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Abstract. We discuss iV-body kinematics and study the Berezin-Sigal equations
in configuration space. Assuming that the threshold of the continuous
spectrum is zero and that the pair potentials satisfy |F(x) |^C(l + jx|2)~ρ,
xeJR3, ρ > l (together with some technical hypotheses), we show that the
discrete spectrum of the hamiltonian in the center of mass system is finite. The
case of negative threshold will be treated in a further publication.

1. Introduction

The basic theorem on the quantum mechanical hamiltonian in the center of mass
system, due to Hunziker [5], van Winter [14], and Zhislin [19], states that under
suitable assumptions on the potentials the essential spectrum of this hamiltonian
consists of a half-line [μ, oo), μr^O, while the discrete spectrum lies below μ and its
only possible accumulation point is μ itself. This immediately suggests the
question of determining conditions for finiteness or infinitude of the discrete
spectrum. This problem has been attacked successfully by several authors under
various conditions on the potentials. Zhislin [19] has shown that atoms have
infinite discrete spectrum. Simon [12] proved that if the potentials decay as
\x\~2 + δ, (5^:0, at infinity then the discrete spectrum may be infinite. In the three
body case conditions for finiteness and/or infinitude have been obtained by
Combescure and Ginibre [3], Iorio [6], Yafaev [15-17]. The JV-body case was
analysed by Sigal [10], Yafaev [18], Simon [13] (using geometrical methods). In
this article we prove finiteness of the discrete spectrum in case μ = 0 for potentials
falling-off as \x\~2~δ, δ>0, (together with some technical assumptions see Section
5), using the Berezin-Sigal equations, and working entirely in configuration space.
The following notation and definitions will be used throughout this work. If 3£ and
ty are Banach spaces we denote by B{%, ?)) [resp. Bo{%, ?))] the set of all bounded
(resp. compact) operators from X to ?). In case 3£ = 9) we write simply B(X) and
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B0(X). If T is a closed operator in X we let Σ(T) and P(T) denote its spectrum and
resolvent set. If X is a Hubert space and T is self-adjoint we define the discrete
spectrum of T, denoted Σd(T), to be the set of all isolated eigenvalues of finite
multiplicity and the essential spectrum of T, denoted Σe(T) to be Σ(T)/Σd{T).
Operator norms will be denoted simply by | |. ||, and the letter C will represent
various positive constants whose precise values are of no interest. Integrals
without explicit domains of integration are to be taken over all of IR", where n will
be clear from the context.

2. iV-Body Kinematics

First we introduce some notation. By a cluster decomposition a with clusters
%>1,

cβ2, ...,%>^ we mean a partition of the set {1,2, ...,iV}, and we write
a = {^,^2,...,%}. We denote by s$ the set of all cluster decompositions and by
j / s the set of all cluster decompositions with 5 clusters. Small script letters are used
to denote the elements of srf and in particular the letter 6- is reserved for the
elements of £#N-V If ̂ , ^ e j / we say that a is contained in c and write a C c in case
.a can be obtained by breaking up one or more clusters of c. The symbol a Q c
means that either aCc or ,a = c. We also let # : J / - ^ Z + be defined by
# {a) — number of clusters in a.

Consider now a system of N particles with masses mf, position vectors X ,

interacting through pair potentials J ^ . G L 2 ( R 3 ) , Ϊ J G {1,2,..., N}. This system is

described by a total hamiltonian Hiot = Σ(2mi)~1ΔXt+YιVip acting in L2(R3 i V)

where the sums are taken over the set {1,2,..., JV}, ΔXι is the laplacian with respect
to the variable X and VVj is the operator of multiplication by Viβίi—X^ (we take
Planck's constant to be 1). Let x = (X1, ...5XN)eR3 i v

5 ^ = {^1?^2, . . . ^ J e ^ and
define:

Σ mi*i = 0}> V={xelΆ3N:X1=X2= ... =XN} (2.1)
i = 1 J

Ua=ίxeU: X mίX
r

i = O,r=l J 2 5 . . . ,5J ; (2.2)

^ = {xeI/:exists Y reR 3 w i t h X ; = Yr,ie%, r = l , . . . , s } . (2.3)

