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Abstract. The true analogues of superspace and conformal superspace for
spatially homogeneous cosmology are introduced and discussed in relation to
the kinematics of the evolution of Cauchy data from a spatially homogeneous
initial value surface using a spatially homogeneous lapse function. Having
fixed the slicing of spatially homogeneous spacetimes to be the natural one, an
obvious restriction on the freedom of choice of the shift vector field occurs, and
its relation to the three-dimensional diffeomorphism gauge group of the
problem is explained. In this context the minimal distortion shift equation of
Smarr and York naturally arises. Finally these ideas are used to simplify the
dynamics.

T. Preliminaries

We first introduce a good deal of notation and standard results concerning a Lie
group and its associated Lie algebras and groups1. Let G be a simply connected /?-
dimensional Lie group (rc = 3 will be our principal application) with identity
element w0, £ΰ(G) its diffeomorphism group, 3£(G) the Lie algebra of vector fields on
G and g and § the respectively left invariant and right invariant n-dimensional Lie
subalgebras of 3E(G).

Let 3£(G)* be the space of 1-forms on G and g* and §* the respectively left
invariant and right invariant ^-dimensional subspaces of 3E(G)*. These may be
identified with the dual spaces of g and 9, and the entire space of left or right
invariant tensor fields on G may be identified with the tensor algebra over g or §
respectively, g is usually called the Lie algebra of G. A choice of basis e — {ea} of g
determines a basis e = {ea} of § (uniquely defined so that e and e coincide at the
identity) and dual bases {ωa} and {ώfl} of the corresponding dual spaces. Both e
and e are global frames on G with respective dual frames {of} and {ώα}.

The group of automorphisms of G

u2) = h(u1)h(u2} V w l 5 w 2 e G }
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is a Lie group acting on G let αut(G) C 3E(G) be the Lie algebra of generators of this
action. The subgroup of inner automorphisms of G or the adjoint group is

AD(G) = {ADu\ueG}

where ADu = Lu°Ru-ι=Ru-ι°Lu and LUί(u2) = uίu2=RU2(u1) are left and right
translation respectively.

Let GL(g) C gl(g) be the group of vector space automorphisms of g and gl(g) the
Lie algebra of linear transformations of g into itself. The group of Lie algebra
automorphisms of g

has as its Lie algebra the derivations of

The group of inner automorphisms of g or linear adjoint group is designated by
Ad(G) and is the connected Lie subgroup of Aut(g) obtained by exponentiating the
Lie algebra ad(g) of inner derivations of g (the adjoint Lie algebra) :

where Άd(X)Y=[X,Y] for X, Yeg. ad: g-»gl(g) is a homomorphism called the
adjoint representation of g. We will also use the notation ad(X") Y= [X, Y] for the
adjoint representation of 3£(G). (In each case the bracket is the Lie bracket of
vector fields.) If H is a subgroup of GL(g) with Lie algebra ί)CgΙ(g), let SH denote
the unimodular subgroup of H consisting of the linear transformations of H with
unit determinant and let si) be the corresponding Lie subalgebra of f) consisting of
its traceless elements. For example, SAut(g) is the special automorphism group of
g and sαut(g) is its Lie algebra.

A choice of basis e = {ea} of g determines an isomorphism e:g->JR" and a
corresponding isomorphism from gl(g)-»gl(n,£) and from GL(g)->GL(n,Λ).
Denote by Aute(g), αute(g), etc., the images of the various subgroups of GL(g) in
GL(n, R) and Lie subalgebras of gί(g) in gl(n, jR), and if ueG.XeQ and ξeαut(G), let
Ade(w)e Ade(G), ade(ΛΓ)eade(g) and ade(ξ)eaute(o)1 be the corresponding matrices
with respect to the basis e. If Ca

bc = ωa([eb, ej) are the components of the structure
constant tensor of g in this basis, then define kfl = (Cb

ac) = ade(eβ)egI(n,jR). Recall
that e is a global frame on G with dual frame {ωfl} the same is true of e and {ώa}.
The two frames are related by the matrix of the adjoint representation of G with
respect to the basis e\l

= 0 \β, β - ~ CC

1 See the next paragraph in the text
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For the convenience of the reader, we note that the Lie algebra automorphism
condition in the form

MX,

has the following expression in terms of the basis e :

C\c = A ~ lfl

dCW'c A\ = ω"(Aeb) .

Aute(g) is the set of all AeGL(n, R) satisfying this condition.
If he Aut(G), the vector field hX obtained from Zeg by dragging along by h

also lies in g, so Aut(g) acts naturally on g as a subgroup of GL(g) [since dragging
along is a representation of ^(G)]. In fact this is an isomorphism from Aut(G) onto
Aut(g) and from AD(G) onto Ad(G). If Ad(w) is the image of the inner automor-
phism ADU under this isomorphism, then Ad:G-»GL(g) is a homomorphism
called the adjoint representation of G. Similarly the restriction of the adjoint
representation of 3E(G) to αut(G) when acting on g viewed as a Lie subalgebra of
£(G) is an isomorphism onto αuί(g). In other words for each ξe αut(G), ad(ξ) acts as
a derivation on g and every derivation of g may be obtained in this way.

Left and right translations also act on g by dragging along. By definition left
translation acts as the identity on g, while for the same reason j R u _ ! and ADU

— Ru-ι^Lu have the same action on g, namely they induce the linear transfor-
mation Ad(w) on g. ForXeg there is a unique Xeg such that X(u0) =X(u0). The
statement that g and g generate the right and left translations respectively means
that

where {Xt\teR} is the one-parameter group of diffeomorphisms generated by the
vector field X (the flow of X) and the exponential map exp : g-^G may be defined
by QxpX=X1(u0). In particular, the action of Xt on g by dragging along is
equivalent to the action of Ad(exp — tX) = Qxp( — taά(X)) on g. In fact if X(t) is a
parametrized curve in g, i.e. a "time-dependent" left invariant vector field on G,
then it generates a curve h(t) in 2(G) called its flow [2] that will be a curve of right
translations which when acting on g by dragging along will be equivalent to the
action of a curve in the linear adjoint group. Similarly if X(t) is a parametrized
curve in αut(G), its flow will be a curve of automorphisms of G which when acting
on g by dragging along will be equivalent to the action of a curve in Aut(g). Since
Aut(g) is a subgroup of GL(g), it acts naturally on the tensor algebra over g (left
invariant tensor fields on G). It is just this action which is produced by dragging
along by Aut(G). Thus given a curve X(t) in αuί(G), its flow will be a time-
dependent automorphism of G which induces the action of the corresponding
time-dependent automorphism of g when it acts on the tensor algebra over g by
dragging along.

