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CantonPs Generalized Transition Probability
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Abstract. It is observed that Cantoni's generalized transition probability
can be derived from certain physically motivated axioms.

1. Introduction

In a recent paper [2], V. Cantoni has defined a generalized transition probability
and has shown that his definition reduces to the usual transition probability for
pure states in the Hubert space formulation of quantum mechanics. In a later
paper [3], Cantoni has constructed a Riemannian structure on the state space
using this generalized transition probability. The present note observes that
Cantoni's generalized transition probability can be derived from physically
motivated axioms.

Let ($, ίf) be a pair of nonempty sets the elements of which we call observables
and states, respectively; and let & be the set of probability measures on &(R).
We assume the existence of a map p : (9 x if -> & satisfying Mackey's Axioms I
and II [2,11] and call (&,ίf) a Mackey system. For xefi^se^, the measure
sx = p(x,s)e& gives the distribution of the observable x in the state s. For xe&,
5, ίe5^, let τe^ satisfy sx,tx<ζτ (i.e., sx and tx are absolutely continuous relative
to τ). Following Cantoni [2], we define

and call T(s, t) = inf Tx(s9 1) the generalized transition probability of 5 to t.
xe®

2. Transition Measures

For α,jSe^,zle^(jR), the (α,jS) transition measure on A is a real number mΛβ(A)
satisfying:

(1) wαj/5( ) is a nonnegative measure on 3$(R);
(2) mα

i

/ί( ) = m / ϊ α( )forallα,j8e^;
(3) ifj8(J) = 0,thenmβf/?(J) = 0;
(4) ifα,jMτ, then
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dm dm dmτtβ

*dτ ~ dτ dτ

Physically, we think of α and β as the distributions of some observable x in
two different states s and ί, respectively; and mΛtβ(Δ) as a likelyhood of a transition
from s to t given that an observation of x yields a result in A. Condition (1) follows
from the reasonable physical assumption that

mΛtβ(Aί u J2) - m^ΔJ 4- mΛtβ(A2) iϊΔ1nΔ2^0.

Condition (2) is a symmetry assumption that is usually made for transition pro-
babilities. This condition holds on all sufficiently regular quantum systems
[1, 7-9, 13]. Although Mielnik [12] has raised the possibility that such a condition
may not hold in certain "quantum worlds", the usefulness of such nonregular
systems has not been thoroughly demonstrated. Condition (3) says that if there is
zero probability that x has a value in A in the state ί, then an x-observation resulting
in Δ gives no contribution to the likelihood of an s to ί transition. It follows from
(3) that if α, β <ζ τ, then the Radon-Nikodym derivatives in (4) exist. Condition (4)
states that the "transition density" from α to β equals the product of the "transition
densities" from α to τ and from τ to β. In integrated form, (4) becomes

(2.1)

for every Δe^(R). Equation (2.1) is a kind of Chapman-Kolmogorov equation
which holds for state transitions in Markov processes [6]. Equation (2.1) is also
reminiscent of the familiar Hubert space expression < φ, φ > = Σ ( Φ> Φ ί ) ̂  Φι -> Ψ )
where {φt} is an orthonormal basis, although the analogy does not seem to be
particularly accurate [1],

Theorem. For any α,βe^,mα>/? exists, is unique and satisfies

forallΔ<E^(R) and all τe0> with α ; j β<^τ.

Proof. Cantoni [2] has already noted (see also [11]) that the expression

if finite and independent of τ, where α, jS <^ τ. It is clear that Fα β satisfies (1) and
(2). For (3), if β(Δ) = 0, then dβ/dτ = 0 on Δ a.e. [τ] and hence FΛtβ(Δ) = 0. For (4),
suppose α,jMτ. Then Fα>t(Λ) = J(Jα/dτ)1/2dτ so dFatjdτ = (da/dτ)1/2 a.e. [τ].

A

Hence,

dτ dτ [ d τ d τ \ dτ L J '

We now show that ma<β is unique. Letting α = β = τ in (4) gives dm^Jda. =
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(dmαα/dα)2. Hence, dmajda = l a.e. [α] so wα α = α. Now suppose that α < ^ τ .
From (2) and (4) we have

da dm.. dmnτdmrn /dmaτ,' ! a.e. [τ] .
dτ dτ dτ dτ \ dτ

Hence, dm^Jdτ = (du/dτ)ί/2 a.e. [τ]. If α,β ̂  τ, we have by (2) and (2.1)

dmdm 11/2
dadβ?
dτdτ\ dτ

3. Generalized Transition Probability

Let (&,&*) be a Mackey system. For xeΘ,s,te if, we call Fx(s, t) = mSχίtχ(R) the
transition amplitude of s to ί given x. Mielnik [12] defines the "detection ratio"
s: ί as the minimal fraction of s particles detected by an instrument that detects
all t particles, and shows that this reduces to the usual transition probability in
the Hubert space framework. Following this line of reasoning, we define the
transition amplitude F(s, f) of s to ί by F(s, ί) = inf Fx(s, t).

xe(3

To treat more general states and particle beams, it is important to consider
unnormalized states λs,λ > 0,se^, where p(χ,λs)(A) = λp(x,s)(A)[4,5,10,12]. We
extend F to such states by using the same definition as before but allowing α and
β to be finite nonnegative measures instead of just probability measures. For
physical reasons it would be desirable to have F(λs, t) = λF(s, t\ s, ίe^, λ > 0, but
this does not hold. It is clear that the only function of F that satisfies the above
homogeneity condition is F2. We thus define the generalized transition probability
to be T(s, t) = F2(s, t). This is precisely Cantoni's definition.
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