that the asymptotics of the integral (7) in the limit «—0 has the
form

(mo) 102 eXP(— w) § (A0~ 2 du ®)

where du is the measure in M corresponding to riemannian metric induced by
standard metric in euclidean space.

One can consider (8) as approximation to (7) given by method of steepest
descent.

Let us suppose now that the functions f(x) and g(x) are G-invariant [here G
denotes a subgroup of O(n)]. Then the integrand in (8) is G-invariant and the
integral (8) can be transformed into integral over the space V of the orbits of the
group G in M. Using (6) we obtain the following assertion.

Lemma. The asymptotics of the integral (7) in the limit «—0 has the form
a2 1 .
(mo)" "2 exp = =y [ Sy ©)
v

where V is the space of orbits of the group G in M,

dv=A(x)""2D(x)"?(volume G) (volume H(x)) ™ 'dv, ,
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dv, denotes the measure in V corresponding to the natural riemannian metric, H(x)
is the isotropy subgroup at point xe M, T(x) is the operator in the Lie algebra 4 of
the group G defined by formula

{T(x)h, hy =<hx, hx) (10)

and D(x) denotes the product of non-zero eigenvalues of T(x) [in RHS of (10) the
symbol {, > denotes the usual scalar product in euclidean space and in LHS of (10)
this symbol denotes the invariant scalar product in 4 ; the volumes of G and of H(x)
must be calculated with respect to invariant riemannian metric in G corresponding
to this scalar product in G .
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