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Abstract. Equivalence (allowing for convex combinations) of microcanonical,
canonical and grandcanonical ensembles for states of classical systems is
established under very mild assumptions on the limiting state. We introduce
the notion of conditional equilibrium (C.E.), a property of states of infinite
systems which characterizes convex combinations of limits of microcanonical
ensembles. It is shown that C.E. states are, under quite general conditions,
mixtures of Gibbs states.

1. Introduction

Systems of infinite spatial extent [1-3] offer mathematically convenient idealiz-
ations of macroscopic equilibrium systems. The statistical mechanical theory of
such systems may be obtained either by considering the thermodynamic (infinite
volume) limit of finite systems described by appropriate Gibbs ensembles (e.g.,
micro-canonical, canonical, grand-canonical, pressure) or by considering equilib-
rium states of infinite systems directly. While the first route is the more physical,
the latter is mathematically more direct and can often provide useful insights into
the phenomena for which the large size (on a molecular scale) of macroscopic
systems plays an essential role, e.g., phase-transitions. In addition the formal
theory of infinite systems may offer useful mathematical tools for the study of local
phenomena in macroscopic systems. Various results valid in the thermodynamic
limit can be formulated as simple properties of the infinite system. It is for these
reasons that the infinite system point of view is often adopted.

In the infinite system formalism, equilibrium macroscopic systems are com-
monly represented by Gibbs states, or measures, on the space of locally finite
configurations [2, 3]. These are defined by the DLR equations [2, 3] which are
satisfied by the limits of finite volume grand-canonical ensembles. One may also
define "conditional equilibrium" states (C.E.) by similar equations which are
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satisfied by the limits of the corresponding canonical and micro-canonical finite
volume ensembles. The question naturally arises as to the relationship between
C.E. and Gibbs states; it was a fundamental belief of the founders of statistical
mechanics that in the thermodynamic limit the various ensembles yield the same
results.

The equivalence of different ensembles in this limit can be readily verified as far
as thermodynamic properties are concerned [1]. The problem becomes more
difficult however when equivalence between correlation functions, i.e., measures, is
desired. One difficulty arises from the fact that the existence of a unique limit of the
correlations is only assured, in general, at low values of the fugacity (and also at
high temperatures for some class of systems [1]). Indeed for low fugacities a proof
of the equivalence of canonical and grand-canonical correlation functions was
given by Bogoluibov in 1946 [4].

It may however by expected that even in the absence of a unique limit state, as
would happen at phase transitions where several phases can coexist, there should
still be an equivalence between the "sets" of states corresponding to limits of
different ensembles or the different characterizations of infinite volume states. This
indeed was proven by Thompson [5] for lattice systems cf. also Georgii [6] and
Martin-Lδf [7]. For continuous systems Georgii [8] proved the equivalence of
canonical Gibbs states and Gibbs states under certain assumptions. It is the
purpose of this paper to prove the equivalence between Gibbs states and a general
class of C.E. states, of which limits of canonical and microcanonical ensembles are
special cases, for classical systems with realistic Hamiltonians.

Our interest in this problem grew out of our work on the stability of stationary
(time invariant) measures of infinite classical systems [9]. It was shown there,
following the work of Haag et al. [10] on quantum states, that under certain
conditions stable stationary states satisfy a classical KMS condition. That
condition was shown by Gallavotti and Verboven [11], under restrictive con-
ditions equivalent to low fugacities, to imply that these states are Gibbs states.
Later the KMS condition was shown [12] to be equivalent to canonical states
which, by Georgii's result, shows its equivalence to Gibbs states quite generally.
While we do not know of any dynamical condition which leads to the more
general class of C.E. states considered here, they do seem to be natural
generalizations of Gibbs states. Similar questions have been independently
considered by Preston [13] who obtained partial results in this direction.

The general formalism and notation are introduced in Parts a) and b) of
Section 2. In 2c) we introduce the C.E. states and discuss their connection with
limits of microcanonical ensembles (Theorem 2.1 and Remark 2.2). The main
problem, stated in 2d), is the relation of C.E. states to Gibbs states. This problem
may be simply described in terms of an entropy function which is introduced in
Section 3. We study the C.E. states by first decomposing them to extremal C.E.
states which are the subject of Section 4. The equivalence of the C.E. to DLR condi-
tion is obtained there (Theorems 4.2 and 4.3) under certain regularity assumptions.
While one is usually willing to assume some regularity of states of interest, the regu-
larity of the extremal components of a given state is already a strong statement, as
shown by Example 4.1. The discussion in Section 4 is quite general, applying both
to continuous and to lattice systems and to states which are C.E. with respect to
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collections of extensive variables. In Section 5 we restrict our attention to
continuous systems whose Hamiltonians contain kinetic terms. It is shown, using a
criterion (Lemma 5.1) derived from the results of Section 4, that a C.E. state is,
under very mild additional assumptions, a combination of Gibbs states (Theorem
5.1). In Section 6 we apply the method and results of Section 4 to obtain quite
general results about canonical states.

2. Setup and Statement of the Problem

a) Phase Space

Let Γ = ]Rdx ^ b e the one particle phase space (position space x space of the other
degrees of freedom) of a classical system of particles, equipped with the measure vv

Example i.ί. Five cases of interest are:
1) <F=IRd, describing the momentum degrees of freedom, dvί=ddqddp.
2) 3Γ= {1,..., n}? for n types of particles, dvί ~ddq x counting measure.
3)^-Rdx{l,...,n}.

4) #*= {!,..., n}? dv1 = Σ δ{ddq ~ i) x counting measure, describing a system on
ield

a lattice.
5) <F=IR, dvi= ]Γ δ(ddq— i) x ds describing a lattice of continuous spins.

ieΈd

We assume that ΘC is a complete separable metric space.
Let A refer to bounded open subsets of lRd. We shall also denote, with a slight

abuse of notation, A xtfcΓ by A. We write Ac = Έid\A (or Γ\A).

Definition 2.1. A configuration, ω, is the equivalence class, under permutations, of
a (possibly finite) sequence {ω^ with ω^eΓV/.

We write ωj = (qj,pJ)i ω} = (qpoί^ ω — {q-pppα7 ) for cases 1), 2), and 3) of
Example 1.1, respectively.

The set theoretic notation may be extended to deal with such equivalence
classes (keeping track of multiplicities of coincident particles: ω ί = α^ for i φj).
Thus we will write ω = {ω }.

For configurations ω, ώ, and F c Γ w e write

ωώ—ωuώ

N(ω) = card ω

and

Nv(ω) = N(ωv).