Let J4(G] be the space of left invariant Riemannian metrics on G, naturally
identifiable with the space ^(g) of (positive definite) inner products on g. Let C be
the abelian group R+ acting on JP(G) by conformal scaling

ceR +
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and let Jί(G) = J((G)/C be the space of orbits of this action. Similarly let
JίCGL(n,R)+ be the submanifold of matrices of components in the natural basis
of inner products on Rn and Jt its unimodular submanifold. Note that there is a
natural projection map

where g — detg. A choice of basis e of 9 provides a natural identification of Jt(G)
with .ΨΊ. and of .//(G) with .M. It is this reason that motivated Misner to call Jί
minisuperspace in the case n = 3 [3]. DeWitt has studied Jί for n — 3 as a certain
pseudo-Riemannian manifold closely related to the dynamics of general relatively
[4]. In fact Jt is just the configuration space for the dynamics of spatially
homogeneous cosmology.

Aut(G) acts naturally on Jf(G) by dragging along, as do the right translations
left translations have trivial action on Jί(G\ i.e. are isometries of every element of
Jί(G\ with § the corresponding Killing Lie algebra. The action of Aut(G) on Jί(G)
induces the natural left action of Aut(g) on JK$ and on «/^(g), while the dragging
action of right translation or inner automorphism induces the natural left action of
the linear adjoint group on these spaces. A choice of basis e of 9 induces the
following action of Aute(g) on Ji and Jt :

ge^Th>/A(g) = A" 1 Γ gA- 1 AeAut e(g)

It is a result of simple considerations of Lie group theory that if he@(G) maps
into itself under dragging along, then h = Lh(uo}^h1 where hίeA.ut(G):> in

other words modulo left translations, the only elements of @(G) which act
naturally on Jί(G) are the automorphisms of G. The isometry classes of Jί(G) are
therefore the orbits of Aut(G), i.e. ̂ true(G) = M{G)I Aut(G) is the space of left
invariant "n-geometries" or "true minisuperspace", the real analogue of super-
space. Similarly the "conformal isometry classes" of Jt(G) are the orbits
of the action of C x Aut(G) or equivalently the orbits of ^(G) under the action
of Aut(G), i.e. "true conformal minisuperspace" is ^true(G) = ̂ (_G)/Aut(G)
~Jl(G}l(C x Aut(G)). In accordance with the work of York we call ^true(G) the
space of dynamical degrees of freedom [5] and its dimension the number of
dynamical degrees of freedom possessed by left invariant Riemannian metrics on G.

True minisuperspace has the same property as superspace [6], namely that it is
not a manifold but a stratification of manifolds, since the orbits may have varying
dimension. "Generic minisuperspace" is the submanifold of Jί(G] on which the
orbit dimension is maximum and projects onto the generic submanifold of true
minisuperspace. The isotropy group /^ at^e^(G) of the action of Aut(G) consists
of those automorphisms of G which are isometries of g, and the elements of the Lie
subalgebra of αιιt(G) corresponding to the Lie algebra of /^ are Killing vector
fields of g. Therefore the remainder of minisuperspace necessarily has higher
symmetry because of the increase in the dimension of the isotropy group, unless
generic minisuperspace already has maximum symmetry. Let J> 9 be the isotropy
group at ^?e Riem(G) of the action of 2(G) on the space of Riemannian metrics on
G. If gtJt((j\ $y not only contains the right translations L(G) and the isotropy
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group / which may or may not be trivial, but may also contain additional
diffeomorphisms which do not mapg or Jt{G) into themselves, although there
may be submanifolds of M(G] on which they do act. The corresponding Killing
vector fields will not lie in αut(G) and will vary from point to point in Jί(G\

II. Three-dimensional Lie Groups

We now specialize to n = 3 for which the components of the structure constant
tensor of g decompose in the following well known way [7] :

nab are the components of a symmetric second rank tensor density of weight one
over 9, while ab are the components of a covector over g, i.e. an element of g*. We
will refer to these components as in "standard diagonal form" if the matrix of
components nab is diagonal (n = diag(τι(1), n(2\ n(3))) and ab = aδ3

b with α^O, in
which case the contracted Jacobi identity reduces to an(3} = Q.

Let ^ be the six-dimensional submanifold of R3 x R3 x R3 consisting of
components C\c = - Ca

cb satisfying the Jacobi identity Ce

d[aC
d

bc] = 0. GL (3, R) acts
naturally on this space on the left :

C^A-^A-1',, AeGL(3,_R),

or in terms of nab and a :b

A)" 1 A\ncdA\ , ab^ac ~ lc

b c b .

When ab Φ 0, a scalar h is defined by the equation :

which reduces to a2 = hn(1)n(2} when Ca

bc is in standard diagonal form.
By definition, the isotropy group Ic at a point CG^ is just the matrix

automorphism group Aute(g) of a three-dimensional Lie algebra with respect to a
basis e = {ea} in which Ca

bc are the components of the structure constant tensor of
g. Secondly, the orbits of the action of GL (3, R) on ^ are just the equivalence
classes of structure constant tensors under the isomorphism relation. The de-
scription of the orbit space has been called the Bianchi-Behr classification of three-
dimensional Lie algebras [7]. The orbits are characterized by the rank and
absolute value of the signature of n, the vanishing or nonvanishing of ab and the
invariant h when defined. It is useful to select a canonical representative for each
orbit or "Bianchi type". This is easily done by first reducing the structure constant
tensor to standard diagonal form, normalizing a (if nonzero) to unity when h is
undefined and by further reducing n to its Sylvester form (except for Type II where
a permuted form proves more convenient). We will refer to the canonical
representative for each type as "canonical components" and call a "canonical
basis" any basis e of a Lie algebra g with respect to which its structure constant
tensor has canonical components and the various matrix Lie algebras and groups
associated with g in the basis e the canonical such Lie algebra or group. Table 1
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lists the canonical components for each Bianchi type together with the dimensions
of the canonical adjoint group Ade(G) and canonical automorphism group Aute(g)
and finally the dimension of the orbit to which each belongs, which is just 9-
dim(Aute(g)). The Roman numerals were assigned by Bianchi [8] who used a
different classification scheme than the present one which is due to Behr [7].

Table 1

Class

Class

I I

\

A I

π
V I 0

vπ ( )

V I I I

IX

B V

IV

I = V I _ ,

M / I Φ O _ ,

vπ^o

„(!)

