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Abstract. For any Feynman amplitude, where any subset of invariants and/or
squared masses is scaled by a real parameter λ going to zero or infinity, the
existence of an expansion in powers of λ and In/ is proved, and a method is
given for determining such an expansion. This is shown quite generally in
euclidean metric, whatever the external momenta (exceptional or not) and the
internal masses (vanishing or not) may be, and for some simple cases in
minkowskian metric, assuming only finiteness of the - eventually renormalized
- amplitude before scaling. The method uses what is called "Multiple Mellin
representation", the validity of which is related to a "generalized power-
counting" theorem.

I. Introduction

In this paper we give a mathematical method for studying the asymptotic
behaviour of Feynman amplitudes, that is integrals G(ak) corresponding to given
Feynman graphs. Notation {ak} represents the set of invariants Q[]p)2 built from
external momenta p, and of internal squared masses mr

2. By asymptotic behaviour
we mean an expansion in a real parameter λ scaling some αk,s, say {αm}, the other
ones, say {αj, remaining fixed. Conventionally we take λ as going to infinity, but
of course the method applies as well to the case of invariants or masses going to
zero, by dimensional argument :

, m , . (I.I)
A

We emphasize that our method is quite general, since it applies to any
asymptotic limit (any choice of the subset {αm}), for arbitrarily given external
momenta, generic or exceptional, and for arbitrary finite or vanishing masses. In
this paper we consider for simplicity only scalar particles with non-derivative
couplings. Then for any Feynman amplitude in Euclidean metric (and for some
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simple situations in Minkowskian metric), our main result is to establish the
following:

Theorem. G(λam, an) has an asymptotic expansion of the type:

- CO 3max(p)

G(Aαm,αn)= £ λ" £ In'λ gpq(am, αn), (1.2)
P = Pmax ^ q = 0

where p runs over the rational values of a decreasing arithmetic progression, with
Pmax as "leading power", and q, for a given p, runs over a finite number of non-
negative integer values.

Such a theorem was proved in the past by Weinberg [1] for a specific kind of
asymptotic behaviour: scaling by λ of all external momenta of a convergent
Euclidean amplitude then the asymptotic expansion (1.2) is such that p runs only
over integer values, and pmax is determined. Later Fink [2] found gmax(pmax), and
also, the theorem was extended to divergent renormalized amplitudes [3].

It was the search for a proof of the "power counting" rule in the case of a
general asymptotic limit which motivated our work. We went back to the essence
of the Bogoliubov-Parasiuk-Hepp renormalization theory, and abstracted from it
the notion of FINE polynomials (see Sect. II). Combining this with the use of the
multiple Mellin representation (see Sect. Ill), we were able to prove Theorem (1.2)
very generally, even in the cases where "naive" power counting does not work.

In the asymptotic problem s-+oo (Regge pole behaviour of four bodies
amplitudes) this theorem had not been established before. Several papers [4] deal
with the determination of pmax and gmax(pmax)

 and a general rule was given by
Zavyalov and Stepanov [5], though their proof relies on "naive" power counting
which is not a priori correct in this kind of asymptotic behaviour. For graphs
which occur in low orders of perturbation [6] or for "ladder" graphs [7],

^max<?maχ(pιτmχ) ^d ^QQu determined, but even in these cases the other coefficients

#Pmaχ<z were not a^ determined in an explicit way.
Another interesting asymptotic behaviour is the "infra-red" limit of a mass

going to zero. In quantum electrodynamics, the on mass-shell amplitudes develop
infrared singularities which must exponentiate by a mechanism described in a
classical paper by Yennie et al. [8], although no rigorous proof has been yet given
for infrared exponentiation and cancellation. Here again, the lack of rigor relies on
the fact that the power counting is not valid. More recently Cvitanovic and
Kinoshita [9] gave specific rules in the Feynman parameters space, and extracted
infrared divergencies by non-linear power counting methods, which can be made
rigorous and complete with the use of our present technique. Similarly, the
techniques of Grammer Yennie, and of de Rafael and Korthals-Altes [10], allow a
summation of infrared logarithms, which becomes rigorous once our Theorem
(1.2) is assumed, with pmax = 0 and qmax bounded by the number of photon lines.

The extension of such results to quantum chromodynamics [11] does not seem
to be completely understood yet, and we think that our method would also be
useful for its study.

Another application of the multiple Mellin representation is to justify the
various manipulations which have to be performed if we wish to compute the
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coefficients gpq. For a given asymptotic regime and for the most general graph
contributing to the leading power, the coefficients gpmaκq are then obtained as
integrals attached to subgraphs and reduced graphs, and geometric rules may be
given to construct them. These rules may later be used to explain and perform an
eventual summation of all logarithms which occur when we sum the contributions
to the leading power over all Feynman amplitudes of a vertex function. We
achieved such a program in the case of the scaling of all momenta [3, 12], using
only single Mellin transform. In the case s-»oo for four bodies amplitudes of φ3

field theory, using multiple Mellin techniques from this paper, we have rigorously
built the well-known Regge behaviour [13], and we are in process to extend the
same program to Regge pole behaviour in φ4 field theory.