Definition 2.2. Ω, the phase space of an infinite system, is the set of locally finite
configurations. These are the configurations ω for which N(ωΛ) < co for all
bounded /ίCΪRd.

Observables are represented by functions on Ω.

Definition 23. An extensive quantity is a function X( | ) on ΩFxΩ where
ΩF = {ωeΩ\N(ω)<oo}, which satisfies

X(ξη\ω)=X(η\ω)+X{ξ\ηω).
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IfX is an extensive quantity we let XΛ(ω)=X(ωΛ\ωΛC).
In X(ξ\ω\ ω should be thought of as defining boundary conditions.
Examples of extensive quantities are:
1) X(ξ\ω) = N(ξ)
2) F o r ^ - R d x { l , . . . , n } o r # = { l , ...,n}, Nf(ξ|ω) = card£n{α = ϊ}.
3) The energy, for a pair potential υ,

E{ξ\ω) = Σ(2mΓ'pf+^Σ %;>Qj) + Σ»(«i»«;).

where ξ = {(qi,pi)} and ω = {(^,pf)}.
4) Sum functions. For any function / on ΩF we define an extensive quantity

Σf{ξ\ω)= Σ f(y)
γeξωnΩp
ynξΦ0

We write Σf(ω) = Σf(ω\fS). (Strictly speaking, the functions in the last two examples
are defined only on the subset of ΩFxΩ for which the sums are absolutely
convergent.)

b) States

The space Ω admits a natural topology which is generated by the set of functions

{Σf( )\feC(Γn) for some neΈ supp/={yeΩF |y / l c = 0} for some bounded A)

This topology is compatible with a metric with respect to which Ω is complete and
separable (i.e., a "Polish space").

Definition 2.4. 1) We denote by 36 the corresponding Borel σ-algebra on Ω.
2) For any measurable VcΓ let

Ωv={ωv\ωeΩ}

Let $γ be the σ-algebra on Ω which is the inverse image oϊ$nΩv under the map-
ping

Ω->ΩV

0

We identify ΩΛ with (J Λ^ymm. Points in ΩΛ will be denoted by η, ξ.
N = 0

3) FΛ = @ΛC and Fo0 = f]FΛ = (monotone) lim FΛ. By Λ|IRd we mean that A
A ΛtIRd

increases along a sequence of subsets whose union is Γ. The sequence does not
change throughout this discussion.

4) Let X = {X(k)}™= j, be a finite collection of extensive quantities. We denote by

GΛ the σ-algebra generated by FΛ and XΛ, and set Go0 = f^]GΛ= lim GΛ. The

dependence of GΛ on X is supressed in this notation, but will be clear from the
context.

In other words, FΛ represents all the information about ωΛC, for ωeΩ, and GΛ

represents this and the additional information about the "total value" of the
extensive quantities X(ω).
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Definition 2.5. A state (μ) is a probability measure on (Ώ, 88).
The fact that Ω is a Polish space guarantees ([14]) the existence of regular

conditional probabilities with respect to any σ-subalgebra of 8$. The regular
conditional probabilities with respect to FΛ, μ(-\FΛ)(ώ), will also be denoted by
μΛ('\ω) (and will be regarded as probability measures on ΩΛ). μΛ('\co) = μΛ(-\coΛc)
gives the conditional distribution of the configuration in A given ωΛc.

For any A let us denote by vΛ the Liouville measure (which assigns mass 1 to
the set ΛΓ = O):

©
iV=O

The vΛ have the convenient factorization property

VΛ1VΛ2 = VΛ1

XVΛ2

 f o r Λ1nΛ2 = β (2.1)

if we identify ΩΛluΛl with ΩΛi x ΩΛi.

Definition 2.6. μ is a regular state if, MA and μ-a.e.ω μΛ( \ω) <ζ vΛ( ) (μΛ is absolutely
continuous with respect to vΛ). (μ-a.e. ω reads "μ-almost every ω.")

A special role is played by Gibbs states which we define in a slightly
generalized way.

Definition 2.7. A state μ is a Gifrfrs state with respect to X if X(ξ\ωΛC) is well defined
for vΛ(dξ)μ(dω)-2L.G. (ξ,ω) and if, for some {λ^^λeW1

μΛ{dξ\ω) = exp ( - A X(ξ\ωΛC))vΛ(dξ)/Noτm

for every /I.

cj Conditional Equilibrium

Definition 2.8. For ωeΩ the microcanonical ensemble with respect to the extensive
quantities X is the probability measure on ΩΛ given by the weak limit

MΛ( |ω) = lim (Norm)" 1 J[ |X(£KC) - XA(ω)\ < ε^vΛ(dξ)

Here I(c) is the characteristic function of the set on which the condition c is
satisfied and ω is assumed to be such that the limit exists.

We are now in a position to introduce the main object of our study.

Definition 2.9. A state μ is a conditional equilibrium (C.E.J state with respect to X if
the conditional probabilities with respect to GΛ are the microcanonical ensembles:

μ('\GΛ)(ώ) = MΛ( \ω) for μ-a.e.ω.

The criterion for a regular state to be a C.E. state may be equivalently
formulated as follows.

Definition 2.9. Let μ be a regular state such that X(ξ\ωΛC) is well defined for
vΛ(dξ)μ(dω)-8L.e. (ξ, ω). μ is a C.E. state if for every A
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for some Borel measurable function g:!Rm x £2-»]R, i.e., if the density of μΛ(dξ\ω)
with respect to vΛ(dξ) is given, for μ-a.e. ω, by a function which depends on ξ only
through X(ξ\ωΛC).

Remark 2Λ. For simplicity, let us consider potential energies, V, resulting from
finite range pair interactions given by continuous functions with values in Ru{oo}
(one side compactification of IR). As remarked by Lanford [15], Hamiltonians (if)
which in addition include the kinetic energy, Σp2^lm, are regular enough for the
microcanonical ensembles with respect to X = {H,N} to be well defined. The
expectation value of a continuous function h(q, p) — h(ξ) is given by

J h(ξ)MΛ{dξ\ω) - (Norm)" 1 j dιqp~{l~2) j σι{dk)h(q, pk), (2.3)

where l = NΛ(ω)d, p 2 = max {0,2 m[HΛ{ω) — V(q\ω)]} and σz( ) is the uniform
probability distribution on the unit sphere in IRλ The cases / < 2 should be treated
separately.