If ^g/^ we let {7j = ί7""nί7^. We introduce in R 3 i V the inner product,
JV

IX y] = Σ mt^i' \ where the dot denotes the ordinary dot product of R 3. From
i =z 1

now on we will always consider R3 i V with the structure provided by this inner
product. It is easy to see that U±V, UΛ±.UΛ, XJdLU%, ̂ Q^.WQ have ([11]):

Lemma (2.1). Let a and d be as above. Then
a) R 3 * =
b) U=Ό
c) U~=\

d) f; (2mί)-1zJXί = Ho(χ)l/ + l ® 7 ; H o - - 2 - 1 z 1 , T=-2

e) H1

0=H*®l^ ι

f) Hs=Ht®ii +
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where A, A\ zT, AΛ, Aa

d, denote the laplacian in L2(U\ L2{V\ L\V% L2(UJ,
L2(Ud) respectively, and 1, Γ, 1Λ, 1Λ, l j stand for the identity operators.

If P is the orthogonal projection onto U, we haveX ί -X / = (Px)i--(P:x;)/, xe!R3iV,

so that Htoi = H®Γ + 1®T, where H = H0+Σ Viy The operator T describes the
ί < j

uniform motion of the center of mass and its properties are well known. The

interesting part of iί t o t is H, which describes the internal structure of the system. If

we let V^= Σ Vvp where the symbol ]Γ
ίj t ij

indicates that the sum is taken over all ij belonging to the same cluster of a.
lϊ dQa, we let Vd denote the operator of multiplication by Vd in L2(U% and we
define Hd = H%+ V^ and Ha = Ha. We remark that the operators H%dQa, are all
self-adjoint, bounded from below, and have domains D(#2) = D(lϊg)([9]). We write
R%z) = (H%-z)-ί and observe that R%(z) = R%(z) = (H%-z)-1 for .destfN, and
H = H" for aestfv If Pa denotes the orthogonal projection onto Όa and if the
particles ij belong to the same cluster of ^, we have Xi~Xj = (P"x)i — (P^x)j.
Hence Rd = Rd®\d+ 1/®TJ, dQa, Finally, the following identity holds:

l. (2.4)

With the notation established above, the Hunziker-van Winter-Zhislin theo-
rem can be stated as follows (for a proof see [13]):

Theorem (2.2). Suppose FλeL2(IR3). Then Σe{H) = [μ, oo), μ - min {MΣ(Ha): 2
^ # ( ^ ) ^ i S Γ - l } = min{infΣ(JΪΛ):^6 ts/2}. Moreover, Σd{H) = Σ ( H ) n ( - oo,μ)
ϊίs on/y possible accumulation point is μ itself

3. The Berezin-Sigal Equations

The equations which we employ in the study of Σd(H) were first introduced by
Berezin [2] and extensively used by Sigal [9,10]. We assume for the time being
that Im(z)Φθ. Latter on [see Theorem (3.2)] we will extend our definitions for
zφlμ, oo). Let Θ be a total order in si extending the partial ordering defined by the
inclusion relation (for an explicit example of such an order relation see [9]), and
let aKJc denote the smallest element of si containing both ^ and c. The Berezin-
Sigal equations are defined by induction as follows: let a,desi, dQa, # ( ^ ) 5

# (d) ^ N — 1. If # (d) — N — 1, define:

From (2.4) we conclude that l"/J\-Ld(z) = (Hd — z)Fd(z) and also that
(1* + Ld(z))~ * eB(L2{[/")). Assume that we have defined Ufa) for all/C d and that
(la + Lfa))-1eB{L2{UΛ)). Then let,

ί _ * 1 d (12)

~ AT\ (3.3)
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where the product is taken in the order Θ. By (2.4) we (1Λ + VdRl(z))~ ι eB(L2{Ua)).
Therefore, {\~ + L%z))-ιeB{L2(UΛ)). Define:

LΛ(z) = L"a(z\ FΛ(z) = F:(z), G\z) = Gl{z), (3.4)

L(z) = LΛ(z), F(z) = F"(z), G(z) = G"(z) for ^ ε ^ . (3.5)

From (2.4) it follows that l" + L%z) = {H%-z)F%z) and we have:

