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The Dynamical Degrees of Freedom
in Spatially Homogeneous Cosmology*

Robert T. Jantzen
Department of Physics, University of California, Berkeley, California 94720, USA

Abstract. The true analogues of superspace and conformal superspace for
spatially homogeneous cosmology are introduced and discussed in relation to
the kinematics of the evolution of Cauchy data from a spatially homogeneous
initial value surface using a spatially homogeneous lapse function. Having
fixed the slicing of spatially homogeneous spacetimes to be the natural one, an
obvious restriction on the freedom of choice of the shift vector field occurs, and
its relation to the three-dimensional diffeomorphism gauge group of the
problem is explained. In this context the minimal distortion shift equation of
Smarr and York naturally arises. Finally these ideas are used to simplify the
dynamics.

T. Preliminaries

We first introduce a good deal of notation and standard results concerning a Lie
group and its associated Lie algebras and groups1. Let G be a simply connected /?-
dimensional Lie group (rc = 3 will be our principal application) with identity
element w0, £ΰ(G) its diffeomorphism group, 3£(G) the Lie algebra of vector fields on
G and g and § the respectively left invariant and right invariant n-dimensional Lie
subalgebras of 3E(G).

Let 3£(G)* be the space of 1-forms on G and g* and §* the respectively left
invariant and right invariant ^-dimensional subspaces of 3E(G)*. These may be
identified with the dual spaces of g and 9, and the entire space of left or right
invariant tensor fields on G may be identified with the tensor algebra over g or §
respectively, g is usually called the Lie algebra of G. A choice of basis e — {ea} of g
determines a basis e = {ea} of § (uniquely defined so that e and e coincide at the
identity) and dual bases {ωa} and {ώfl} of the corresponding dual spaces. Both e
and e are global frames on G with respective dual frames {of} and {ώα}.

The group of automorphisms of G

u2) = h(u1)h(u2} V w l 5 w 2 e G }
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is a Lie group acting on G let αut(G) C 3E(G) be the Lie algebra of generators of this
action. The subgroup of inner automorphisms of G or the adjoint group is

AD(G) = {ADu\ueG}

where ADu = Lu°Ru-ι=Ru-ι°Lu and LUί(u2) = uίu2=RU2(u1) are left and right
translation respectively.

Let GL(g) C gl(g) be the group of vector space automorphisms of g and gl(g) the
Lie algebra of linear transformations of g into itself. The group of Lie algebra
automorphisms of g

has as its Lie algebra the derivations of

The group of inner automorphisms of g or linear adjoint group is designated by
Ad(G) and is the connected Lie subgroup of Aut(g) obtained by exponentiating the
Lie algebra ad(g) of inner derivations of g (the adjoint Lie algebra) :

where Άd(X)Y=[X,Y] for X, Yeg. ad: g-»gl(g) is a homomorphism called the
adjoint representation of g. We will also use the notation ad(X") Y= [X, Y] for the
adjoint representation of 3£(G). (In each case the bracket is the Lie bracket of
vector fields.) If H is a subgroup of GL(g) with Lie algebra ί)CgΙ(g), let SH denote
the unimodular subgroup of H consisting of the linear transformations of H with
unit determinant and let si) be the corresponding Lie subalgebra of f) consisting of
its traceless elements. For example, SAut(g) is the special automorphism group of
g and sαut(g) is its Lie algebra.

A choice of basis e = {ea} of g determines an isomorphism e:g->JR" and a
corresponding isomorphism from gl(g)-»gl(n,£) and from GL(g)->GL(n,Λ).
Denote by Aute(g), αute(g), etc., the images of the various subgroups of GL(g) in
GL(n, R) and Lie subalgebras of gί(g) in gl(n, jR), and if ueG.XeQ and ξeαut(G), let
Ade(w)e Ade(G), ade(ΛΓ)eade(g) and ade(ξ)eaute(o)1 be the corresponding matrices
with respect to the basis e. If Ca

bc = ωa([eb, ej) are the components of the structure
constant tensor of g in this basis, then define kfl = (Cb

ac) = ade(eβ)egI(n,jR). Recall
that e is a global frame on G with dual frame {ωfl} the same is true of e and {ώa}.
The two frames are related by the matrix of the adjoint representation of G with
respect to the basis e\l

= 0 \β, β - ~ CC

1 See the next paragraph in the text
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For the convenience of the reader, we note that the Lie algebra automorphism
condition in the form

MX,

has the following expression in terms of the basis e :

C\c = A ~ lfl

dCW'c A\ = ω"(Aeb) .