0

0

1

1

1

1

0

1

1

1

1

„">
0

0

- 1

1

1

1

0

0

- i
- i

1

n«>

0

1

0

0

- 1

i

0

0

0

0

0

a

0

0

0

()

0

0

1

1

1

ί/

a

h

_

0

0

0

0

- 1

— cr

a2

dιm(Ad t,(G)) dιm(Aut t ,

0
7

3

3

3

3

3

3

2

3

3

9

6

4

4

3

3

6

4

4

4

4

(cj)) dιm(orbit)

0

3

5

5

6

6

3
5

5

5

5

The types for which ab = 0 are called class A and the remaining are called Class
B. For later purposes it is also useful to call Types I, II, III, V, and VI_ 1 / 9

degenerate and the remaining types nondegenerate.
It is convenient to introduce the notation eb

a for the matrix whose only
nonvanishing component is a one in the aih row and bth column, so that a matrix
with components Aa

b may be written A = Aa

be
b

a {e5

fl} is the natural basis of
cjI(3,.R). For all but Types I, II, and III, the adjoint representation ad is a Lie
algebra isomorphism so one can imbed in GL(3,jR)+ a Lie group of each Bianchi
type [namely the canonical adjoint group Ade(G)] by exponentiating the canoni-
cal adjoint Lie algebra ade(g). This has the canonical basis {kα} where we recall
that kα^C fe

f lce
c

& and Trk f l = 2αα. For a structure constant tensor in standard
diagonal form these are explicitly :

k^-n^e^-fn^e^-αe3!

k2=-w ( 3 )e 1

34-n ( 1 )e3

1-αe3

2

[k3,k1]-n(2)k2-f-αk1

The matrix k3 is responsible for the nonunimodularity of the Class B adjoint
group. If we let I(α) = 1 — ea

a and let k^ be the matrix obtained from kfl by setting the
structure component a to zero, then k 3=k 3 + αl(3) isolates the only nonzero
diagonal components of any of the kfl.
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Canonical coordinates of the second kind [1] lead to the following para-
metrίzation of the adjoint matrix R; the exponentiation can be done explicitly:

Ί 0 -ax1'

0 cl -n(2}sί

0 n(3]s1 cί

^ c2 0 n(1}s2~

0 1 -ax2

-n(3}s2 0 c2

~ c3e
ax* -n(1}s3e

ax" 0

n(2}s3e
aχ3 c3e

aχ3 0

0 0 1

Note that detR-e2αλ"3.
The following abbreviations and identities are used; (a,b,c) is any cyclic

permutation of (1, 2, 3) :

m(a} = ( _ n(b)n(θγi2 β («) = ( n(W n(c))l/2

ca = cosh m(a]xa = cos m(a)xa

sa = (m(α)) ~ 1 sinh m(a]xa = (m(α)) ~ 1 sin m(a)xa

lim ( c , s ) = (l,xa)

The left and right invariant dual frames on Ade(G) determined by the basis {ka}
of its Lie algebra ade(g) are computable from the relations :

The invariant frames themselves may be constructed using the duality relations.
The result is:

Cϋ — c ^ Yl ^9 ^aX ~τ~ C 3 CIX j Ί. — \ 3 2 3 2 \ 1

2 3 3

ώ1 =dxl +(n(i)s2 — axl}dx3 ^ι=^ι

d x3 β2 — c1δ2 — n(3)51c2~
 1(δ3 — π(1)5231)

+ a(x131+x2d2)

ω1 Λ ω2 Λ oj3 = Λ dx2 Λ dx3

Λ dx2 Λ

Similar formulas may also be obtained for other types of exponential
coordinates. Although this procedure is not valid for Types I, II and III since
kα = 0, k3 =0 and k1 +k2 =0 respectively in these cases, the parametrized formulas
for the invariant fields are valid for structure constant tensor components in
arbitrary standard diagonal form for all the Bianchi types. We shall only evaluate
them at the canonical components for each Bianchi type. The Bianchi Types I, II,



218 R.T.Jantzen

and III may also be imbedded in GL(3, R)+ by exponentiating the following
canonical bases as above in the respective cases :

T ίp1 p2 p3 ) TT ίp3 p3 — p2 ) TTT ίp2 4-p2 — p3 4-ρ2 ?p! 1i. |e 1 ? e 2,e 3 j , ii. (e l s e 2,
 e i; ? 1U le ι^e 2> e ι~^e 2>ze i /

From now on we will restrict our attention to canonical components for each
Bianchi type. The canonical adjoint group Ade(G) for Type I is trivial while it is
two-dimensional for Types II and III with respective bases {k19 k2) and {k l5 k3} of
the corresponding Lie algebras. The Class A adjoint groups are automatically
unimodular since the matrices (kj are traceless while in the Class B case the
matrices {k l t k2} are a basis of the canonical special adjoint Lie algebra sade(g).
The canonical automorphism groups Aut^g) and special automorphism groups
SAutc,($) are easily obtained by inspection of the transformation equations for
{nab, ac] ignoring discrete automorphisms, i.e. we will only discuss their com-
ponents connected to the identity. For Types VIII and IX the canonical adjoint
and automorphism groups coincide and are respectively SO(2, 1) and SO(3, R). For
the remaining nondegenerale types and VI _ 1/9, n has rank two and the only addi-
tional automorphisms are generated by I(3). Either {k l 5 k2, k3, 1

(3)) or {k ] ? k2, k3,
I(3)} is a basis of αute(g). The first three elements of the first basis span ade(g) while
the first three of the latter span sαute(g); {kt, k2} or equivalently (e3

19 e
3

2} is a
basis of sade(g). For the two Cases II and IV for which n has rank one, assume n(a}

= δa

l so they can be discussed simultaneously. Invariance of n under the action of
,4eGL(3,R) imposes the condition Aa

1 =(5α

1 |detA|1 / 2 yielding for the Class A Type
II a six-dimensional automorphism group whose unimodular subgroup is the
fίvedimensional subgroup of SL(3,,R) whose elements satisfy Aa

l = δa

i. For Type
IV, the invariance of ab = δ3

b in addition forces A1

1 = A2

2>0 by the previous
condition, resulting in a four-dimensional automorphism group again generated
by either {k l 5 k2, k3, 1

(3)) or {e3^ e3

2, k3, 1
(3)) and whose unimodular subgroup

SAute(π) πas A{

 { =A2

2= i. The latter group is generated by {e3!, e3

2, k3) which
happens to coincide with the above matrix realization of the Type II group. In the
TypeV case, invariance of ab = δ3

b requires only A3>

a = <53

α resulting in a six-
dimensional canonical automorphism group with a five-dimensional special
automorphism subgroup. In the trivial Type I case, GL(3,R) and SL(3,^) are the
automorphism and special automorphism groups respectively.