Section II gives notations and general comments. The multiple Mellin
representation is given in Sect. Ill and the asymptotic expansion is determined in
Sect. IV, for any Feynman amplitude in Euclidean metric. The same results are
extended in Sect. V to the case of Minkowskian metric, for some simple situations,
and Sect. VI gives a short discussion and examples of application.

II. Notations and Comments

/. Parametric Representation and Mellin Transform

Given a Feynman graph, i is an index for internal lines, i = l , . . . , / , and L is the
number of independent loops. The corresponding amplitude in euclidean metric is
defined by the well-known parametric integral representation (see e.g. Ref. [9] and
other references therein):

oo I -j F(α k;αi)'

where D is the space-time dimension and U and V are the Symanzik polynomials:

C7(α,)= Σ ΓU (" 2)
l Γ i£l Γ

ί/(αf) is an homogeneous polynomial with degree L. The sum extends over all
different "one-trees" 1 T (connected subgraphs, without loop, linking all vertices
of the graph).

π *
iφ2 T

(113)

V(ak;ai) is an homogeneous polynomial with degree L+l, and real positive
coefficients ak = (^p)2,mf. The sum extends over all different "two trees" 2-T
(subgraphs without loop, with two connected components, linking all vertices of

the graph). / Σ P]2 *s tne invariant built by squaring the sum of the external
\2'T ]

momenta over one of the connected components of the two-tree (any one of them
equivalently, by momentum conservation).
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Introducing now the scaling parameter λ, V is split into two parts :

V(λam, an α f) = λW(am α f) -f jR(αn α f) (II.4)

and the behaviour of G(λam, an) for infinite λ is related to the vanishing of W(am α f)
when the α 's vanish. One way for exhibiting this relation is to take, if it exists, the
Mellin transform of G(λ) (see Ref. [3]), which is nothing but a Fourier-Laplace
transform in the variable In/:

oo co i Λ _R/ιγγ
M(x)= JdλA-'- 1G(λ) = Γ(-x)ί nd^-spe "(~) . (11.5}

0 0 i = 1 U \U I

To the expansion (1, 2) for G(Λ,) correspond meromorphic properties of M(x) :

and we are left with the extraction of poles from M(x), that is with the
desingularization of the last integral in (II. 5). Such a problem has been studied for
example in Ref. [14] by appropriate choice of local coordinates, but we shall
present in the next sections another method, which we think to be more adapted to
explicit computation, interpretation and future reorganization of the coefficients

9pq'

2. Repp's Sectors and "Simultaneous Taylor Series" Property

One can divide the α-integration domain into / ! "sectors" [15] by ordering the α's
in all possible ways. To a given permutation h = ( i 1 , ... ,^) of the lines I , . . . , /
corresponds the sector :

f Y . <C /γ. <C <C /y.
^ii =^12= '•' = u ciz

We choose in this sector new variables β. defined by :

Then the integration over βl can be made explicitly, because the integrands in (II. 1)
or (II. 5) have homogeneity properties, and the remaining integration domain is :
O g f t g l , ί=l,.. .J-l.

Definition. Given some polynomial f(α;), we call it FINE (essentially Factorized
IN Each sector) if in each sector the α-ordering induces one and only one
dominant monomial in P. Algebraically, in the β-variables, P takes the form :



Asymptotic Expansion of Feynman Amplitudes 141

where Q is a polynomial with Q(0, ... ,0)ΦO. For example α 1 +α 2 , α l α 2 -hoc 1 α 3

+ α2α3 are FINE polynomials. Conversely, α2 + α2α3 is not FINE as it can be seen
in the sector α 2 ^α t ^α3.

More generally, we speak of a FINE function if in each sector it may be written
as:

A)> (Π 7)

where the xf,s are arbitrary complex numbers and g(βi) has a simultaneous Taylor
expansion around 0, with non-vanishing constant term 0(0, . . . , 0) Φ 0. Arbitrary
products of complex powers of FINE functions are FINE functions.

It can be seen from theorems in Ref. [16] that a FINE function /(αf) has the
"simultaneous Taylor series" property : given an arbitrary nest Jf (set Jf of nested

subsets S of lines z), let us scale each αf by |~J ρs. Then there exist complex powers
Sai

zs such that f(ρs α ) = / J~J gsή/YΠfe0^ nas a simultaneous Taylor expansion

around 0 in the variables ρs.
In other words the behaviour of /(α ) around 0 is governed by its vanishing

when subsets of α-variables go to zero linearly: for a FINE function /(αf),
c

convergence or divergence of the integral J |~] d^f^) can be determined by naive
0 i

power-counting. For the same reason, eventual divergences in such an integral can
be removed by Taylor subtractions [16].