Aute(g) is the set of all AeGL(n, R) satisfying this condition.
If he Aut(G), the vector field hX obtained from Zeg by dragging along by h

also lies in g, so Aut(g) acts naturally on g as a subgroup of GL(g) [since dragging
along is a representation of ^(G)]. In fact this is an isomorphism from Aut(G) onto
Aut(g) and from AD(G) onto Ad(G). If Ad(w) is the image of the inner automor-
phism ADU under this isomorphism, then Ad:G-»GL(g) is a homomorphism
called the adjoint representation of G. Similarly the restriction of the adjoint
representation of 3E(G) to αut(G) when acting on g viewed as a Lie subalgebra of
£(G) is an isomorphism onto αuί(g). In other words for each ξe αut(G), ad(ξ) acts as
a derivation on g and every derivation of g may be obtained in this way.

Left and right translations also act on g by dragging along. By definition left
translation acts as the identity on g, while for the same reason j R u _ ! and ADU

— Ru-ι^Lu have the same action on g, namely they induce the linear transfor-
mation Ad(w) on g. ForXeg there is a unique Xeg such that X(u0) =X(u0). The
statement that g and g generate the right and left translations respectively means
that

where {Xt\teR} is the one-parameter group of diffeomorphisms generated by the
vector field X (the flow of X) and the exponential map exp : g-^G may be defined
by QxpX=X1(u0). In particular, the action of Xt on g by dragging along is
equivalent to the action of Ad(exp — tX) = Qxp( — taά(X)) on g. In fact if X(t) is a
parametrized curve in g, i.e. a "time-dependent" left invariant vector field on G,
then it generates a curve h(t) in 2(G) called its flow [2] that will be a curve of right
translations which when acting on g by dragging along will be equivalent to the
action of a curve in the linear adjoint group. Similarly if X(t) is a parametrized
curve in αut(G), its flow will be a curve of automorphisms of G which when acting
on g by dragging along will be equivalent to the action of a curve in Aut(g). Since
Aut(g) is a subgroup of GL(g), it acts naturally on the tensor algebra over g (left
invariant tensor fields on G). It is just this action which is produced by dragging
along by Aut(G). Thus given a curve X(t) in αuί(G), its flow will be a time-
dependent automorphism of G which induces the action of the corresponding
time-dependent automorphism of g when it acts on the tensor algebra over g by
dragging along.

Let J4(G] be the space of left invariant Riemannian metrics on G, naturally
identifiable with the space ^(g) of (positive definite) inner products on g. Let C be
the abelian group R+ acting on JP(G) by conformal scaling

ceR +
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and let Jί(G) = J((G)/C be the space of orbits of this action. Similarly let
JίCGL(n,R)+ be the submanifold of matrices of components in the natural basis
of inner products on Rn and Jt its unimodular submanifold. Note that there is a
natural projection map

where g — detg. A choice of basis e of 9 provides a natural identification of Jt(G)
with .ΨΊ. and of .//(G) with .M. It is this reason that motivated Misner to call Jί
minisuperspace in the case n = 3 [3]. DeWitt has studied Jί for n — 3 as a certain
pseudo-Riemannian manifold closely related to the dynamics of general relatively
[4]. In fact Jt is just the configuration space for the dynamics of spatially
homogeneous cosmology.

Aut(G) acts naturally on Jf(G) by dragging along, as do the right translations
left translations have trivial action on Jί(G\ i.e. are isometries of every element of
Jί(G\ with § the corresponding Killing Lie algebra. The action of Aut(G) on Jί(G)
induces the natural left action of Aut(g) on JK$ and on «/^(g), while the dragging
action of right translation or inner automorphism induces the natural left action of
the linear adjoint group on these spaces. A choice of basis e of 9 induces the
following action of Aute(g) on Ji and Jt :

ge^Th>/A(g) = A" 1 Γ gA- 1 AeAut e(g)