The same applies, with a trivial modification, to systems with hard cores (which
are not automatically included in the above class because of the continuity
requirements on V).

Gibbs states are the limits of grand-canonical ensembles. The conditional
equilibrium states and microcanonical ensembles are similarly related:

Theorem 2.1. Let a sequence of microcanonical ensembles as in Remark 1 converge
weakly to a regular state μ. Then μ is a conditional-equilibrium state (with respect to
{H, N}).

Proof. By the consistency of microcanonical ensembles it is enough to show that
V A3 AD A' for which μ('\GΛ)(ω) = MΛ( \ω), for μ-a.e.ω. We shall prove this
equality for any A such that

where δA is the boundary of A. The existence of such A~2> A' follows from the local
finiteness of Ω (and thus does not depend upon the regularity of μ).

Let f(e,n,ω) be a continuous function on ΊKxZxΩ and let heC(ΩΛ\ the
bounded continuous functions on ΩΛ. f(HΛ(ω),NΛ(ω),ωΛC)h(ω) is continuous
unless NdΛ(ω) =j= 0. This occurs on a closed set of zero measure (by our choice of A).
Therefore

j μ(dω)f(HΛ(ω\ NΛ(ω\ ωΛC)h(ω)

= lim \MA (dω\ωn)f(HΛ(ωlNΛ(ωlωΛC)h(ω).

For n large enough AnjA and we may use the consistency of micro-canonical
ensembles to obtain

= lim \MΛβω\ωn)f(HΛ(ωlNΛ(ojlojΛC)\MΛ(dώ\ω)h(ώ).
n—*• o o

It may be easily seen from the expression in Remark 1 that the above integral over
dώ yields a function which is continuous in ω except on{ω|Λ/2/1(ω)Φθ}u{ω|p/ = 0
for some (q^p^eω}. This too is a closed set of zero measure, since μ is regular,
which implies that the integrals converge to

J μ(dω)f(HΛ(ω\ NΛ(ω\ ωAC) \ MΛ(dώ\ω)h(ώ).
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Since functions of the form of / generate G and C{ΩΛ) generates <fflΛ we may
conclude that

μ( \GΛ)(ω) = MΛ( \ω) for μ-a.e.ω. Π

Remark 2.2. Conversely, any C.E. state is a convex integral of limits of micro-
canonical ensembles [see Eq. (4.1) and P.1-P.4 in Section 4a].

d) The Problem

Comparing Definition 2.7 with Definition 2.9 one sees that a Gibbs state is also a
conditional equilibrium state for the same extensive quantities. Our purpose is to
prove that for infinite systems the converse is also true. In view of Theorem 1, this
result will also prove, under the appropriate assumptions, the equivalence of
microcanonical and grand-canonical ensembles in the thermodynamic limit. It
should be emphasized that we do not discuss the convergence of microcanonical
ensembles but rather prove results about states which would result from converg-
ing schemes of this type.

As a technical point, let us remark that the defining property (2.4) is preserved
under convex combination of states. Consequently, one may not expect to prove
that conditional-equilibrium states are Gibbs states but, at most, that they are
convex combinations of such states.

Finally, a word about the terminology. There is a temptation to call
conditional-equilibrium states simply microcanonical states. Similar terminology
has in fact been used by several authors ([6, 8, 13]) for similarly defined canonical
states (discussed in Section 6). We do not follow this terminology in order to avoid
certain confusion. Microcanonical states are generally familiar for finite systems.
They are characterized by two properties: i) the total value of certain extensive
variables is sharply defined and ii) the "equidistribution" on the corresponding
"shell" (which we termed—conditional equilibrium). In the thermodynamical limit
which we consider only the local properties of the state retain directly their sense
and, in particular, the first property becomes meaningless. Since a very pro-
nounced aspect of microcanonical states of finite systems is thus lost, we choose
not to use this term. Notice also another important difference. In a microcanonical
state of a finite system there is "more information" specified than in a grand
canonical state. However, the notion of conditional equilibrium is weaker than
that of equilibrium (which for finite systems corresponds to grand canonical
states).

3. The Entropy Function

a) Restatement of the Problem in Terms of the Entropy Function

In order to see more clearly the "thermodynamic" nature of the argument let us
introduce the following entropy function.

Definition 3.1. Let μ be a regular state. The entropy in A of the configuration ω is
given by the {$Λ x FΛ measurable) state dependent function, SΛ, defined by:
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We shall also use the shorter notation SΛ(ω) = SΛ(ωΛ\ω). (In terms of the measures
τΛ introduced in Section 4, exp [—SΛ~]=dμ/dτΛ, which displays the measurability
oϊSΛ.)

Remark 3.1. In this terminology:
i) A regular state is a microcanonical state with respect to X iff, for any A there

exists a Borel x FΛ measurable function SΛ :W x Ώ-*IR such that

SΛ{ω) = SA(XΛ(ω)\ω).

ii) A state is Gibbs state with respect to X iff, for some constant λeRn and
functions KΛ:

Our problem is, therefore, to prove that if, for specified boundary conditions,
the entropy SΛ(ω) is a function only of the extensive quantities then this function is
affine, with coefficients which are constant on the elements of the decomposition of
the state into extremal C.E. states.

b) Basic Properties of the Entropy

Remark 3.2. Extensive quantities satisfy the following "differential" condition:

X-Λ(ω^)-XM2^XΛ{ω^)-XΛ{ω(2))

whenever ω^} = ω^} and ΛjΛ.
Although our entropy is not an extensive quantity (see also a remark at Section

6), we show in Lemma 1 that it satisfies the above condition [for "typical"
(ω (1), ω ( 2 ))]. We shall strongly use this property in proving the main result.

Lemma 3.1 (Consistency Condition). Let μbe a regular state and S the correspond-
ing entropy function then for μ-a.e.ω

1) -oo<SΛ<oo.
2) for v^-a.e.ξ

S2(ξωΆA\ω) = SA(ξ\ω) + C-A Λ(ωΛc)

if ADA.

Proof. 1) It follows from the definition of SΛ that the set on which SΛ(ω)= oo, i.e.,

e-sΛ(ω)_Q^ j i a s z e r o μ measure. At the other extreme, SΛ> — oo follows the
normalizability of e~SΛ.

2) Consistency of the measures induced in A and in A implies

e's^ω)vΛ(dξ)μ(dωAe)

(where use was made of the factorization vj = vΛxvjχΛ). Thus, for v^-a.e.ξ and
μ-a.e.ω

Sx(ξωΆΛ\ω) = SΛ(ξ\ω) + C I ? Λ{ωΛC),

where CΛΛ(ωΛC)<co.