The first application of our explicit knowledge of the canonical automorphism
group Aut^g) for each Bianchi type will be to study ^true(G) for each
type via the action of Aute(g) on the six-dimensional manifold Jί. Let M^ C <M and
Jin C M be the diagonal submanifolds of Jt and Jl respectively. It turns out that
for the way we have chosen canonical components, JtΌ or a submanifold of it may
be used as a local slice for this action. Let the Taub submanifold JiΎ(l}^JlD be the
submanifold of points ge,/^D for which g22~933 w^n ^τ(2) anc^ ^V(3) defined by
cyclic permutation and JPT(a) defined similarly. Finally let Ml be the "isotropic
submanifold" of positive multiples of the identity matrix, projecting onto the single
point 1 e Jl. Any two of the Taub submanifolds intersect at Jί^

Misner has introduced a useful parametrization of JίD adapted to the
submanifolds ^T(3) and JiΌ [9] :

e+=diag(l,l,-2) e_=diag(|/3, ~
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The basis {e^} is orthogonal with respect to the DeWitt trace inner product on

gί(3,R):

<A, ByDW = Tr AB - Tr A TrB A, Be gl(3, R)

( -1,1,1).

Points of ̂ Γ(3) have β~ = 0, while projection onto MΌ is accomplished by setting
β° = 0 since g = dQig = e6β°.

For Type IX the orbits of Aute(g) = SO(3, R) are transversal to JtD everywhere
except on the Taub submanifolds where the orbit dimension degenerates from three
to two except on their intersection .Ml which is fixed under the action. For fixed a

the one-dimensional isotropy group on Jtfτ(a} is generated by the matrix
kα = ade(efl) and corresponds to the additional left invariant Killing field ea, while
all three ea become Killing on Jίl which corresponds to the bi-invariant metrics.
For Type VΠI the orbit dimension degenerates from three to two only on ̂ T(3),
where the one-dimensional isotropy group generated by k3 = ade(£3) corresponds
to the additional left invariant Killing vector field e3. For both these types MΌ is
locally in a one-to-one correspondence with the orbits and JID therefore with the
two dynamical degrees of freedom parametrized by β+ and β~ which describe the
conformal 3-geometry.

For the remaining nondegenerate types, as well as the exceptional Type
F/_ 1 / 9 , Ade(g) acts transversally to JΊΏ but Aute(g) has an additional dimension
corresponding to the matrix I(3) = ̂ (e0 + 2e + ) which generates translations in the
βA parameter space. This is a translation along β+ on MΌ so for these cases the
submanifold β+ =0 is in a one-to-one correspondence with the orbits of Aute(cι) on
Jί and hence there is only one dynamical degree of freedom parametrized by β~ .
For Types VII 0 and VIIh the orbit dimension degenerates from four to three on
^r(3) wnere the isotropy group is generated by k3 = aάe(e3) in the first case making
<?3 a Killing vector field and by k3 in the second case corresponding to an
additional Killing field ξ in αut(G). However, the full isotropy group «/^of ®(G) on
.^T(3) has dimension six since the corresponding Riemannian geometries (G,^)are
spaces of constant zero and negative curvature respectively.

For Type III the four-dimensional orbits of Aute(g) are transversal to the
submanifold β+ =0 of JίD so these geometries also have one degree of freedom
corresponding to the parameter β~ . However, the full isotropy group for all Type
III left invariant metrics is four-dimensional as shown by Bianchί. The sub-
manifold β~ =0 of JίD corresponds to the negative curvature analogues of the
Kantowski-Sachs geometries which have no dynamical degrees of freedom [11].

For Types II and V the six-dimensional group Aute(g) is transitive on Jί with a
one-dimensional isotropy group which at the identity is generated by e1

2 — e2

1 in
both cases. Therefore all Type II and V left invariant metrics are isometric to
within a conformal constant and so have no dynamical degrees of freedom.
However, all Type V geometries are spaces of constant negative curvature and
have two additional Killing vector fields not belonging to αut(G) which vary on Jί.
For Type I, Aute(g) = GL(3, R) is transitive on Jί itself so all Type I metrics are
isometric. This is obvious since all Type I metrics are flat; the additional Killing
fields all lie in αut(G). Note that for Types II and V, the orbits of the action of
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Aute(g) on Jί are in a one-to-one correspondence with the isotropic submanifold
Jίl of JίD for which β+ =β~ =0, while in the Type I case the orbit of the single
point \t.MΏ for which βA = Q is M itself.

III. Spatially Homogeneous Spacetimes and ADM : Kinematics

Recall that if X(t) is a parametrized curve in αut(G), i.e. a time-dependent vector
field on G, its flow is a curve h(t) in Aut(G) which maps onto a curve in Aut(g). The
action of h(t) on g and Jί(G) by dragging along is then equivalent to the action on
these spaces of the latter curve and we obtain a family of curves in g and Jί(G] (the
orbits), i.e. time-dependent left invariant vector fields and metrics on G. Aut(G) and
αut(G) are the minisuperspace analogues of 2(G) and 3£(G) in the full theory of
general relativity. We will essentially be describing some of the ideas of the
geometric approach of Fischer and Marsden [2] in this finite-dimensional
example.

Consider the manifold M = RxG where G is a simply connected three-dimen-
sional Lie group. A choice of basis e of g together with the natural coordinate vector
field d/dt on R via many identifications common with product manifolds induces a
global frame {d/dt, ea} on M with dual frame {dt, ωa}. {ea} and § itself may also be
interpreted as vector fields on M. Note that

G acts naturally on RxG on the left, with orbits Gt={t}xG, teR and with
§C3£(M) the Lie algebra of generators of the action. Any tensor field on M which is
invariant uner this action has components in the frame {d/dt, ea} which depend
only on t and will be called spatially homogeneous (SH). The frame itself is an
example of a SH frame on M.

A SH spacetime (M, 4^) is such a manifold with a SH Lorentzian metric 4^ such
that the "hypersurfaces of homogeneity" Gt are spacelike for t in some open
interval about zero. We will only be interested in that part of the spacetime in
which the latter condition is satisfied. § C 3£(M) is a Lie algebra of Killing vector
fields of 4^. Let us assume that d/dt is a field of future pointing SH normals to the
SH foliation of M but not necessarily a unit vector field. Then d/dt — Neλ, where N
is a curve in R (i.e. a function of ί only) and eL is the field of future pointing unit
normals to the SH foliation of M.