It is a result of simple considerations of Lie group theory that if he@(G) maps
into itself under dragging along, then h = Lh(uo}^h1 where hίeA.ut(G):> in

other words modulo left translations, the only elements of @(G) which act
naturally on Jί(G) are the automorphisms of G. The isometry classes of Jί(G) are
therefore the orbits of Aut(G), i.e. ̂ true(G) = M{G)I Aut(G) is the space of left
invariant "n-geometries" or "true minisuperspace", the real analogue of super-
space. Similarly the "conformal isometry classes" of Jt(G) are the orbits
of the action of C x Aut(G) or equivalently the orbits of ^(G) under the action
of Aut(G), i.e. "true conformal minisuperspace" is ^true(G) = ̂ (_G)/Aut(G)
~Jl(G}l(C x Aut(G)). In accordance with the work of York we call ^true(G) the
space of dynamical degrees of freedom [5] and its dimension the number of
dynamical degrees of freedom possessed by left invariant Riemannian metrics on G.

True minisuperspace has the same property as superspace [6], namely that it is
not a manifold but a stratification of manifolds, since the orbits may have varying
dimension. "Generic minisuperspace" is the submanifold of Jί(G] on which the
orbit dimension is maximum and projects onto the generic submanifold of true
minisuperspace. The isotropy group /^ at^e^(G) of the action of Aut(G) consists
of those automorphisms of G which are isometries of g, and the elements of the Lie
subalgebra of αιιt(G) corresponding to the Lie algebra of /^ are Killing vector
fields of g. Therefore the remainder of minisuperspace necessarily has higher
symmetry because of the increase in the dimension of the isotropy group, unless
generic minisuperspace already has maximum symmetry. Let J> 9 be the isotropy
group at ^?e Riem(G) of the action of 2(G) on the space of Riemannian metrics on
G. If gtJt((j\ $y not only contains the right translations L(G) and the isotropy
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group / which may or may not be trivial, but may also contain additional
diffeomorphisms which do not mapg or Jt{G) into themselves, although there
may be submanifolds of M(G] on which they do act. The corresponding Killing
vector fields will not lie in αut(G) and will vary from point to point in Jί(G\

II. Three-dimensional Lie Groups

We now specialize to n = 3 for which the components of the structure constant
tensor of g decompose in the following well known way [7] :

nab are the components of a symmetric second rank tensor density of weight one
over 9, while ab are the components of a covector over g, i.e. an element of g*. We
will refer to these components as in "standard diagonal form" if the matrix of
components nab is diagonal (n = diag(τι(1), n(2\ n(3))) and ab = aδ3

b with α^O, in
which case the contracted Jacobi identity reduces to an(3} = Q.

Let ^ be the six-dimensional submanifold of R3 x R3 x R3 consisting of
components C\c = - Ca

cb satisfying the Jacobi identity Ce

d[aC
d

bc] = 0. GL (3, R) acts
naturally on this space on the left :

C^A-^A-1',, AeGL(3,_R),

or in terms of nab and a :b

A)" 1 A\ncdA\ , ab^ac ~ lc

b c b .

When ab Φ 0, a scalar h is defined by the equation :

which reduces to a2 = hn(1)n(2} when Ca

bc is in standard diagonal form.
By definition, the isotropy group Ic at a point CG^ is just the matrix

automorphism group Aute(g) of a three-dimensional Lie algebra with respect to a
basis e = {ea} in which Ca

bc are the components of the structure constant tensor of
g. Secondly, the orbits of the action of GL (3, R) on ^ are just the equivalence
classes of structure constant tensors under the isomorphism relation. The de-
scription of the orbit space has been called the Bianchi-Behr classification of three-
dimensional Lie algebras [7]. The orbits are characterized by the rank and
absolute value of the signature of n, the vanishing or nonvanishing of ab and the
invariant h when defined. It is useful to select a canonical representative for each
orbit or "Bianchi type". This is easily done by first reducing the structure constant
tensor to standard diagonal form, normalizing a (if nonzero) to unity when h is
undefined and by further reducing n to its Sylvester form (except for Type II where
a permuted form proves more convenient). We will refer to the canonical
representative for each type as "canonical components" and call a "canonical
basis" any basis e of a Lie algebra g with respect to which its structure constant
tensor has canonical components and the various matrix Lie algebras and groups
associated with g in the basis e the canonical such Lie algebra or group. Table 1
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lists the canonical components for each Bianchi type together with the dimensions
of the canonical adjoint group Ade(G) and canonical automorphism group Aute(g)
and finally the dimension of the orbit to which each belongs, which is just 9-
dim(Aute(g)). The Roman numerals were assigned by Bianchi [8] who used a
different classification scheme than the present one which is due to Behr [7].