Thermodynamic Limit 287

4. Extremal Conditional Equilibrium States

Our goal is to prove that a conditional equilibrium state of an infinite system is a
convex combination of Gibbs states. While the "infinite size" of the system is of
course crucial, it is not, by itself, a clearly defined condition (nor a sufficient one if
by the size one means just the volume—see Example 4.1). We shall, therefore, first
prove the above result under an assumption which contains the relevant infor-
mation about the "size" of the system. In the next section we verify this assumption
for a large class of systems.

Intuitively, we shall reason as follows. By definition, for C.E. states the entropy
is a function of the extensive quantities. By locally varying the configuration one
may define the increase in entropy which corresponds to a change AX in the
extensive quantities. Since changes in the entropy and in the extensive quantities
can be consistently determined using any large volume, they should be measurable
with respect to G^. Here the distinction between G^ and ¥^ is important. A local
variation in ω does not change the fiber of F^ to which ω belongs but does change
the corresponding fiber in G^ since the resulting change in the "total" value of the
extensive quantities is registered by G^. Thus, for a given AX the change in the
entropy, AS , will depend on the value of X at which the change is made. However,
if it happens that G^ is trivial then AS for a fixed AX has the same value almost
everywhere and the state is a Gibbs state. In order to apply this kind of argument
one has to be sure that it is possible to vary X by an amount AX without being
forced into an atypical configuration where AS would not have the above value
and may not even be defined. This should not happen for a large enough collection
of values of AX. For this, some "regularity" is crucial.

We shall therefore proceed by first decomposing a conditional equilibrium
state to conditional equilibrium states with trivial G^. If these retain the
"regularity" properties, they are Gibbs states.

a) The Decomposition

The conditional probabilities given G^, μ( |G00)(ω), provide us with the desired
decomposition.

μ( ) = jMdω)M |GJ(ω). (4.1)

There are various properties of the decomposition which we shall need later.
These can be proven by means of arguments given in Follmer [16] and Dynkin
[17], We shall therefore only state them and give a brief indication of their
plausibility. It is convenient and justifiable to regard σ-algebras such as G^ as
partitions of Ω into fibers and the conditional measures like μ(dώ\Gao)(ω) as the
conditional probabilities given that ώ is in the fiber containing ω.

P.I. μHG^Xω) are C.E. states for μ-a.e.ω.
Since GADG^ the expectation conditioned on GΛ in the state μHG^Xω) is

given by μ( \GΛ)(ω), i.e., by the corresponding microcanonical ensemble.
P.2. If μ is an extremal C.E. state then Gro is trivial for μ.
This follows from P.I by means of the decomposition (4.1).
P.3. For μ-a.e.ω G^ is μ( |G00)(ω)-trivial.
P.4. If Gm is trivial for a C.E. state μ then μ is a limit of the microcanonical

ensembles MΛ( |ω) for μ-a.e.ω.
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This follows from the convergence G^G^, by means of Doob's martingale
convergence theorem.

P.5. If G^ is trivial for a C.E. state μ then μ is an extremal state.
Suppose μ = ocμ1 -f(l — α ) μ 2 ?

t n e n ^oo *s trivial also for μ r μ and μx are therefore
limits of the same sequence of microcanonical ensembles. Hence μ = μί = μ2.

Thus we have:

Theorem 4.1, A state is an extremal state of conditional equilibrium if and only ifG^
is trivial. Any state of conditional equilibrium may be decomposed into extremal C.E.
states.

A word of caution is due here. If one decomposes a "regular" state of
conditional equilibrium the resulting elements, while having the same expectations
when conditioned on GΛ, may no longer be "regular". In fact, this seemingly
formal question relates to an essential property of infinite systems. It distinguishes
them from finite systems for which the analogous statements are not true.

Example 4.1. Consider a system for which the total value of one of the extensive
quantities such as iV(ω) if finite for μ-a.e.ω. E.g., a system in a Gibbs state with an
external potential, V(q), which increases fast enough as \q\->oo. For such states
N(ω) is constant on each element of the decomposition (4.1) into extremal C.E.
states. After the decomposition, μΛ( \ω) [i.e., μ( |FylG00)(ω)] are concentrated on
{NΛ = NΛ(ω}} sets and one cannot vary NΛ without being forced into an atypical
configuration.

b) Extremal C.E. States and Gibbs States

In order to state and prove our results we need to define some further regularity
properties. The necessity for this is indicated by example 4.1 and by
Example 4.2. Consider a system of two species of particles (with occupation
numbers Nx and N2). Let eί9 e2eIR be incommensurable (i.e., eje2 is not rational)
and let

E = e1Nί+e2N2.

Since in this case N1 Λ and N2 Λ can be determined from EΛ, any state with

is also a C.E. state for the single extensive quantity E. However, while SΛ — KΛ is a
function of EΛ it is not linear if λje1 =¥λ2/β2, and the state is not a Gibbs state for E
nor a combination of Gibbs states.

In this example, the distribution of E is supported by an abelian group
{e^Έ + eJE) o n which (measurable) additive functions need not be linear. In what
follows, we impose conditions which require that the a priori distribution of our
extensive quantities be compatible (in a sense made precise by the conditions) with
a group on which additive functions are linear. This compatibility is expressed
through conditions of absolute continuity with respect to the Haar measure of the
group. The simplest such subgroups of Rm are of the form IRfc x Έι.
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Notation. 1) In our considerations some of the extensive quantities have values in
IR (e.g., the energy H) and some in Z (e.g., the particle number JV). We represent the
collection of the extensive variables by X = (H,N), their values by u = (e, n) and
their range space by U = IR̂  x TL\k + l = rn).

2) The space on which SΛ is naturally defined is U x Ω, equipped with the
σ-algebra

FΛ = Borel σ-algebra on UxFΛ.

The elements of U act additively on U x Ω by

iι0 4- (M, ω) = (M + iι0, ω) Vwo,i#e [7, ωeΩ.

3) We shall use the maps:

and for Λ>Λ, the maps

^ M : ( l / x 0 , F J - > ( C 7 x 0 9 F J

#^ Λ: (u, ω) ι-> (u + X^ίω^c), ω).

These obey

4) We denote by τΛ the measure on (Ω, J*):

τyl((iω) = vΛ(dωΛ)μ{dωΛC).

The map gΛ induces the measures gΛ(μ) and gΛ{τΛ) on ([/ x β, F^).