The metric may then be expressed in the frame {d/dt, ea} as follows [10] :

where the lapse function N is a curve in R, the shift vector field vanishes and
g — gabe

b

a is a curve in M. $—gabω
a®o)b (actually its restriction to Gt) may be

interpreted as a curve in Jί(G] or a time-dependent left invariant metric on G. This
will remain true as long as the shift vector field is a curve confined to αut(G). Let us
extend the terminology SH to any curve of left invariant tensor fields on G
corresponding to a tensor field defined within each of the spatially homogeneous
hypersurfaces. The extrinsic curvature of these hypersurfaces as well as the induced
metric on them are examples. Any SH tensor field on M, when decomposed into



Dynamical Degrees of Freedom 221

perpendicular and parallel parts with respect to the SH foliation, induces a
collection of such fields, each of which may be interpreted as a time-dependent left
invariant field on G.

G0 will be viewed as the initial value surface in our ADM approach. We want
to use a SH lapse in order to take advantage of the natural slicing of the spacetime
and a shift vector field confined to αut(G) in order that the induced metric on the
SH foliation be a curve in Ji(β\ The latter space will play the role of the_
"miniconfiguration space" of the dynamics of SH cosmology. Suppose d/dt
= d/dt + IV, with N = Naea a curve in αιιt(G). We may complete d/dt to a frame on
M adapted to the natural slicing by dragging along the "reduced frame" {ea} on G0

to each hypersurface Gt using the flow of d/dΐto obtain a SH frame {d/dt, ea} with
dual frame {at, ώa] :

Here S is a curve in Aute(g) passing through the identity at ί = 0, Na = Sa

bN
b are the

components of the shift vector field in the new frame and g=/s(g) is another curve
in .M ' . The restriction to SH shift vector fields has the effect of confining the curve S
to the adjoint group Ade(G). Note that due to the properties of dragging along:

The latter condition is called the comoving condition. Any comoving SH frame
{d/dt, ea] such that {ea} are tangent to the SH foliation might be called a SH
comoving ADM frame adapted to the SH foliation. With each such frame is
associated a product structure for M similar to R x G and a class of local
coordinate systems (t, 3cα} on M where {xa} are dragged along from local
coordinates {xa} on G0 which may be identified with G. The usual discussions of
dynamics rely on such ADM coordinates.

Let {EJ be a basis of αute(g) and {W} and [W] the corresponding bases of the
respectively left and right invariant 1 -forms induced on Aute(g). Then

where S = d/dtS and W^Wφ) and W^W^S') are the components of the
tangent S' to the curve S with respect to the corresponding left and right invariant
frames on Aute(g). Expressing the comoving condition [_d/dt, ea~] =0 in terms of the
original frame leads to the following equivalent equations :

where A = ade(JV) and A = ad-(N) = S AS ~ 1 are curves in αute(g) generated by the
curve JV in αut(G) acting on g. When N = Naea = Naea is SH, we have instead:

so these reduce to Na — ώα and Na = ώ. (Other solutions are possible when {kα} are
not linearly independent matrices. For example if kα = 0, an arbitrary SH shift is
possible with S = l.)
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In addition to the usual choice of zero shift, one may choose the shift vector
field to satisfy the minimal distortion equation (MDE) of Smarr and York [11].
To consider this equation we must first study the covariant differentiation
associated with a metric ^ = gabω

a®ωbeJί(G). (We assume that the basis e of g is
canonical.) As is well known [10], the components Γa

bc — ωa(7ebec)oϊ the metric
connection V in the frame e are given by

pα _ Lf^a i Ίfa
1 be — 2 ̂  be ~r ̂  be »

where Ka

bc = C(b

a

c} and indices are raised and lowered by means of g and its inverse

g-ι=^V. Let

These are just the symmetrizations with respect to g of the adjoint matrices kΩ,
namely Kabc - ka(bc) = - \ (Lβa?)hc .

The components of the curvature tensor and its various contractions may be
obtained by evaluating standard formulas [10] which simplify since dΓa

bc = Q. For
example, the Ricci tensor components Ra

b = Rac

bc, the scalar curvature R and the
Einstein tensor components Ga

b — Ra

b — ^δa

bR can be written [12] :

jR-TrR- -(Trm2-|Tr2m)-6αcαc

where m — #~ 1 / 2ng, while the curvature tensor components are

nab _ zab~
f

If ξeX(G) let us call the Lie derivative

the Killing derivative of ξ and its traceless part the conformal Killing derivative of

£[5]:

Let A = &de(ξ) and let A* be its symmetrization with respect to g, namely A*a

b

= gacA(cby A brief calculation shows that

For ξeαut(G), A and A* are constant matrices so the Killing and conformal
Killing derivatives of ζ are left invariant.

Let Ta

b be the constant mixed components of a left invariant symmetric second
rank tensor or tensor density T on G and let Ύ=Ta

be
b

a. Since Γc

αc = 0 the
divergence of either the tensor or the tensor density is given by the single formula :

VJ\ = TrkβT - 2abT\ = TrkJ - 2aT\ .
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In particular, if T= TAeA, then FbT
b

a = 6aT+ δ3

a. Since the unit tensor (components
δa

b) is divergenceless, the divergence of T agrees with the divergence of any tensor
differing from it by a constant multiple of the unit tensor2.

Returning to the cosmological situation, we can now easily evaluate the
components of the extrinsic curvature in the barred frame (also a canonical frame
on G for each ί) [10] :

Let us assume that we pick the shift JV so that it generates the curve S which
transforms the curve g back to the submanifold of J^D which we found to be in a
one-to-one correspondence (locally) with the orbits of Aute(g) on <M. The resulting
curve g=/s(g) will then lie in this submanifold so we may write

2NK=~2J8-2A*.

The minimal distortion equation is

Vb(LN)\ = Vb(2N(Kb

a - %δ\ TrK)) = 2NVbK\ ,

but

However, when a is nonzero, β+ is a kinematical degree of freedom which we
assumed was transformed away by S, i.e. β+ = 0. The shift vector field N is thus a
solution of the MDE. It is unique up to solutions of the homogeneous equation,
i.e. up to a curve in αut(G) whose Killing derivative is divergenceless.

