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Abstract. Upper and lower bounds are proven for the speed of propagation of
general classes of physical signals in particle lattice models.

1. Introduction

Several years ago Lieb and Robinson proved a remarkable result [1] consisting of
an upper bound on certain commutators of operators in spin lattice models with
short range interactions. Specifically, they proved for any local operators A and B,
and with space (respectively time) translations denoted σx (respectively τt) that
\\\τt(A\ σx(B)~\\\ is O(exp [-K|ί|]) as |ί|->oo for some K>0 provided |x Ξ>K|ί | ,
where V is some finite velocity, dependent on the interaction. (A cleaner proof,
with simple formulas for Fand K is contained in the recent paper [2].)

It was noted in [1] that this result implies an upper bound on the speed of
propagation of "information" in such models, but no details were given on this
interpretation.

As an indication that there are latent difficulties in this interpretation, consider
the following general model of the propagation of "information" or "signals" in
any quasi-local dynamical system. Let ρ be a state, A and B local operators with
"support" near the origin and such that ρ(A*A) = 1. We interpret

S(x, t) = ρ(A *τtσx(B)A) - ρ(τtσx(B}) (1)

as the signal, measured near the position x at time t >0 by means of the observable
B, due to the disturbance localized near x = 0 and represented by the change
(effected approximately at time ί = 0) of the state ρ( ) to the state ρA( ) = ρ(A*Ά).
[The condition ρ(A*A) = l is just that ρA be a state.] S measures the difference
between the expected background, ρ(τtσx(B)), and the measured quantity,
ρ(A*τtσx(B)A). To show that signals travel only with speed less than Fit would be
necessary to show that 5(x, ί) is negligibly small for all \x\ > Vt. (In this paper we do
not analyze carefully the notion of "negligible" for simplicity we just assume a
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signal is negligible if and only if it is exponentially damped, i.e. if and only if S(x, t)
is O(exp[ — Kt]} as f-»oc for some K>0.) Next consider the following specific
example in a spin-^ lattice model. Let s{ be the /h spin component at lattice site x
and let τ{ be any Ising-type dynamics [3], so that τr(s^) = s^ for all x and ί. Let ρ be
the mixed ground state (ρ++ρ_)/2 where ρ±(s^)=±l for all x, and let
A=(I + s^)/21/2, B = 4 Then ρ(A*A) = 1 -S(x, ί) for all x, and all t>0. This would
seem to correspond to infinite transmission speed.

In this paper we will elaborate on the theme of signal transmission. We will
only consider signals 5(x, ί) of the general type (1) and an effort will be made to
avoid the contradictions of the above specific example.

We begin with a simple extension of the Lieb-Robinson commutator results to
"particle lattice models" [4], i.e. n-body Schrodinger mechanics but with the
physical space R^ replaced by the discrete space Z3. (The added degree of freedom,
particle momentum, of these models over the spin lattice models will be seen to be
relevant to the topic under study.) Then we consider classes of signals which are
generated in a physically reasonable manner. An upper bound on the maximal
possible speed of transmission of such signals is derived from the commutator
results. Finally, a lower bound on the maximal possible speed is calculated, and
compared with the upper bound.

2. Notation

Let Zv be the v-dimensional, infinite lattice {x = (x l5 . ..,x v) |xj = 0, ±1, ±2, ...}

(playing the role of physical space) with metric |x 2 = ]Γ χ2., and "basis vectors"
j = ι

ej = (δί(j), . ... <5V(/)), j= 1, 2, . . . ,v where δ k ( - ) is a Kronecker delta function. Define
Zp = {l,2, ...,p} (as an index for spin components) and for each 7 = !, 2, ... let X be
a copy of the Cartesian product ZvxZp=X. Let π:yeX-^y£Zv and
π\yξX^y£Zp be the canonical projections, and define Xn as the Cartesian

n

product X Xj, for n= 1, 2, . . . . Let H(n} be the complex Hubert space ^2(Xn\ and
7 = 1