G:(zΓ \1* + Ld{z)) = 1« + G%z)VfF%z). (3.6)

in order to use the Berezin-Sigal equations one must expand Ld{z) into
products of resolvents and potentials. In particular we need the following result to
prove that Σd(H) is finite in case μ = 0 :

Lemma (3.1). Ld(z) can be written as a linear combination of terms of the form

i = 1

The proof of this lemma can be found in [9] [note that the equations used
there are adjoints in L2(U^) of the ones used in the present work]. The main tool in
the analysis of the Berezin-Sigal equations is the following representation of R"{z),
c(La, in terms of spectral integrals (see Appendix 2):

Theorem (3.2). Suppose zφ[μ, GO). Then zeP(H^), CCΛ, and,

R*e(z)= ]E*(dξ)®Rτ*{z-ξ)= ]R\z-ξ)®ETa{dξ), (3.7)
0

where RTa(z) = (T" — z)~1 and E\ ETa denote the spectral families of Hc and T"
respectively. In particular the Berezin-Sigal equations hold for zφ\_μ, oo).

4. Properties of lζ(z) and Fa

d{z)—Case μ = 0

From now on we will assume that μ = 0 and that the potentials are short-range, i.e.,
| ^ / y ) | ^ C ( l + |)>|2Γρ, £ > 1 , zje{l,2,...,JV}. It should be noted that the results in
this work hold for potentials K0.(̂ ) = /(y)(l + | y | 2 Γ ρ

; /eL2(IR3) + Loo(IR3). We do
not prove this explicitly because it would lengthen considerably the present article
without introducing any new ideas. We will now define the function spaces in
which we,analyse the operators Ld{z) and Fd(z). Let stfN_1{a) = {£estfN__1 :όQa}>
# ( ^ ) ^ / V - l . If b = {(iJ)J(k),...,(n)}Gj^iV_1(^), we let q% denote the operator of
multiplication by q{Xt-X) in L2{U% where q{y) = (l + \y\2)~ρl2, yelR3. In parti-
cular we may write Vf = ff(q%)2

9 f^eL^iU^). Let || | | 0 ^ and (|)0<Λ denote the norm
and inner product of L2(U \ and define:

where H% = L2{UΛ), άe^Ή_λ{^\ g = (g^es,N.ίiΛ)eHa and the sums are over

Definition (4Λ). Let Sρ{U") be the set of all functions u = Q"g, geH^, provided
with the norm ||w||Λ = inf||#||g '.u = Q"g}9 and let S*(L/Λ) be the set of all complex
valued measurable functions υ such that |M|* = sup{||<^i;||OjΛ :^ej</iv_1} <oo.
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The spaces Sρ(UΛ) and S*{UΛ) are Banach spaces and it is easy to see that
Sρ(U"')CL2(Ua')CS*(U"'), the inclusions being continuous. Moreover if we let

ΓΛ(u,v)= \u{x)φήdx, ueSe(U")9 υeS*(Ua)9 (4.2)

it follows at once that \Γa{u,υ)\<L | |w |LN*, and also jΓΛ(u9ι;) = ( φ ) O f Λ if υeL2{Ua\
It is convenient to introduce the following definition:

Definition (4.2). Let D be an open set in R or C and let 36, ?) be Banach spaces. An
operator valued function zeD^Λ(z)e£(£,?)) is said to be WB (for well behaved)
in B(X, ?)) if it is uniformly bounded, uniformly continuous with respect to the
norm topology of B{X,ty). If in addition A(z)eBQ(X,^) we say that A(z) is CWB
(for compactly WB) in £(£,?)).

Theorem (4.3). Let όestfN_1(a). Then zφ[0, QO)H+L\Z) (resp. zφ[0,oo)^Fό{z)) is
CWB in B(SJJJΛ)) (resp. WB in B{Sβ(U"\ S*(U"))). Moreover, L\z) tends to zero in
the norm ofB(Sρ{Όδ) as Re(z)π> - oo.