For all the nondegenerate types except VI0 and VΠ0, as well as Type III and
Type VI _ 1/9, no such solutions exist which are not identically zero, but for Types
VI o and VΠ0 the vector field ^eαut(G) corresponding to ade(£)^I(3) has a
divergenceless Killing derivative as long as geJίD. This means that in this case β+

need not be transformed to zero in order to make the shift a solution of the MDE,
as is clear from the above anyway. Only Types I, II, and V remain. For Type I
αut(G) is automatically "Killing divergenceless" and the extrinsic curvature is
automatically divergenceless, so any curve in αut(G) is a solution of the MDE. Let
^S(1) be the ("symmetric case") submanifold of for which g23

==^32 are tne om<y
nonvanishing off-diagonal components of g and define ^S(2) and ̂ S(3) in a cyclic
manner, with similar definitions for J^S(fl). A basis for αuίe(g) for Type II is {k l5 k2,
e1

2,e2

1,e1

1-e2

2,e1

1+e2

2 + 2e 3

3 }andforTypeV{k 1 ,k 2 ,k 3 ,e 1

2 ,e 2

1 ,e 1

1 "e 2

2 }is
such a basis. The last four elements of the first basis and the last three of the second
basis correspond to elements of cmt(G) with divergenceless Killing derivative as
long as geJίS(3}. In other words the minimal distortion shift in these cases is

2 For this reason the minimal strain and minimal distortion shift equations of Smarr and York
coincide in our situation, provided that the shift is confined cmt(G)
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defined only up to a curve in αut(G) which has the effect of allowing g to wander on

«^5(3). These observations have important dynamical effects.

IV. Dynamics

So far we have only discussed kinematical considerations. However, what we have
learned can dramatically simplify the dynamics. Assume the unbarred frame of the
previous section and set the lapse to unity, no restriction since we can easily
reparametrize the time whenever we wish, d/dt = eL is then the unit normal to the
SH foliation; let ωλ = dt and let Greek indices assume the values {_L, 1,2,3}. Let
Ta

β be the components in the frame {eΛ} of the energy-momentum tensor of a
spatially homogeneous matter source. The matter variables and their equations of
motion will be ignored since it is the geometrical equations we want to focus on.
The Einstein equations

for the component functions gab(t) in this frame are equivalent to the following
driven Lagrangian or Hamiltonian systems with configuration space M, velocity
phase space ΎJt and momentum phase space Ύ.M* ;, subject to four constraints
[12] 3:

κ=
δLG/δgab = dLG/dgab - (dLG/dgJ = -Q

9ab = {0ab, HG} πΛ = {πab, HG} + Qab + κg112 Ta112 ab

We have used the notation

<A,B>*(r = TrAB-fTrATrB A,BegI(3,_R)

for the dual of the DeWitt inner product while the matrix of mixed components
Q = ρα

6e
ί'αis defined by

3 Admittedly our notation indulges in many obvious identifications but this sloppiness is not only
characteristic of classical mechanical discussions but extremely convenient
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The nonconservative force field Q = Qabdgab = ΎγQg~1dg on Jί appears in the
Class B case since the Einstein force field G — — g112 Gabdgab is not exact, as a simple
calculation using the formulas of the previous section shows :

G=-dUG

UG is the gravitational potential energy while the first term in either the
Lagrangian or Hamiltonian is the kinetic energy, namely the inner product with
itself in the DeWitt metric on Jί (apart from factors of two) of the velocity or
momentum. The kinetic energy alone serves as a Lagrangian or Hamiltonian for
the geodesies of the DeWitt metric on Jί, which are explicitly known [4,12]. For
perfect fluids and electromagnetic fields, matter variables can be chosen so that
UM= — 2κ^f1/2T1

1 considered as a time-dependent potential energy function on
Jί gives rise to the matter driving force [12]:

dUM=-κgll2Tabdgab

L = LG-UM δL/δgab=~Qab

-up TT i f f ^,-ab (πab ^>\ _ι_ f)ab
!L/V Li (~< ~]~ \J T ί f li \ /C

In a certain sense SAute(g) is a symmetry group of these systems. (The
unimodularity condition is needed since densities are involved.) The gravitational
potential energy [7G, the Einstein force field G and the nonconservative force Q, for
example, are invariant under the action of SAute(g), as is the kinetic energy
function on either ΎJί or ΎJl* [which is invariant under the action of SL(3, R),
the isometry group of the DeWitt metric on Jί'}. However, a symmetry of the
Hamiltonian in the Class B case is insufficient to generate a constant of the motion,
while the matter source may break the symmetry in either case. SAute(g) can still
be used to great advantage though.

in the nondegenerate case, to which we will restrict our attention until
otherwise stated, S Aute(g) is three-dimensional and its orbits on Jt are transversal
to JtΌ. This observation enables us to introduce a natural parametrization of the
matrix of metric components adapted to the action of S Aute(g) on Jί, namely

considered as a map from JίD x S Aute(g) onto Jί which is almost everywhere
nonsingular (except where the orbit dimension degenerates). Using this map we
can pull back our differential equations from Jl to JίΌ x SAute(g) where they can
be more easily studied.

For a given solution g(ί) or equivalently {g'(f), S(ί)}, g'(£) may be interpreted as
the matrix of components of the metric with respect to a new reduced frame ea

r

= S~n

aeb which can be completed to a SH comoving ADM frame {d/dt', ea'} on
the spacetime corresponding to the introduction of some shift vector field which
can be calculated from the equations of the previous section. For Types VIII and
IX this coincides with the uniquely defined barred frame. For Types VI0 and VΠ0

the freedom in the minimal distortion shift permits a choice making it coincide
with the barred frame, while in the nondegenerate Class B case the two frames are
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related by a scaling which removes β+ :

Our procedure will involve expressing all quantities of interest in terms of the
primed frame.

A convenient basis of sαute(g) for the nondegenerate Class A types is
{κfl} = {kj, while {κa} = {e3

l5 e
3

2, k°} will do for the nondegenerate Class B types.
In the latter case the adjoint matrices are related by the following invertible
transformation

k1 = aκv — n(2}κ2 , k2 = n(1)κ t + ακ2 , k3 = κ3 + αl(3) .

Let 3Ca be the symmetrization of κa with respect to g' — e2β and define

The matrices {κfl} and therefore {J*Γα} are off-diagonal and hence orthogonal to
the diagonal matrices with respect to < , )D^; they are also orthogonal to each
other so $ab is diagonal and its inverse ^ab is also diagonal, with ^aa — (&aa) ~ 1 .
Introducing the notation

then one finds that in the Class A case for each cyclic permutation (α, b, c) of (1, 2, 3)

When {n(b\ n(c>) equals respectively {1,0}, {1, —1}, and {1,1} this expression may
be written :

\e2isb\ 2cosh2βbc, 2smh2 jSb c.