H(n} the subspace of functions f(yl9 ...,yn) antisymmetric under permutations of

the v. Then define H(0} as C, and the Hubert space direct sum H= 0 H(n\ Now
n = 0

for each y in X we define the field operator a(y) on H by

where for g in H, gn denotes the component of g in H(n\ We note that a(y) has norm
one, and with its adjoint, a*(y\ satisfies the following relations for all y, y' in X:

where [^4, J3]± =AB±BA, and / is the identity operator on H. We define F as the
family of all finite subsets of X, partially ordered by inclusion, and for each W in F,
P(W] denotes the operator algebra of polynomials in /, a(y) and α*(j/), y and y' in
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W. [We make the special definition P0 ̂ P({0} x Zp).] Then we define the operator

algebra P= (J P(W) and its norm closure, 2ί. Space translations are effected by
WeF

the ^-automorphisms σx on 21, defined by σx[a(y,y)~]=a(y + x,y).
Next let Φ be any real function on X xX of the form Φ(y,y') = φ(y — y',y,y'\

such that

£ \φ(z,y,y')\<cQ for all y,y' .
zeZv

Then for m, h>0 define the function E on F by:

E(W) = Q, when the cardinality, |W|, of W is 0 or ^3.
The function E gives rise to the family of Hamiltonians, Hv=

P

indexed by Fin F, and of a limiting dynamics on 21, defined for each ,4 in 21 and t
in # [4] by the norm limits

τt(A) = lim exp (iHFί)A exp ( - iHvt) = lim τ^(A) . (2)
F-^X V-+X

We interpret m as the mass of the fermions and h as the unit of lattice spacing.
Then on every n-particle space H(n\ τt is the usual Schrodinger-Pauli dynamics for
a spin dependent 2-body interaction Φ but with Zv replacing R3 and thus a
difference operator replacing the Laplacian in the kinetic energy, and with h = l
[4].

In the remaining sections we will only consider those (short range) interactions
Φ for which; 1) there exists y>0 such that

π(W)3θ

where D(W)= sup \π(y)-π(y% and 2) Φ(X) is even for all x, i.e. α[Φ(WO] =
y.y'eW

for the ^-automorphism α of 21 defined by a.(a(y))= —a(y). For a general reference
on algebraic technique see [5].

3. Commutator Results

Proposition I. // A is in P0 and B in 21,
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Proof. The proof of (Proposition I [2]) is very easily adapted to this situation,
except for the expansion in matrix units, which can be accomplished as follows [6].
Let N^n-^yneX be any enumeration of X, and set

b"21=a*(yn), b"22=a*(yn)a(yn),

/?" — <
βjk-

m = 1

The £jk form a system of matrix units for P(Wn) where

Furthermore each E k is of the form + Y\ ^/L/cm> w^ere Y[° is the ordered product:

n

Π O
Cm = Cι<

It now follows from the properties of matrix units that

Lemma. Every A in P(Wn) has a unique expansion

and the c^ satisfy \c^

Since \\Φ\\y/y-*ao as y-^0 or oo, there exists 7M>0 such that 2| |Φ| | y/7 attains its
minimum, denoted Fφ, when γ = yM.

Corollary. If A and B are in P, A or B is even, and |x| = |x|(ί)^7|ί|/or some fixed
F>FΦ, then

as \t\-+co.

Proof. The proof follows easily using the above lemma, as in [2].

4. Signals; Upper Bounds

As noted in the introduction, we will only consider signals of the form

S(x, ί) - φ(A*τtσx(B)A) - ρ(τtσx(B))

for A and B in P and ρ(A*A) = L
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We first note the following general result.

Proposition II. For any signal with both A and B in P, A*A = I, and either A or B
even, Vφ is an upper bound on the speed of propagation.