Proof. By Definition (4.1) it is enough to show: z<£[0, oo)^/^i^(z)<^ is CWB in
B(L2{U*)) and tends to zero in norm as Re(z)π>-oo. Let ό = {(kj\ (m),...,(n)},
k<j. Identifying JJ6 with IR3 through the isomorphism ξ = Φβ(x)=Xk— Xp xeVf\
we see that M'X(z)4 has kernel Cf,(ξ)q{ξ)\ξ-η\~xeπp{-i)fi\ξ-n\)q{η\

Im(z)>0. Since ρ > l , ^2eLp(IR3)nL s(lR3), with p = (3/2)-δ, s = {3/2) + δ,
^e(0,3ρ —3). The CWB properties then follow by combining the Sobolev in-
equality ([8], p. 31) and the estimate |exp(iiz)-exp(iiz /)|^2 1" yi y |z-z /p, Im(z),
Im(z')^0, ye[0,1]. Since \\RQ(z)\\ ^IReίz)!" 1 for Re(z)<0 and f^qjeL°°(Us) we
are done. Q.E.D.

Theorem (4.4). Let # ( ^ ) < N - 1 . Then L%z)eB0{Sρ(Ua)\ z<£[0,oo) and tends to
zero in the norm of B(Sρ(U")) as Re(z)-» — oo.

Proof. The proof of compactness is long and technical and can be found in
Appendix 3. As for the second statement, it is enough to show that operators of the
form

k

i=ί

tend to zero in the norm of B(L2(Ua)). Since μ = 0, we have ||-R^(z)|| ̂ IRe(z)!" 1 for
c C a, Re(z) < 0, the result follows. Q.E.D.

Theorem (4.5). Let dQa, # ( ^ ) < J V - 1 , # ( ^ ) ^ i V - l , and assume that for all
/ C d we have: i) λe{- oo,0)^L^{λ) is WB in B(Sρ{U^)) (and therefore CWB by the
preceding theorem); ii) λe(- oo,0)ι->F^(A) is WB in B{Sρ{Uf\ S*(U^)); Hi)
0φΣL^{0). Then the map λe(-oo,0)^L*(λ) is WB in B{SQ(UΛ)\

Proof. It is enough to show that λe(— oo,0)t->fόq^
WB in B(L2(U*)). The proof of this fact with ^ e ^ [in which case
can be found in Appendix 4. If cφjtfN there are several cases:
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Case 1. £,£'Cc. By i), iii) and the preceding theorem, λe{— co,0)v-*{l + L£{λ))~λ is
WB in B(Sρ(U% Combining this with ii) and Theorem (3.2) we obtain,

= J f&F'iλ- ξ)(ί + L\λ-ξ)) ;
0

and the result follows in this case from Lemma (A.2.1) of Appendix 2.

Case 2. άQc, S1 §_c This follows from Case 1 and the resolvent equation R"(λ)
= R%{λ)-R%{λ)V*Rΐ(λ). Indeed, Vf= £ /,-(<# <)2 and we may write,

Case 3. όCc, 6' §.c. This case is similar to Case 2.

Case 4. S^c, & [c. Follows from Cases 2, 3 and the resolvent equation. Q.E.D.

Corollary (4.6). Suppose that the conditions of Theorem (4.5) are satisfied. Then
λe(-co,0)^G^(λy\ λe(-oo,0)^VjF*(λ) are WB in B(SQ(UΛ)) and
λe(-oo,0)^F*{λ) is WB in B{SQ{U% S*{Ua)).

Proof. This result follows by observing that V^eB{S*{U% Sρ(ί/Λ)), GJ(λ)" 1

= Π' (l* + Lfiλ)), F%λ)= Π IT (lΛ + L^(λ))(lΛ- VfRfiλ)), where the prime in-
fCd fed ΆCf

dicates that the product is taken in the inverse order of the order Θ, and by using
Definition (4.1), Theorem (4.5) and the results of Appendix 4. Q.E.D.

5. Finiteness of Σd(H)—Case μ = 0

We will now prove that Σd(H) is finite. Similar proofs have appeared in [3.10]. A
proof of the following lemma can be found in these references.

Lemma (5.1). Let λe(- oo,0)^A{λ)eB{X) be CWB and {λn}, {xn}, n=l,2,...,be

such that — xn = A(λn)xn, | |xn | | = l. Then there are subsequences {xnk}, {Kk

xeX such that x= lim x , —χ = A(0)x.
/ c > o o k/c-

Theorem (5.2). Suppose that ( - l)φΣLΛ(0), 2 ^ # (^)^iV- 1. Then Σd(H) is finite.