Table 1

Class

Class

I I

\

A I

π
V I 0

vπ ( )

V I I I

IX

B V

IV

I = V I _ ,

M / I Φ O _ ,

vπ^o

„(!)

0

0

1

1

1

1

0

1

1

1

1

„">
0

0

- 1

1

1

1

0

0

- i
- i

1

n«>

0

1

0

0

- 1

i

0

0

0

0

0

a

0

0

0

()

0

0

1

1

1

ί/

a

h

_

0

0

0

0

- 1

— cr

a2

dιm(Ad t,(G)) dιm(Aut t ,

0
7

3

3

3

3

3

3

2

3

3

9

6

4

4

3

3

6

4

4

4

4

(cj)) dιm(orbit)

0

3

5

5

6

6

3
5

5

5

5

The types for which ab = 0 are called class A and the remaining are called Class
B. For later purposes it is also useful to call Types I, II, III, V, and VI_ 1 / 9

degenerate and the remaining types nondegenerate.
It is convenient to introduce the notation eb

a for the matrix whose only
nonvanishing component is a one in the aih row and bth column, so that a matrix
with components Aa

b may be written A = Aa

be
b

a {e5

fl} is the natural basis of
cjI(3,.R). For all but Types I, II, and III, the adjoint representation ad is a Lie
algebra isomorphism so one can imbed in GL(3,jR)+ a Lie group of each Bianchi
type [namely the canonical adjoint group Ade(G)] by exponentiating the canoni-
cal adjoint Lie algebra ade(g). This has the canonical basis {kα} where we recall
that kα^C fe

f lce
c

& and Trk f l = 2αα. For a structure constant tensor in standard
diagonal form these are explicitly :

k^-n^e^-fn^e^-αe3!

k2=-w ( 3 )e 1

34-n ( 1 )e3

1-αe3

2

[k3,k1]-n(2)k2-f-αk1

The matrix k3 is responsible for the nonunimodularity of the Class B adjoint
group. If we let I(α) = 1 — ea

a and let k^ be the matrix obtained from kfl by setting the
structure component a to zero, then k 3=k 3 + αl(3) isolates the only nonzero
diagonal components of any of the kfl.
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Canonical coordinates of the second kind [1] lead to the following para-
metrίzation of the adjoint matrix R; the exponentiation can be done explicitly:

Ί 0 -ax1'

0 cl -n(2}sί

0 n(3]s1 cί

^ c2 0 n(1}s2~

0 1 -ax2

-n(3}s2 0 c2

~ c3e
ax* -n(1}s3e

ax" 0

n(2}s3e
aχ3 c3e

aχ3 0

0 0 1

Note that detR-e2αλ"3.
The following abbreviations and identities are used; (a,b,c) is any cyclic

permutation of (1, 2, 3) :

m(a} = ( _ n(b)n(θγi2 β («) = ( n(W n(c))l/2

ca = cosh m(a]xa = cos m(a)xa

sa = (m(α)) ~ 1 sinh m(a]xa = (m(α)) ~ 1 sin m(a)xa

lim ( c , s ) = (l,xa)

The left and right invariant dual frames on Ade(G) determined by the basis {ka}
of its Lie algebra ade(g) are computable from the relations :

The invariant frames themselves may be constructed using the duality relations.
The result is:

Cϋ — c ^ Yl ^9 ^aX ~τ~ C 3 CIX j Ί. — \ 3 2 3 2 \ 1

2 3 3

ώ1 =dxl +(n(i)s2 — axl}dx3 ^ι=^ι

d x3 β2 — c1δ2 — n(3)51c2~
 1(δ3 — π(1)5231)

+ a(x131+x2d2)