Proof. Just note that i f A * A = I ,

Since |ρ(C4)|^||C||||,4||, the corollary implies the result.
As was demonstrated in the introduction, abstract models of signals can be

misleading therefore we consider the following "physical" examples. Let

and let the dynamics be the perturbation of some τt of type (2) described by

τf(C) -norm lim exp [_i(Hf + F(ί))]Cexp [ - i(Hf + F(ί))] ,
/-*00

where V(t) = V for 0 ̂  ί ̂  1 and 0 otherwise. Then by standard arguments
τf(C) = A*τ ί(C)A for ί>l, where ^4 is the unitary operator

A = I+ ]Γ ( — ί)n jds 1 ... j dsMτ5 ι(F)... τSn(F). (3)
n = 1 0 0

Since A is unitary, A*A —I. And although v4 is not in P, we have

|| g Σ }dS l... 7'^ X i |τJF)...τ S ; + ι(F)
«= 1 0 0 j = 1

l / f ! sup | |[Kτ t_Λ(B)]_|| .
O^s^ 1

Therefore we have

Proposition III. For any signal with A of the form (3) for V = V*, both V and B in P
and either V or B even, Vφ is an upper bound on the speed of propagation.

Another physical method to create signals is to inject at time t — 0 a particle of
wavefunction / into the system, i.e. take A — «*(/) = ]Γ α*(y)/(y) for / with

yεX

£ \f(y)\2 = 1. Note that in order that ρ(A*A) = l, it is here necessary to use only
ye*

such ρ that ρ(AA*) = ρ(a*(f)a(f)) = Q, in which case the disturbance can be thought
of as unitary since then ρA = ρA + A*, and A* + A is unitary. We thus have

Proposition IV. For a signal with A = a*(f), where ||/||2 = 1, ρ(α*(/)α(/)) = 0, B is
even, and both A and B are in P, Vφ is an upper bound on the speed of propagation.

5. Signals; Lower Bound

In this section we compute the actual speed of propagation of a certain signal (of
the type of Proposition IV) for any interaction Φ, thus giving a lower bound on the
maximal attainable propagation speed.
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Let B = α*(0, l)α(0, 1), A = α*(0, 1), ρ be the vacuum and Φ any interaction. Then

S(x, t) = ρ(a(0, l)τtσxίa*(Q, l)α(0, l)]α*(0, 1))

-ρ(τισ;c[α*(0,l)α(0,l)])

= ρ(fl(0, l)τ,[α*(x, l)φc, l)]α*(0, 1))

= |(exp[/zlί/2m](5(0ι l ))(x,l)|2,
v

where δ(0tl)(y) = δ 0 ( y ) δ ί ( y ) and zl is the operator on /2(X) defined as ^ F^2, where
7 = 1

(In other words we inject a particle at the origin in a given spin state, and look for
it at position x at time ί.) Since

(1/O^.exp (ir. y)f(y) = [(sin r .)/h] exp (ir - y)f(y)

and

— π

we have

[exp(^t/2m)(5(0>1)](y,y)

Γ Λ
= [l/(2π)v] j drexp -z(ί/2m)£

- π L j = l

= δ l ( y ) Π e x p ( ί t / 4 h 2 m ) I j / 2 π ,
7 = ι

where

π

— π

We distinguish two cases.

Case L Assume

y h ̂  ct ̂  0 for some fixed c > l/2mh (Aj)

and let 5 = sκ 4- i5/9 5R and Sj real. Extending /z to an entire function of 5, we have for

) = Jj - (ί/2h2m)sin (25Λ)[sinh (2s/)]/2s/

- (l/2m/ι)sin (25Λ)[si

Therefore if Oφs^O, ( i / S j ) l m h ( s ) > 0 . We may then choose Oφό>0 such that for
some K > 0, Im h(sR + iδ) ̂  Xί for all SR. By Cauchy's theorem, we may deform the
path of integration of Ij to the union of Γ1? Γ2, and Γ3 where

Γl is parametrized as s= —
Γ2 is parametrized as s = sR + ίδ, Q^sR^π,
Γ3 is parametrized as s = π — iSj, —δ^Sj^Q.
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Now I J ds exp ih(s) rg2πexp — Kt, and
h

<5
j ds exp z'fo(s) = j ίdw {exp i[( — π + iw)^. -h (f/4^2m)cos2iw]

Γ!uΓ3 0

— expi[(π + iw)>> . 4- (f/4/ι2w)cos2zw]}
δ

= 2ύn(y jU) § ίdw exp[ — y w + (iί/4/ι2m)cos2zw]
o

-0

since y^Z. In summary, if (Aj) holds, then \I. ^2πexp — Kt for some K>0, and so

S(x, ί) = |[exp(idί/2m)<5((U)](x, 1)|2 = O(exp - Kί) as ί-> oo .