Proof. Assume that Σd{H) is infinite and define W=ΣqόMqό, H{t) = H + tW9 L{λ,t)
= L(λ) + tWF(λ\ where ίe[0, l ] , A<0, MeB0(L2(U)\ M = M*, M strictly positive,
qδ — q^, aeAv and the sum is taken over s$N_v It follows that l-\-L(λ,t)
= (H(t)-λ)F{λ) and that λe(- cc,0)^L{λ,t) is CWB in B(Sρ{U)). From Theorem
(2.2), the mini-max principle and the invariance of the essential spectrum under
relatively compact perturbations we conclude that Σe(H(t)) = Σe(H), Σd(H(t)) is
infinite and accumulates at zero. Using Lemma (5.1) twice we construct sequences
{OJA {<?„}, and φeSρ(U) such that -<pn = L(0,tn)φn9 φ = limφn9 | | φ j | ρ = l,
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-φ = L{0)φ. Hence, ( U ^ Γ ^ l +L(0))φn, F(0)φ) = Γ(l*rF(0)φll, F(0)φ), where

1 is defined in (4.2). But

0 = Γ((l + L(0))φ, F(0)φπ) - lim (F(λ)φJ(ff - λ)F(λ)φ)Q

= lim ((1 + L(λ))φ JF(A)φ)0 = F((l + L(0))^, F(0)φ).

Therefore, Γ(WF(0)φ,F(0)φ) = 0. Applying the definition of W, and Corollary (4.6),
we conclude that F(0)φ = 0. By (3.6), G{λ)τ1(l + L{λ))φ = φ-G(λyίVF(λ)φ,
V=V£, aestfv λ<0. Letting λ->0, we get φ = 0, a contradiction. Q.E.D.

Appendix 1. Structure of Ua in Terms of Relative Coordinates

Let ^ e ^ / consist of a cluster # with K particles, K ^ 2 and (N — K) one-particle
clusters. To simplify the notation we will write ^ = {^}. Let

k

-1 be such that a= \J ά y If K = 2 we must have a = δγ

= ... = δk. If K>2 we may assume that δ^δj if i+j because όuδ' = δ'\jδ for all
δ,δ'estfN_v Let δ1 = {(i1,i2)} and set δ\ = ^ l 5 J ( ^ /

1 ) = { ^ e ^ ^ f ^ } . This set must
be non-empty for otherwise a=ό'u a contradiction since K>2. Moreover there is a
δ = {(ίj)}eΆ(δ\) such that either z or j belongs to the set {zl5z2}. Otherwise every
element of J(^ x) must have the form {{Kn\...,(i1\(i2)} so that (zl5z2) will be a
cluster of ^, a contradiction because K > 2 and ^ has only one cluster with more
than one particle. Let 6'2 be the smallest such δ and note that the two particle
clusters of 6\ and δ'2 have exactly one particle, say z2, in common. Hence
^ 2 = {(i2,i3)} with i 3 e ^ and ό\uδ2 = {(i1,i2,i3)}. Moreover if k = 3 we must have
a = δ'1vδf

2. If X > 3 we set Q(δl

1,δ2) = {ά€$ \δ§_δ\\jδ2}. Arguments similar to
those used above show that there is a δ3e£(S'vό'2) with the property that two
particle cluster of δf

3 and the three particle cluster of δ\κjδ'2 have exactly one
particle, say z3, in common. Thus ^ 3 = {(z3,z4)}, z 4 e ^ and f>\\jS'2κjδ'3
= {(ίΊ,^,^,^)}. If K = 4 we must have a = δ'ί

{uδ2vδ3. Otherwise proceed as above
[i.e., define £(δ'vδ

f

29δ'3) and so on] until we exhaust the particles in cβ. In this way
we obtain the first part of the following lemma:

Lemma (A.I.I). Let a and $ be as above. Then k^K — 1 and there is a

subsequence δ\, δ'2i...,δ'κ_1 such that, όf-={{i , z'J + 1)}, ip ij+1e^, \J δ'm = {(i1,

z2,...,i j + 1)}, j = 1, 2,...,K — 1 and & = [J δ'm. Moreover the map,
m= 1

\ Φe.(x)=XSj-X
Sι,

where Sj = min{ij, ij+ j}, SJ = max{zJ ,zJ.+1} is απ isomorphism of Ua onto R 3 ( K~ 1 ) . Jn
particular Ua and L2(Ua) can be identified with R3 / ^ I R 3 ^ 1 ^