A special role is played by the measure mΛ = (Lebesgue x counting) x μ on FΛ.
5) The supports of the absolutely continuous parts of the measures gΛ(μ) and

gΛ(τΛ) are defined by

DΛ = sup{BcFΛ\gA(μ)πmΛ on FΛnB}

= [sup {BCFΛ\gΛ(μ)lmΛ on FAnB}J

EΛ = sup{BcFΛ\gΛ(τΛ)πrnΛ on FΛnB}.

For DΛ "sup" should be understood in the sense of equivalence classes mod.

A))- ^ denotes the equivalence of measures and _l_ their mutual
singularity.

The reason for introducing the above notation is that the entropy function
SΛ(u, ω), which is our main concern, is naturally defined onU xΩ and is defined by
μ only up to the measure gΛ(τΛ). I.e., it is not defined for (u, ω) which are not in the
τ^-essential range of gΛ. An example of this may be found in systems in which the
interaction energy is positive. In such a case S is not defined for negative energies.

We shall consider the changes in entropy caused by variations in energy and
particle number. In so doing one has to be assured that the new values are within
the domain of definition of S. At this point the continuity of translations with
respect to Lebesgue measure becomes useful and the sets DΛ and EΛ enter.



290 M. Aizenman et al.

Lemma 4.1.

2) 9Λ ̂ D^moάμ and gΛ \EΛ)\modτΛ as /t | .
V {JΘΛ'ΦΛI [Jg-Λ

l(EΛ)eGxmodμ.
A A

Proof. We prove the above statements for the sets EΛ. Replacing τΛ by μ one
obtains a proof for the sets DΛ.

1) gA:(Ω,GA)^{UxΩ,FA)mdEAeFA.
2) Let ΛDΛ.

Thus it is enough to show

By the definition of EΛ:

gΛ(τΛ)lmΛ on FΛnEc

Λ.

However mA = mΛ restricted to FΛ and gA,1A(mA)==mA o n QΛ,A(^A)^-^A' % t n e

regularity of μ : τΛ<ζτA, hence

Therefore

gΛ(τΛ)±mΛ on g^A(

and thus also on FΛc\g^ι

Λ{Ec^). When compared with the definition of EΛ this
implies g-A\{EA)

c^gA\{E:c

A)CEA, i.e., gί\{Eλ)1 EAmodgA{τA).
3) VΛ:

thus

U 1 Q D
yl A

For extremal C.E. states G^ is trivial. In such a state μ either μ(gf̂  1(DΛ))

We now formulate a regularity condition which is violated in the latter case. It
assures the possibility of "adding a particle" to a typical (and non-singular)
configuration (and therefore, if G^ is trivial, to almost all configurations), without
obtaining an atypical configuration.

Definition 4.1. A state μ is loose if 3Λ such that, for some ev ... , e ;

k

with 1^(1,0,0,...), 1 2 = (0,1,0,...)....
Note that since DΛ is the support of the absolutely continuous part of gΛ(μ\

μ(g~ί

ί(DΛ))φ0 assures that the energy can be varied continuously.
The main results of this section are the following two theorems.
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Theorem 4.2. Let μbe a loose regular extremal C.E. state. Then there exists
such that for any A

(λ XΛ(ω) + KΛ(ωΛC) ωe [j gΆ

ι(Eλ)

\SΛ(ω) = \ ?
[ oo otherwise

for τΛ — a.e. ω, where the KΛ are some FΛ measurable functions.

Theorem 4.3. Let μbe a loose regular extremal C.E. state with respect to {H, N}, Nt

^ 0 Vi. //, furthermore, for all sufficiently large A the distribution of H(ξ\ωΛC)
obtained from vΛ(dξ) on {Nt Λ(ξ)>O,\/i} is absolutely continuous with respect to
Lebesgue measure for μ — a.e. ω (i.e., ̂ ( τ ^ ) ^ m ^ on {NΛ>0}) then μ is a Gibbs
state.

Definition 4.2. Let xeU.
1) Q*Λ = g-\DΛn{-x + EΛ)) (eGΛ).

2) Forωeβ*,

dA(x, ω) = SΛ(x + gΛ(ω)) - SΛ{gΛ{ω)).

On its domain, dΛ(x, ) is defined modτ^ and takes values in (— oo, oo].

Lemma 4.2.
1) Qx

Λ]moάμasA\.
2) On Qx

Λ,dA(x,ω) = dΛ(x,ω)moάμ.
Proof. 1) gλ Λ commutes with the addition of x. Therefore

Since by Lemma 4.1 and its proof gl\(EΛ)DEΛ and gY{DA)Dg^\DA\ QX

ΛJQX

Λ.

2) By Lemma 3.1, for mΛ — a.e. (y,ω)eDΛn( —

SΛ(9Λ, Λ& co)) = SJy9 ω) + C-A Λ(ωΛC)

and

Sλiθλ, Λ(X + y,ω)) = SΛ(x + J, ω) + Cλ Λ{ωΛC).

Furthermore, all the terms in the first equation are finite so that we may subtract it
from the second equation. •

Lemma 4.3. Under the assumptions of Theorem 3, Vxe U

μ(Qx

Λ)-*l as ΛTIRd.

Proof. Let

JΛ = {xeU\μ(Qx

Λ)>0}.

Since gΛ(μ)« mΛ on DΛ

JΛ is open since mΛ(DΛn( — x + EΛ)) is continuous in x (a well known property
of Lebesgue measure). Since μ is loose, for any i= 1,...,/, JΛ3{eb —1 ) eventually
for some A and Λ
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By Lemma 4.2 the J Λ increase in A to some set J (i.e., JΛ\J). VxeJ,

Since G^ is trivial, the above is a trivial set of positive measure. Thus VxeJ,

Let now x, x + yeJ. 3 A for which

or

As explained above this means

mΛ{DΛcΛ{ - x + Dy l)n( - x - y + £ J ) > 0,

which implies, using the translational in variance of mΛ,

mΛ(DΛn(-

i.e., yeJ.
Therefore, J is an open subset of JRfc x Zι which is closed under subtraction and

which contains points {eb — l f) i— 1,..., I. It follows that J^IR^ x Z', which proves
the lemma. •

Lemma 4.4. Under assumptions of Theorem 3 31eIRm such that VxeL/V/1 and
μ — a.e. ωeQx

Λ

Proof. By Lemma 4.2, Vxe U there exists the limiting function d defined by

lim dΛ{x, ω) = φc, ω).

d(x, ω) is measurable modμ with respect to G^ and thus, modμ, is a constant d(x).
This implies, since gΛ(μ)&mΛ on DΛ, that for mΛ a.e. (iι,ω)GDyln( —

i, ω) - S > , ω) = φc) . (4.2)

Let x, ye U. In the proof of Lemma 4.3 it was shown that 3 A such that

Using the translation of mΛi (4.2) implies, for mΛ — a.e. (w,

y l)n(-x-^ + £J

S(x -f- if, ω) — 5 ( M , ω) = d(x),

S{x + y + M, ω) - S(x + u, ω) =

Hence d(x) + d(y) = d(x + y)\/x,yeU. The joint measurability of d(x,ω) implies that
d(x) = J μ{dω)d(x, ω) is measurable. Therefore d is linear. Π
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Proof of Theorem 4.2. Consider configurations ω for which

μ{g-\DΛ)\FΛ){ω)>0.