Case II. Now assume

0 < t = hyj/c for some fixed c < l/2mh . ( AΠ)

Then there are four values of s in [ — π,π] such that fo'(s) = 0, i.e. such that sin 2s
= c/2mh we label them

— 3π/4<52< — π/2<0<s3 < π/4 < s4 < π/2 .

Extending ή(s) to an entire function of s = sR + isr, and using Cauchy's theorem, we
deform the path of integration of /_. into the union of eleven line segments as
follows. First we define

So = — π , SQ = — π 4- iδ ,

s^=π + iδ, s$ =π

= — k = 1,2,3,4,

where θί = Θ3 = 3π/4 and 02 = Θ4 = 5π/4. Here (5 is such that when we parametrize
the curves Γk,Γk by

k = 0, 1,2,3, 4,5,

fe = 0,l, 2,3,4

then lmh(s)^Kyj on all Γk, for some K>0.
By the same calculation as in Case I, we see that the integrals over Γ0 and Γ5

cancel, and that the integrals over all Γk are O(exp — Ky^. For s near s ί5 h(s)^h(sί)
+ h"(sί)(s — si)

2/2. We define c = mcos(2s1)/4ίι, and note that
= — cos(2s2)— — cos(2.s4). In this notation, /ι(sf) = ̂ .(s f -f c/c\ and
Elementary saddle point theory shows that

j ds exp ih(s) =-2 exp (iθk) exp [̂ -(̂  + c/cj]

Since s3 = s{ + π, s4 = s2 + π, if p7 is an odd (respectively even) integer, the integrals
over Γ1 and Γ3 cancel (respectively are equal) and over Γ2 and Γ4 cancel
(respectively are equal). We assume then that y is an even integer, and find that

-s
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(Note that since 0<s2 — s1 <π/2, sin[yj(ls2 — 51)]7^0 as 3^00.) Therefore if (AΠ)
holds, yj/2Ijτ4θ as y7 -*oo and so if (AΠ) holds for all 7, and all x are even integers,
tvS(x,t)AQ as t-»oo.

In summary, the given signal travels at the speed i/2mh.

6. Summary and Conclusion

In summary, we find that independently of the interaction, a signal can be
transmitted with speed i/2mh. On the other hand we note that the upper bound Vφ

computed in §4 is always at least as large as that of a free system, which is of the
order 100/m/ι. It would be of interest to know what a maximal attainable signal
speed is, even for a free system. As the operator representing particle velocity along
an axis has norm 1/mh this would seem a natural limit. Surprisingly, this cannot be
attained by a signal with £ = α*(0)α(0) and a local A of the form α*(/), since such
signals are merely finite sums of (finite translates of) the type computed in §4. The
"reason" for this is that the group velocity, for a packet of waves of the form

\dqg(q)Qxpi(q x — E(q)t) for g supported mainly near q = q0 , is given by — - .In

dE q = qo

the situation of §4, — - =(sin2q}/2mh, which has a maximum of l/2mh as
computed. ^

Another question raised by the above analysis is the special role played, in
disturbances of the form Q-+QA, by the condition A*A = L In particular, can a
"physical" signal be generated with A* A Φ/, in such a way as to violate the above
upper bound on signal speed? (The example in the introduction violates the upper
bound but does not seem physical, while Proposition IV concerns physical signals
with A*A=^I but respecting the upper bound.) Disturbances of the type Q-^QA in
quasi-local models have been routinely considered to be "local" (see e.g. [7]), so it
would certainly be of interest to further clarify their physical significance.
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