Proo/. Let x = (Y!,...,X^et/*. Then ^ mίnXίn = 0,^^-0, ϊ£#. Now, if ΦΛ(x) = 0,
« = l

we must have Xh=Xi2= ... =Xiκ. Taking this into the preceding equations we
conclude that x = 0. Q.E.D.
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N o w let ̂  = {^ lJ^2» »^ί»(/i)5 j(/r)}j where each cluster (βm contains Km

particles, Km^2, 1 rgm:§ί, ί^ 1 and the remaining clusters contain one particle

each. Let a,m = {<£m}. Then, #,= \J am and L/Λ= j ] © ί / Λ w . Let
ί WΪ = 1 m = 1

^ = { 1̂,̂ 2,...,̂ k} be such that ^ = (J ̂ .. Without loss of generality we may

assume that ^1£{ (^1} and that the elements of 38 are all distinct. Let
ggm = {j = {(ij)} ΆJe^J. It follows that 3Sm and J*m, are disjoint if mφm' and
am= \) S-. Applying Lemma (A.I.I) to each am we obtain subsequences

7̂'••• > ^κ m -i of ̂ m and isomorphisms Φarn: ί/Λm->IR3(li:m~1). Then Φ α = ^
ί m = 1

0 φ Λ m : ί/Λ-^R35, 5= £ (XTO-1) is an isomorphism of Ua onto IR3s. It

may be written as Φ- = {Φό?\ Φ,?{x)=XSj -Xs , sJm = min{i7 , ι™ },

Appendix 2. Spectral Integrals

Let Z be a Hubert space and F(ζ\ ξeIR a (right continuous) spectral family in Z. If
b

A : [α, oo)-+B(Z) is a function, we define \Λ(ξ)F(dξ) to be the norm limit of
a

Riemman-Stieltjes sums. The integral over [α, oo) is then defined as the strong limit
of integrals over [α, b~\ as b->co. In Theorem (3.2) we used the nota-
tion E%dξ)®Rτ:(z-ξ) = (l®Rτ«(z-ξ)){E\dξ)(g)l) and Rc{z-ξ)®Eτ:{dξ)
= (R\z-ξ)®\){l®Eτ:(dξ)\ It can be shown that,

Lemma (A.2.1). // A : [α, oo)->B(Z) is continuous, A{ζ)F(η) = F(η)A(ξ\ for all
oυ

ξ,ηe\_a, oo) and ||v4(ξ)||->0 a5 ξ->oo, ί/ien j A(ξ)F(<iξ) exists, the strong limit may be

replaced by norm limit and I A(ξ)F(dξ)

For a proof of this lemma, that of Theorem (3.2) and for further properties and
applications of spectral integrals see [1, 4, 6, 7].

Appendix 3. Compactness of La{z), zφ[0, oo)

By Lemma (3.1) and Definition (4.1) it is enough to show that any operator of the
form Q{z)fShq3]R"cu{z)qa

s belongs to B0{L\Ua)\ where

fc-l

GOO = Π fsfllK^t+1> £Jie^Ή-M,

i = 1

r 2 /Since zφ[0, oo)^fόq^R^(z)q^eB(L2{UΆ)\ S,ύΈj^N_ί(/z)9 c<Za, is analytic, it suf-
fices to show that Q(z) is compact for z = /leIR sufficiently negative ([12], Appendix
3). Let Nj(λ) = (ql ̂ ...q^Y1 RΛ

Cj{λ)ql t , • < • Then,

Q(λ) = foqiR'JXki • • • qt Π f,Nβ)• ( A 3 2 )
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Lemma (A.3.1). N°(A) = ( « ? J + 1 - 9 ? k ) " 1 « S W ^ + 1...«?I,eB(L2(i7-)) for λ<0, and
tends to zero in norm as λ-> — GO.