By Lemma 4.4 (and Fubini's theorem), ίUeIRm such that MA the F^-measurable
function

SΛ(x, ω) — λ x

is independent of x for mΛ — a.e. (x, ω)eEΛ. This difference is therefore given by
some function, KΛ{ωΛC).

It follows from Lemma 3.1 that V'Ac A

SΛ{x9ω)-λ x = SΛ(gΛίΛ{x,ω))-λ x-Cλ Λ(ωΛC)

= SΛ(x + XΛ{ωΛcχ ω)-λ-x- CΛ Λ(ωΛC)

= KΛ{ωΛc) + λ - XΛ{ωΛC) - CΛtΛ{ωΛc)

for gΛ(τΛ)-a.e. (x,ω)e{ω\μ{gjί(DΛ)\FΛ)(ω)>O}nglί

Λ(EΛ). [Since gλtΛgΛ(τΛ)
A)^ This proves that SΛ(ω) has the claimed form on the union of

increasing sets:

ΛcΛ

Since

μ{{ω\μ{g-A \Dλ)\Fλ\ω)>0})> 1 - μ ( ^ \DΆ))

and μ(DΛ)->l as Jί

μί

Further, since μ^^x(D^IF^Xω) is measurable with respect to FλcFΛ, the above

set has the "full measure" with respect to τΛ. The above conclusion extends

therefore to the set (J g~λ

 1(Ej). It remains only to prove that on its complement
ΛCΛ

SΛ(ω) — oo (mod τΛ). This follows from the fact that

W U 1 ^ 0 - •
A

Proof of Theorem 4.3. By Theorem 4.2 it suffices to show that

τ
ΛcΛ

c\=0.

Since gλ{τλ)<mΆ on (J
I

ί=l

, for any A large enough,

l l ylc/l\i=l / i=ί

Suppose now μ{Ni — Ni / 1 = 0 } > 0 for some l ^ ί ^ l . Then, for some n<oo,
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However, { Λ ^ π j e G ^ and G^ is trivial by the extremality of μ. This implies

which contradicts the looseness of μ. Thus μ{Ni — NiΛ = 0} = 0 and hence

5. Application to Statistical Mechanical Systems

We shall now restrict our attention to systems similar to those described in
Remark 2.1. Namely, the extensive variables are X = {H,N} where the
Hamiltonian H consists of

1) The kinetic energy Σp2j2m.
n

1) Potential energy of the form V= ]Γ Σfk

k=l

with k-boάy potentials fk which are upper semi-continuous of compact support
with values in IRu{ + oo} (one side compactification of IR).

3) Hard core exclusion is also permitted.

Definition 5.1. 1) For a given Hamiltonian let φ(q\ω) denote the increase in the
interaction energy which would result from adding a particle at qe^d to the
configuration ωeΩ.

2) A state μ is called unsaturated if for μ-a.e. ωΞyelR such that

g(ω)= lim infJV^ω)"1 $ dql[φ(q\ω) <y]>0. (5.1)

Remark 5.1. It is easy to prove the following quite general criteria for unsaturated
states.

1) Let the potential energy result from a pair interaction f2 such that Vε>0

J dy\f2{x,y)\< co.

If for μ-a.e. ω

ρ = hm mf , < oo
Λ-+WL* \Λ\

then μ is unsaturated.

Proof. Let ωΛ = {(qi9pi)}.

)>γUNΛ(ω) j dq+ j dq\φ(q\ω)\/y
\q\£ε Vi:\q~qι\>ε

SNΛ(ω) ί dq + y-1^ ί dq\f2{q-q^\
\q\^ε i \q~qi\<ε

ω) j dq + NΛ{ω)A(ε)/y.

Therefore

7 ] ^ ρ - 1 - ^ - j dq
Λ-+JRd A y \q\£ε

which is positive for properly chosen ε and γ. •
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2) Let H and μ be translation invariant with j dμNΛ(ω) < oc. μ is saturated (the
opposite of unsaturated) if and only if, VgeIRd, φ(g, ω)= oo for μ-a.e. ω (this can be
proven using the decomposition to ergodic components).

In particular, if the potential energy results from a pair potential which is finite
almost everywhere then μ is unsaturated.

Our main result in this section is

Theorem 5.1. Let μ be a conditional equilibrium state with respect to X = {H,N}
with H as above. If μ is unsaturated and for μ-a.e. ω

% ^ (5.2)β>)liminf%^>0

Λ-R* NΛ(ω)

and

NRd(ω) = oo (5.3)

then μ is a convex combination of Gibbs states.

We shall prove this using the criterion provided by Theorem 4.3. First let us
observe:
Lemma 5.1 (The Three-Boxes Criterion). Let μ be an extremal CΈ. state with
respect toX — {H, N} with H as above. If for μ-a.e. ω the measure o π R x Z defined
by the weak lim lim of the distributions of (HΛ(ώ), NΛ(ώ)) in the states

ΛRd Λ~Rd

is
i) absolutely continuous on IRx {n>0} for all A, and

ii) for A large enough, equivalent to (Lebesgue x counting) measure in a set of
the form (HΛ{ω) — A,HΛ(ω)) x {NΛ{ω)~ ί9NΛ{ω)}, A>0, then μ is a Gibbs state.

Proof. Let

and

It is a consequence of Doob's theorem that the limiting distribution on IR x Z is the
distribution of (HΛ, NΛ) in the state μ( |L)(ω).

and, since the product of σ-algebras is continuous with respect to upward
convergence,

LΛD Urn'^MΛGOO=FΛGOO = FΛ,
^TlR d

the last equality only mod μ, (because G^ is trivial by the extremality of μ). This
implies that the measures μ( \FΛ)(ω) are averages over μ( \LΛ)(ώ) and hence
conditions i) and ii) are also satisfied by the distributions of (HΛ, NΛ) in the states
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μ{ • \FΛ)(ω). Therefore, except possibly for regularity, μ satisfies the hypotheses of
Theorem 4.3.