In the Class B case the formula for ^33 remains valid while ^ \ι=\e2^ and
922=$eV".

The basis {κa} of sαιιte(g) generates a basis for left and right invariant vector
fields and 1 -forms on SAute(g) which for lack of symbols we will also designate by
{ea}, {ea}, {α/}, and {ώα}. (These are not be confused with the fields on G or R x G
having the same symbols.) The 1 -forms arise in the formulas

Together with the {βA} coordinate fields on JίΌ, these in turn induce fields on the
product manifold MD x SAute(g) (again designated by the same symbols) and
finally "coordinates" {βA,S,βA,ώa} and {βA

9S9pA,pa} on the tangent and cot-
angent bundles which correspond to taking components of tangent vectors and
covectors in the frame {δ/dβA,ea} with dual frame {dβA,ώa}. We have the
corresponding formulas
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A simple calculation yields the following expression for the primed com-
ponents of the extrinsic curvature matrix, interpreted now as functions on the
tangent bundle of JίΌ x S Aute(g)

Since det S — 1, g — g' = e6β°. The kinetic energy function on velocity phase space is
therefore

Γ= e*'0 <K', K'yDW = e^°(6ηABβ
AβB + % Jf ώb) .

The velocity-momentum relation is

PA = 3T/3/H = ί2e^°ηABβ
B

 Pa = dT/dώ" =

Reexpressing T in terms of the momenta, one obtains the kinetic energy function
on momentum phase space :

The gravitational potential energy function is easily evaluated :

Similarly the primed components of the nonconservative force matrix are readily
obtained :

The force field itself is then obtained from it as follows :

Finally we must evaluate the primed components of the velocity or momentum
constraints. In the Class A case :

while in the Class B case :

) = β^^

As is customary we are being sloppy about distinguishing functions on velocity or
momentum phase space. These constraints may be solved for either the automor-
phism velocities or momenta. The Class A case is trivial :

abκTL

b, pa=- 2e3β°κTL

a, ,
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while in the Class B case :

p2 = 2κe3f°(nwT±

1. + 3aTλ

2,)/Z

with corresponding expressions for the velocities. For the exceptional case of Type
VI_ 1 / 9 , the quantity Z = 9a2 + n(1}n(2) = (9 + h~l}a2 vanishes and 3a=l=n(l}

= — n(2} so there are only two linearly independent constraints :

which explains why we have included it in the degenerate category.
As an aside we mention that N = ώaea, is the shift vector field associated with

the primed frame in the Class A case, while in the Class B case it is

N = (aώ1 - n(2]ώ2}er + (n(1)ώ1 + aώ2)e2,

The coefficients of er and e2, are the velocity components with respect to k1 and
k2, while ey — aξ' is the dragged along vector field for which &άe,(ey — αξ') = ιe3.

By choosing the primed equivalents of the matter variables as new independent
variables, the matrix S drops out of our classical mechanical system, leaving
behind only the automorphism velocities or momenta both in the geometric and
matter equations. The momentum constraints may then be used to determine the
latter quantities in terms of the fluid variables and in the Class B case in terms of
β+ or p+ as well. Thus only three geometric degrees of freedom remain, subject to
the energy constraint.

The energy constraint may be used to eliminate another degree of freedom by
replacing the time t as the integration variable by some function of /?, the usual and
obvious choice being j8°, using a standard technique in classical mechanics
equivalent to a new choice of lapse [13]. One solves the equation J^ + h = Qϊoΐ the
momentum p0 conjugate to /?°, defining

acts as the new Hamiltonian :

while the lapse function is determined by

The matter equations must be reparametrized using this lapse. The choice of the
negative root for — Ih makes t an increasing function of β° (expansion) while the
positive root makes t a decreasing function of β° (contraction). Conventionally
Ω= — β° is taken as the integration variable [14]. This reduction technique is valid
only on a segment of a solution curve for which β° is either strictly increasing or
decreasing with t and breaks down at points of maximum expansion.

The geometric degrees of freedom have therefore been reduced in number to
two and these describe the conformal 3-geometry of the SH hypersurfaces. Even
though we have called β+ a nondynamical or kinematical variable for all the
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nondegenerate types but VIII and IX, it is not possible to eliminate it from the
dynamics. The reason for this is essentially that the minimal distortion shift
requires four functions of time to specify it when it is unique [since cmt(G) is four-
dimensional], whereas the minimal distortion equation can be used to determine
at most only three of them, while in the case in which it is not unique, the one
degree of freedom present in the minimal distortion shift is transferred to the
dynamical variables if we allow the constraints to pick out a solution (the one
which merely diagonalizes the matrix g). The best one can do is determine a shift
which diagonalizes the matrix of metric components, and this is exactly what the
elimination of the special automorphism variables from our classical mechanical
system corresponds to.

Motivated by other considerations, Ryan has used the canonical Type IX
parametrization for all Bianchi types [14]. However, because SO(3,^) is com-
patible only with the Type IX case, this has prevented any practical application in
the remaining types. In the Type IX case, the above scheme coincides with Ryan's
[15].

Type III can be treated exactly as Type VI h for h Φθ, — 1 or —1/9, the only
difference being that the adjoint group trades off a dimension to the rest of the
automorphism group and the shift vector field associated with the primed frame
must be recalculated. The Type VI _ 1/9 can also be treated using the same formulas
up until the point where the constraints are used to determine the automorphism
velocities or momenta, at which point only two of the four shift degrees of freedom
can be pinned down, leaving at least three degrees of freedom remaining in the end.