Proof. Let x,yeUa', ό={(i,k\(m),...,(ή)}ej^N_ί(cή. Using the triangle inequality
and the fact that the function we[0}OO)H»(1 + M 2 )(1+W)~ 2 is bounded with
bounded inverse it is easy to see that qQC^X^'1 <>{\ + [x-y~]2)Qq{Yi- Yk)~K
Using the notation and results of Appendix 1 we identify \Ja with R 3 s . Consider,

vKf) = ((9?,+ 1 . . . i ? f c ) " 1 e x p ( - i H S ) ^ j h l . . . 9 ^ X O , φeL2(JRis). (A.3.3)

T h e o p e r a t o r e x p ( — tHQ h a s k e r n e l g(ξ — η) = at~3sl2exp{ — βt~1\ξ — η\2), w h e r e
a,β are positive constants. Using the estimate for qiXf—X^'1, we obtain:

\ψ(ξ)\SCΓ3s<2$dη(l + \ξ-η\2Yg(ξ-η)\φ(η)\, (A.3.4)

where 7 is a positive integer larger or equal to ρ(k — j+1). Now, (1 + H2)y^( )
belongs to Z/fΈl35) for ί > 0 so that by Young's theorem on the convolution ([8], p.
28) we get \\ψ\\2^CΓ3s/2||(l + H 2 M )llilMI2> ί > 0 , where \\ \\p denotes the Π
norm. Using spherical coordinates and the binomial theorem it is easy to show
that ||(l + | |2)vSf( )lli^Cί3 s / 2w(ί)5 w(ί) a polynomial with positive coefficients.
Since,

00

R*(λ)=- Jdίexp(/lί)exp(-ίHg), A<0, (A.3.5)

it follows that ||JV9(λ)|| ^ C J dίexp(λί)w(ί). Q.E.D.
0

Lemma (A.3.2). There is a λj<0 such that Nj(λ)eB(L2(U")) for all λ^λj.

Proof. Since R"(λ) = R%(λ) — R"(λ)V"R%{λ) and V" is a bounded function, the
preceeding lemma implies that \\V^N^(λ)\\ g l for λ^λj9 for some λ.<Q. Thus,

Multiplying both sides by (^.4 x... # | k )~ x the lemma follows. Q.E.D.

Similar arguments show that,

• • • C ( ! + V;N\(λ)rι, (A.3.6)

for sufficiently negative. Thus to prove that Q(λ)eB0(L2(U^)) for λ sufficiently
negative it is enough to show that q%ίR%(λ)q%2...q%keB0(L2(U")\ λe{-oo,0). Let

k

a = {(βl9

<g2, . . .,^ f, OΊX . . . 5 0 V ) K ^ m b e a s i n Appendix 1. Recall that ^ = (J ^ and
i = 1

let ^n

m, j m = l,...,Xm—1 be the sequence constructed after the proof of Lemma
(A.I.I) (note that Sx =£\ by construction). Since q(y)^l, it suffices to prove that

) = q%R%{λ)q%i2 ...qϊKt_χεB0(L2(U*)). Identifying Ua with R 3 s we see that:

t R 3 s ) , (A.3.7)

where K^eL^lR38) ([8, p. 58, 59) is the resolvent kernel. Compactness then follows
from the next lemma. In order to state it let C^R") denote the set of continuous
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complex valued functions defined on IR" that vanish at infinity. It is well known
that such functions can be uniformly approximated by functions in C^(IRΠ)

Lemma (A.3.3). Let FeCJIR 3 ) , GeCJIR 3 *- 3 ) and SeL 1 ^ 3 *)- Let MF,MG

denote the operators of multiplication by F(ξ\) and
G ( ^ , . . . , ^ _1) in L2(lR3s). LetB = S*φ, φeL2(lR3 s). Then M F £ M G E £ ° ( L 2 ( I R 3 S ) ) .
Proof. It is easy to see that \\MFBMG\\^\\F\\JG\\JS\\V Thus if Fn, Gn, Sn,
n = l , 2 , . . . converging to F, G, S in L°°(IR3), L°°(R3 s"3), L 1 ^ 3 5 ) , the sequence
MFBnMGn converges to MFBMG in the norm of £(L2(IR3s)). Finally it is easy to see
that MFBnMGn is Hίlbert-Schmidt for all n since all functions involved have
compact support. Q.E.D.