ω1 Λ ω2 Λ oj3 = Λ dx2 Λ dx3

Λ dx2 Λ

Similar formulas may also be obtained for other types of exponential
coordinates. Although this procedure is not valid for Types I, II and III since
kα = 0, k3 =0 and k1 +k2 =0 respectively in these cases, the parametrized formulas
for the invariant fields are valid for structure constant tensor components in
arbitrary standard diagonal form for all the Bianchi types. We shall only evaluate
them at the canonical components for each Bianchi type. The Bianchi Types I, II,
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and III may also be imbedded in GL(3, R)+ by exponentiating the following
canonical bases as above in the respective cases :

T ίp1 p2 p3 ) TT ίp3 p3 — p2 ) TTT ίp2 4-p2 — p3 4-ρ2 ?p! 1i. |e 1 ? e 2,e 3 j , ii. (e l s e 2,
 e i; ? 1U le ι^e 2> e ι~^e 2>ze i /

From now on we will restrict our attention to canonical components for each
Bianchi type. The canonical adjoint group Ade(G) for Type I is trivial while it is
two-dimensional for Types II and III with respective bases {k19 k2) and {k l5 k3} of
the corresponding Lie algebras. The Class A adjoint groups are automatically
unimodular since the matrices (kj are traceless while in the Class B case the
matrices {k l t k2} are a basis of the canonical special adjoint Lie algebra sade(g).
The canonical automorphism groups Aut^g) and special automorphism groups
SAutc,($) are easily obtained by inspection of the transformation equations for
{nab, ac] ignoring discrete automorphisms, i.e. we will only discuss their com-
ponents connected to the identity. For Types VIII and IX the canonical adjoint
and automorphism groups coincide and are respectively SO(2, 1) and SO(3, R). For
the remaining nondegenerale types and VI _ 1/9, n has rank two and the only addi-
tional automorphisms are generated by I(3). Either {k l 5 k2, k3, 1

(3)) or {k ] ? k2, k3,
I(3)} is a basis of αute(g). The first three elements of the first basis span ade(g) while
the first three of the latter span sαute(g); {kt, k2} or equivalently (e3

19 e
3

2} is a
basis of sade(g). For the two Cases II and IV for which n has rank one, assume n(a}

= δa

l so they can be discussed simultaneously. Invariance of n under the action of
,4eGL(3,R) imposes the condition Aa

1 =(5α

1 |detA|1 / 2 yielding for the Class A Type
II a six-dimensional automorphism group whose unimodular subgroup is the
fίvedimensional subgroup of SL(3,,R) whose elements satisfy Aa

l = δa

i. For Type
IV, the invariance of ab = δ3

b in addition forces A1

1 = A2

2>0 by the previous
condition, resulting in a four-dimensional automorphism group again generated
by either {k l 5 k2, k3, 1

(3)) or {e3^ e3

2, k3, 1
(3)) and whose unimodular subgroup

SAute(π) πas A{

 { =A2

2= i. The latter group is generated by {e3!, e3

2, k3) which
happens to coincide with the above matrix realization of the Type II group. In the
TypeV case, invariance of ab = δ3

b requires only A3>

a = <53

α resulting in a six-
dimensional canonical automorphism group with a five-dimensional special
automorphism subgroup. In the trivial Type I case, GL(3,R) and SL(3,^) are the
automorphism and special automorphism groups respectively.

The first application of our explicit knowledge of the canonical automorphism
group Aut^g) for each Bianchi type will be to study ^true(G) for each
type via the action of Aute(g) on the six-dimensional manifold Jί. Let M^ C <M and
Jin C M be the diagonal submanifolds of Jt and Jl respectively. It turns out that
for the way we have chosen canonical components, JtΌ or a submanifold of it may
be used as a local slice for this action. Let the Taub submanifold JiΎ(l}^JlD be the
submanifold of points ge,/^D for which g22~933 w^n ^τ(2) anc^ ^V(3) defined by
cyclic permutation and JPT(a) defined similarly. Finally let Ml be the "isotropic
submanifold" of positive multiples of the identity matrix, projecting onto the single
point 1 e Jl. Any two of the Taub submanifolds intersect at Jί^

Misner has introduced a useful parametrization of JίD adapted to the
submanifolds ^T(3) and JiΌ [9] :

e+=diag(l,l,-2) e_=diag(|/3, ~