In order to prove regularity it suffices, since μ is a C.E. state, to show

This is clearly satisfied on {n^O}. On {n>0} gΛ(μ)^mΛ (by i) and gΛ{μ) is
supported by {e^e°Λ(n,ω)} where

e°Λ(n, ω) = inf {HΛ(ώ)\NΛ(ώ) = n, ώΛC = ωAC}=mί{V(qί,...9qn\ω).

Since the kinetic energy and the potential energy are independent with respect to

vA, and since the distribution of the kinetic energy is equivalent to the Lebesgue

measure on [0, oo), we conclude that gΛ(τΛ)&mΛ on

... 9qm\ωΛC)\qί9... 9qneΛ}}.

By the upper semi-continuity of the interactions this essential infimum
is eΛ(n,ω). Thus on {e^e°Λ(n,ω)}

gΛ{μ)<mΛ<ζgΛ(τΛ).

The lemma now follows from Theorem 4.3. •
We wish to point out that the extremality of μ does not play an essential role in

the above proof; hence the other conditions of Lemma 5.1 provide a criterion for a
C.E. state to be a convex integral of Gibbs states.

Proof of Theorem 5.1. Let μ satisfy the assumptions of the theorem. Then so do the
components of its decomposition into extremal C.E. states. It thus suffices to prove
the theorem for μ extremal.

For any DcIRd, eelR, neΈ such that nd>2 let

RD(eMω)=^ J Λ ? j O*j>
a e qeDd p2<e~v(q\ωD

c)

= cά J d"dq \_σn\dp)\p\-K (5.4)
qeDd \p\=Ve~V

e-V(q\ωDc)>0

The interchange of integration and differentiation is justified since F, being upper
semicontinuous, is bounded below on compact sets.

For given /lCylC^ClR^ let

D = Λ\Λ and D =

The dependence of D on A will be supressed in this notation.
If, as we shall assume, Λ\Λ is wider than the range of the interaction then

The probability of finding (HΛ(ώ)9 NΛ(ώ)) in de x {n} with respect to

μ{dώ\&ΆΛGΛ)(ω)

is, for ne(2/d, ND{ω)-2/d\

(Norm)" ^de/nϊjRJe, n\ω)WDtA(e, n\ω) (5.5)

with

WD< Λ(e, n\ω) = (Nΰ(ω) -n)Γ 'R^H^ω) - e, Ns(ω) - n\ω). (5.6)
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We aim at showing that the hypotheses of Lemma 5.1 are satisfied. In order to
do so we need some estimates on the effects on the above distribution of changes in
e and n which are uniform in (large) A and Ά. These are provided by the following
monotonicity properties of the weight function W.

Claim 1. i) WDΛ(e,n\ω) is decreasing in e.
ii) 3c>0 such that for all ΛjΛ there is a sequence A^IR0 for which

rrD,Λ\11Λ\LU' >iy A

i) follows by inspection of Equation (5.4). ii) will now be proven.
Letting E = H^(ω) — e, M = Np(ω)~n and φ{q\q) = φ(q\q,(θDC\

i - i ^

'• Te f
EqeD

• ί ^ M d ί ί c
qeDM p2<e-V(q\ω)-p2~φ{q)

ddq\dάp\dMdq

1 J σ'

ί
M d / 2 - 1

(5.7)

The last inequality results from the additional restriction of the domain of
integration and from scaling p. The distribution of q,p in the last expression
corresponds to the microcanonical ensemble in D, < >μ>f;>ω, for M particles at the
energy E with the boundary condition ω. Using Equations (5.4) and (5.6) one may
express the normalization of the measure for q,p in Equation (5.7) by means of
WD Λ(e,n\ω). Thus, using |x|+ =max(0,x),

WDJe,n-l\ω)^WDJe9n\ω)

(M+1Γ1 I ifqjifp
dM/2-1

M,E,ω

1 -
Φ(qW)

\
d(M+ l ) / 2 - 1

1 J d"q\p\d

\ddx\\-x2\dM/2-

M,E,ω

Let k, y > 0. Using (twice) the inequality

\~z^e'2z VZG [0,1/2]

we obtain, for M ^ max {2γ/k, 2)

Et<o.
(5.8)
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(We remind the reader that /[C] is the characteristic function of the set on
which the condition c is satisfied.)

Let

YD(ω) = IlΣp2(ωD) > kND(ω)JND(ω) + 1)" ' f ddqllφ(q\ω) <y]
D

and

If iYD(ω)^max(27//c, 2) substituting n = NΛ(ω) e=HΛ(ω) in Equation (5.8) leads to

WDt Λ(HΛ{ω), NΛ(ω) -l\ω)^WDt Λ(HΛ(ω\ NΛ(ω)\ω)c(d, y, fc)

The functions gγ(ω) [Eq. (5.1)] and p(ω) [Eq. (5.2)] are measurable with respect
to Gm and therefore constant a.e. for the extremal C.E. state μ. Therefore
3y,/c,(5>0 such that MA, A, Ac A,

IlΣp2(ωD)>kND(ω)~] - ^

lim inf (ND{ω) + 1)~1 j ddql[φ(q\q, ωDC) <y] ^2(5mod μ.

Thus, for this choice of k and y

l_iminfyD(ω)^2<5. (5.9)
^tπι d

Let

By Equation (5.9) IAD->0modμ. Therefore

^O as

Passing to a subsequence we obtain a sequence /L|lRd (which depends only on A, A)
for which the convergence is pointwise:

lim

Since

Urn inf ^D(ω) ̂  δ mod μ.
yl|]Rd

Thus

lim mi —^^— —- ———r— > c(d, y, k)o > ϋ m o d μ,
fa* WDtA{HA(ω%NΛ{ω)\ω) ~ V "h } μ*

proving Claim lii).
Let

e°Λ(n, ω) = inf {HΛ(ώ)\ώΛC = ωΛC, NΛ{ώ) = n).
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Since μ(-\GΛ)(ω) are given by the microcanonical ensembles, V,/ϊ

μ{ω\ωΛ3{(q,p)9(q9p)} such that p = 0,pή=0}=0.