Appendix 4. The Map λe(— oo,0)ι->/^JRoW>

We will show that this map is WB in B{L2{U*)). \ΪS = S\ it follows from Theorem
(3.2) that,

fMR&Xffl = ]MiRό

0(λ-ξ)qi®Eτ:(dξ). (A.4.1)
c

The result then follows Theorem (4.3) and Lemma (A.2.1). Now consider dή=ό\
and let d = όκjδ'. It follows that:

l ( d ξ ) . (A.4.2)
o

Using (A.3.6) with a replaced by d we see that it is enough to show,

J t f (A.4.3)
0

Case ί. The two particle clusters of S and &' have one particle in common. Let
^ = {(ij),(m),...,(n)} and b'= {(j,kl{mf), ...,{n')}. Then, if xeUd we have
miXi + mjKj + m X̂̂  = 0, X s = 0, 5 φ i, j , fe. Define,

J). (A.4.4)

Then XG(7^H^((,/7)G1R6 is an isomorphism and Xi—Xj = aζ + bη, α,
Consider:

where ot,β are positive constants and φeL2(IR6). Let v satisfy Ov
<min{l,(3-ρ)ρ~ 1 } and let p = 3-v. Then p>2 and qeL^ΊR3) since (3-v)ρ>3.
Choose r,s such that 2 ~ 1 + p " 1 = r ~ 1 , r " 1 4 - s " 1 = 1, s~ι +p~1=2~1 (note
that l ^ r ^ 2 ) . Using the Riesz-Thorin interpolation theorem ([8], p. 27), it is
easy to show that ψ(-,η) belongs to L2{W?ydξ) and \\ψ{',η)\\L2(dξ)
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^CΓ3"Ί\q\\2

p\\φ(-,η)\\L2m. Thus Hi/exp(-ί(tf$®l#«ί II ̂ C r 3 " . Since
Hd

0=Hs

0®if + \e®T/ we have:

from which (A.4.3) follows in this case.

Case 2. The two particle clusters of S and 6' have no particle in common. Let
^ = {(ίj),(m),...,(«)} and ά'= {{k,r\{m'\ ...,{n')} with {ij}, {fc,r} disjoint. If xeϊ/^
we have miXί + mjXj = mkXk + mrXr = O, Xs = 0, s#=ij,fc,r. Assuming without
loss of generality that ί<j, k<r we may write x = (0,...,Xi,...,Xj,0,...,0)

+ (0,...,0,XΛ,0,...,Xr,0,...,0). Note that the first vector in the right hand side
belongs to V6 while the second is in JJ*'. Also, it is easy to see that Uό 1. Ό6\ so that
\]d = ί/^0L/^', the direct sum being orthogonal. From Lemma (2.1) it follows that
Όd

6 = U*\ and we have,

t(H*0® l^))exp ( - t(l'®H''))qf. (A.4.5)

We start by estimating ^ e x p ( - ί(Ho® I*5'). Let ζ =X.—Xj9 η =Xk—Xr. Identifying
ί/̂  with IR6 through the isomorphism xeU^-^iζ.^eίR.6 we have:

φ(C, /f) = ( ^ exp ( - t{H*Q ® 1 *'))φ)(L η)

- α r 3/2q(ζ) f dζ'X(ζ - CXC, >y), φe L 2 (R 6 ),

where X(O = exp( — βt~x\ζ\2\ α, jβ>0. Since ρ > l there is a <5>0 such that
qeLp(WL3), p = 3-δ. Let p ' - i + p - 1 - ! . Then pf>3/2 and KeL^'(IR3). Using
Young's theorem on the convolution ([8], p. 28) in the variable ζ and then
integrating with respect to η we find | | t/; | | 2 ^Cί~ 3 / 2 | |X | | p , | |φ | | 2 . Using spherical
coordinates it follows easily that \\K\\p,^Ct3l2p so that | |^exp(-ί(if£®l*'))ll
^ C r 3 ( 1 - p ~ 1 ) 2 " \ Similarly, |]exp(- t{\h®H%))qi\\ g CΓ3{1~P~1)2"\ From (A.4.5)
we obtain \\q^QXQ(-t(H{))q^,\\ ̂ Cmin 1, ί-3^-^"1) which implies (A.4.3) in this
case. The proof is now complete.
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