This leaves Types I, II, and V which require individual treatment but have
some similar features. Here the special automorphism group is too large and one
has to arbitrarily choose a subgroup whose orbits are transversal to JίD to play
the above game, provided that it is MD to which one wants to attempt to reduce
the geometric degrees of freedom. However, the degeneracy in the constraints for
the first two types is an obstacle to the full reduction, while in the Type V case, JίD

does not seem to be the appropriate submanifold to head for.
The choice of a particular three-dimensional subgroup of the larger special

automorphism group also introduces problems. For example, if g(ί) is a solution
curve in Jί^ then /A-ι(g(ί)) is also a solution curve for every constant A in the
special automorphism subgroup which leaves the matter potential invariant.
Suppose A is a constant nondiagonal such matrix, but which doesn't belong to the
subgroup we have chosen. Then in order to represent the curve /A_ι(g(0) as
/s- i(f)(g'(0) where S(ί) lies in the chosen subgroup and g'(ί) in JtΏ, a complicated time
dependence of the curve S(ί) with corresponding additional complication for g'(f)
compared to g(ί) is required to produce the trivial modification of the curve g(ί).
Furthermore, this trivial modification /A-ι of the curve generates an isometric
spacetime, and since we are only interested in the isometry classes of spacetimes,
i.e. solution curves modulo the action of constant elements of the automorphism
group, we do not care about such modifications. But we are stuck with fictitious
degrees of freedom in attempting to extend the nondegenerate scheme to the
degenerate cases. The way around this problem is to check whether or not
arbitrary initial data can be obtained from diagonal initial data under the action of
the automorphism group. If so we may simply ignore those degrees of freedom.
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Consider the Type I case. We might use the canonical Type IX para-
metrization, for example, but since the gravitational super-momentum is identi-
cally zero the automorphism degrees of freedom cannot be eliminated. However,
one knows that as long as UM is invariant under SL(3, R) which is the case for
perfect fluids, a solution curve g(ί) projects down to a geodesic of the metric
induced on Ji by the DeWitt metric and so only the equations of motion for g are
nontrivial. From the point of view of the previous paragraph, initial data {g,g} can
always be simultaneously diagonalized [transform g to Jίj^ using SL(3, R) and then
use an element of SO(3,R) to diagonalize the resulting g] so it is sufficient to
consider only diagonal solution curves, provided of course that the matter
potential is SL(3,R) invariant as in the perfect fluid case. Electromagnetic fields
may break the symmetry and excite nontrivial automorphism degrees of freedom.

In the Type II case, k3 vanishes. We might consider replacing this generator by
e^—e2

1 ? leading to a basis {κα} = {k1,k2,e1

2—e2^ of a special automorphism
subgroup whose orbits are transversal to JίD. (^33 then coincides with the
canonical Type IX expression while the Class A formulas for ̂ n and <^22 are
evaluated at the canonical Type II structure constant tensor components.)
However only the adjoint degrees of freedom associated with the first two elements
of the basis can be eliminated using the two linearly independent momentum
constraints and one is stuck with three degrees of freedom in the end correspond-
ing to the fact that the momentum reduction technique only determines a shift
which transforms the curve g(ί) to -^S(3) using the action of the adjoint group. Yet
it appears that the rotational degree of freedom is just as inessential as the three
rotational degrees of freedom in the previous case, at least when UM is invariant
under this rotation. All we need to do is check whether or not arbitrary initial data
tangent to ̂ S(3)can be obtained from initial data tangent to JίΌ under the action
of the automorphism group. But this is just the two-dimensional analogue of the
Type I discussion considering the submatrices obtained by eliminating the third
rows and third columns, since the corresponding SL(2,R) subgroup of GL(3;JR) is
a subgroup of the Type II automorphism group. Therefore when the matter
potential is invariant under this SL(2, R) subgroup (i.e. involves only g and 033), we
can set the rotational degree of freedom to zero.

Similarly k3 vanishes in the Type V case and we might consider replacing it
with the same rotation generator: {ιcfl} = {e3

1,e
3

2,e
1

2 —e2

1}. The only modifi-
cation of the above scheme is that Q3 vanishes and p3 drops out of the third
momentum constraint, so that p 1 ? p 2 > an<^ P+ are determined by the constraints. In
other words the momentum reduction seems to lead not to JID but the three-
dimensional submanifold of ^S(3) on which β+ =0 in the corresponding para-
metrization. The same would be true if we used any traceless linear combination of
e*2 and e2

1 for κ3. Unfortunately β+ does not correspond to an automorphism
and so remains in the Hamiltonian and thus one is left with three degrees of
freedom after the energy reduction. However, exactly as in the Type II case the
rotational degree of freedom is fictitious as long as the matter potential only
involves g and $33.

Having set up machinery to study all the Bianchi types, the first question to
systematically investigate is to what submanifolds of the phase space correspond-
ing to submanifolds of Jt does the dynamical system on the full phase space
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naturally restrict. The obvious submanifolds of Jί in connection with this are
JtS(a) (the "symmetric cases"), JίD (the diagonal case), Jίτ(a} (the "Taublike cases")
and MI (the "isotropic case"). The existence of such cases is often accompanied by
discrete or continuous spacetime symmetries and depends on the matter source.
This has been discussed elsewhere [12].

Some of these additional symmetries are particularly interesting in connection
with "minisuperspace linearization instabilities" [16] of the vacuum and elec-
tromagnetic spacetimes, namely those generated by spatially homogeneous Killing
vector fields (with the exception of Types I and II where ea = ea and e3=e3

respectively due to the degeneracy of the adjoint group). For Types VΠ0 and VIII,
£3 is an additional spacetime Killing vector field when the metric matrix curve is
confined to JPT(3), while in the Type IX case this is true for each Taublike case. In
the electromagnetic case, e3 generates a symmetry of both the geometry and the
SH electromagnetic field provided that in addition the electric and magnetic fields
are both aligned along <?3 in the Type VΠ0 and VIII cases, with corresponding
statements holding for each of the Type IX Taublike cases. On these submanifolds
of the total phase space, the momentum constraint Jf3 = ̂ f(e3) = 0 and its
linearization Djf3=0 both vanish identically. (We are fixing our attention on
^τ(3) ) The second derivative D234f3=Q (which is just Moncriefs nonlinear
constraint [16]) then provides the condition on the tangent vectors to the phase
space at these submanifolds which makes them tangent to curves in the constraint
subspace. In other words the constraint subspace is bifurcating at these sub-
manifolds within the minisuperspace momentum phase space, providing finite-di-
mensional examples exhibiting all of the features discussed by Fischer and Marsden
in the general setting [17]. A similar bifurcation associated with the energy
constraint occurs in the vacuum Type I case at the flat space initial data π = 0 when
£ι = d/dt becomes a SH Killing vector field.
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Note Added in Proof

The author has really assumed that the shift vector field is confined to αuί(G)@g=αuί(G)θ9 (The
equality holds since {X — X\XEQ] C αut(G) generates the inner automorphisms.) However, since g
generates the left translations which have trivial action on left invariant tensor fields, it is only g and
those vector fields which generate outer automorphisms that count. Also, elements of § are auto-
matically solutions of the minimal distortion shift equation since they are Killing vector fields of
each left invariant metric on G.