Taking the limit Λ^IR0 and using the fact that by Equation (5.2), μ-a.e. ω includes a
particle with positive kinetic energy, we may conclude that the kinetic energy of
any particle in ω does not vanish (mod μ). Thus

NΛ(ω)>0 implies HΛ{ω)>e°Λ(N Λ{ω\ω)moάμ. (5.10)

In fact since, by Equation (5.3) the total kinetic energy is infinite, for μ-a.e. ω

HΛ(ω)>e°Λ(NΛ(ω)-lω) (5.11)

for all A large enough. (Here the fίniteness of the range of the potential was used.)
We shall now prove the following claim, from which the hypotheses of Lemma

5.1 follow directly.

Claim 2. For μ-a.e. ω the measure on IR x TL defined by the weak lim lim of the

distributions of (HΛ(ώ), NΛ(ώ)) in the states

is i) absolutely continuous on IRx {π>0},
ii) equivalent to the Lebesgue measure on

ie°Λ(NΛ(ojlω),HΛ(ωnx{NΛ(ω)},

iii) equivalent to the Lebesgue measure on

[e°( iV» -ί,ω), i f » ] x { i V » - 1}

for A such that Equation (5.11) is satisfied.
Let n>0. With respect to μ(dώ\&Λ\ΛG%)(ω) the distribution of HΛ(ώ) for

NΛ(ώ) = n is expressed in Equation (5.5) as a product oΐ RΛ(e,n\ω), whose support
is [e°(n, ω), oo), with monotone decreasing functions. This implies that the
measures obtained by multiplying these distributions by R^ 1(e, n\ω) are monotone
in the sense that the integrals of positive continuous functions with compact support
in {e%ny ω), oo) decrease when these functions are translated to the right. This
monotonicity is clearly preserved under limits.

Any locally finite measure σ on (e9 oo) which is monotone has support in some
interval (possibly empty) in which it is equivalent to the Lebesgue measure. To
prove this notice that it is implied by the concavity of the shifted distribution
functions

Fy{x) = sgn (x - y)σ{(x9 y)v(y9 x))

which follows from the monotonicity. Therefore, under μ( IL^Xω) the distribution
of HΛ for NΛ = n is of this form except for a possible additional point measure at
e°Λ(n,ω).

The limiting measures μ(-\LΛ)(ω) are obtained from μ by conditioning.
Therefore any property holds mod μ if and only if it holds almost surely for the
limiting measures for μ-a.e. ω.
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We shall now use this fact to prove each part of the claim,
i) Equation (5.10) implies that for any n > 0

Since with respect to these measures e%n, ) = e°(π, ω) the above mentioned
discrete component of the distribution of HΛ vanishes. This proves part i) of
Claim 2.

ii) Let eΛ{n, ω) be the right end point of the support of the energy distribution
on {NΛ = n} under μ( \LΛ)(ω). Thus for μ-a.e. ω

HΛ(ώ) S eA(NA(ώ\ ω) = eΛ(NΛ(ώ\ ώ)

for μ(dώ\LΛ)(ω)-a.Q. ώ. I.e.,

HΛ(ω) S eΛ(NΛ{co\ ω)mod μ

proving Part ii) of Claim 2.

iii) From Claim lii) and from Claim 2ii) we conclude that, modμ, 3c>0 and
A]lBLd such that

m* WDtΛ(e,n\a>)

for a.e. ee\_e°Λ{n,ω),eΛ{n,ω)\. Thus

Passing to the limit >4|IRd and using Claim 2ii), Part iii) of Claim 2 follows.
As remarked above the hypotheses of Lemma 5.1 follow from Claim 2. Thus

Theorem 5.1 is proven. •

6. Canonical Gibbs States

There are three classical ensembles. We have discussed conditions on states of
infinite systems which correspond to two of these. The following condition, which
was studied in [6,8], characterizes limits of canonical ensembles. It was this
condition which first motivated our interest in C.E. when it was proven [9, 12]
that it is equivalent to a type of dynamical stability.

Definition 6.Ϊ. For a given extensive (energy) function H, a state μ is a canonical
Gibbs state of inverse temperature β if for any A there is a Borel measurable
function bΛ:Zx Ω->R such that for μ-a.e. ω

μΛ{dξ\ω) = e ~ m ξ ^ + b^»Λ(ξ), ^y^dξ).

Remark 6.1. Clearly, any canonical Gibbs state is also a C.E. state. Notice,
however, that an extremal canonical Gibbs state need not be an extremal C.E.
state.
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Thus we may conclude from Theorem 5.1 that under the assumptions
appropriate a canonical Gibbs state is a convex combination of Gibbs states. In
fact, as may easily be seen, all the Gibbs states are of the same temperature.

A more powerful approach results from the observation that canonical Gibbs
states may be viewed as the C.E. states with respect to the single extensive quantity
N for the modified a priori measure obtained by replacing vΛ{dξ) by

expl-βH(ξ\ωAcy]vA{dξ)
The only property of v which was used is that it induces on the entropy

function the "quasi-extensiveness" expressed in Lemma 3.1. Since the above
modification of the a priori measure increases the entropy function by an extensive
quantity, Lemma 3.1 still holds.

Thus the arguments of Section 4 apply, and in fact the details simplify greatly
since in this case U—7L. The appropriate notion of looseness is that 3Λ and
such that

With this notion we obtain in place of Theorem 4.3:

Theorem 6.1. Every loose extremal canonical Gibbs state is a Gibbs state.

In place of Theorem 5.1 we obtain the following result which no longer
requires the presence of momentum degrees of freedom.

Theorem 6.2. For a finite range interaction, every unsaturated canonical Gibbs state
with an infinite number of particles is a convex combination of Gibbs states.

(N = oo automatically in C.E. states for translation invariant potentials.)

To prove this one need only establish looseness which in this case follows by a
greatly simplified version of the argument in Section 5. Let

ZΛ(n,ωΛC)= J vΛ(dξ)e-βH^ω^\
NΛ(ξ) = n

The basic required estimates are some positive lower bounds for

ZΛ{NΛ(ω) + 1, ωAC)/ZA(NA(ω), ωΛC)
A /Λ,ω

where < > ^ } is the expectation in the canonical ensemble in A with NΛ(ω)
particles and the boundary conditions ωΛc.

To establish looseness appropriate upper bounds would do as well. Thus one
proves

Theorem 6.3. For a finite range interaction coming from potentials which are either
1) positive or
2) hard core and bounded below

every canonical Gibbs state with a positive density is a convex combination of Gibbs
states.
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