3. Desingularization of the Mellin Transform

Desingularization of M(x) in (II.5) is immediately achieved by the change of
variables α-»/J, provided that U and W are FINE polynomials. Now U is always
FINE for any graph: that is the reason why Hepp's sectors method works for ultra-
violet study of integral (Π.l). Also V and Wί = £ ]~[ oJ£/ή2 are FINE

2 Tiφ2 T \2 T I

polynomials in euclidean metric: for this reason, the problem of all masses going
to zero, in the euclidean case, may be solved in the sectors or by Taylor
subtractions [3].

In contrast, neither sums nor parts of FINE polynomials are generally FINE:
for many asymptotic problems, the W part of V is not FINE. As an example, V
becomes non-FINE for many graphs in quantum electrodynamics, if the photon
mass vanishes and if other terms cancel by electron mass-shell condition. Then, as
we said, ordinary power-counting becomes wrong: for this reason, in Ref. [9],
infrared divergences are explored by non-linear scalings such as αz ~l, ofj ~ρ,
αk~ρ2.

Such methods of exploration do not constitute a complete proof: to determine
an exact asymptotic behaviour, it is in general difficult to characterize the relevant
powers of the scaling parameter. We find more efficient to work in the sectors, and
to develop another technique explained in the following sections.
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III. Multiple Mellin Representation

With the previous notations, for a given Feynman graph (/ lines, L loops) we
have an amplitude:

and we simply assume the existence of this amplitude (before any asymptotic
limit), that is the convergence of the integral. The case of ultra-violet divergent
graphs will be mentioned at the end of this section.

We first divide V into pieces

M

j (ΠL2)

in such a way that :
All pieces Vj are FINE.
The part W of V which is scaled by λ in Sect. IV is a partial sum of F/s :

W= £ VJ9 (1113)
j=ι

M

R = Σ Vj (IΠ 4)
j = N+l

This is always possible : at worst, we may divide V into all its monomials. Actually
in many physical problems, the splitting of V may be much simpler : see examples
in Sect. VI. Even if V is FINE, W and R are generally not in the particular case
where W and R are separately FINE, no further splitting is needed and the method
should be equivalent to the simple Mellin transform method of Ref. [3].

Then we decompose G according to Heep's sectors :

G= Σ Gh. (IΠ.5)
fc=l

In a given sector /i, under α— »β change of variables:

a".?)

Because U and Vj are homogeneous and FINE, Li and ntj are non-negative
integers, u and v are polynomials in /?1? . . . , βl_ l with real positive coefficients and
non-vanishing constant terms. Since 0^/^rg 1, u and each v have upper and lower
strictly positive bounds. Performing the homogeneity integration over βl9 we
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obtain :

143

Σ »j Π fi
(III.8)

where ω = / — D/2L, ωi = i~\-(ω — D/2)Lt are integers or half integers. If F is a FINE
polynomial, it has in sector /z a dominant piece l/v Thus convergence of Gh means
ωf — ωnίjh>ΰ, z — 1, . . . , / — 1. We effectively recover this condition later. But in the
following (having in mind the case of minkowskian metric where V may be non-
FINE for exceptional masses or momenta) we consider V as an arbitrary
polynomial with positive coefficients.

Using the identity [17] :

Γ(x)(A

valid for Rex>0, Re,4>0, Re£>0, -Rex<σ<0, we get:

ι-\M

ί Π
* 7 J = 1 i= 1

where

t, ris a short notation for

(III.10)

The problem now is to interchange integrations. This is valid when absolute
convergence is verified. But taking the modulus of the integrand we get :

*'-1^, ί Π \Γ(-z})\, (IΠ.11)

where

nijσj.

Since Γ( — z^ is analytic for
llmz-HI^I, [18]:

lim
"

and decreases exponentially with

(111.12)

the last integral is convergent. So is the first one in (III.ll) if we can satisfy the
supplementary conditions :

M

7 = 1

π,.-^U,>0 (111.13)
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for i = 1,..., /— 1. Let us define the convex domain:

σ.= -ω; σ.<0, j = l,...,

ω

(III. 14)

Thus, if Dh is not empty, absolute convergence is ensured and we may write what
we call MM (Multiple Mellin) - representation of integral (III.8):

Gh= j M(z)
σeDh

(111.15)

with

/ M

*,)=Π
\ 7 = 1

M

1 / / - 1

z;) ί Π Π

ω

(111.16)

(In the special case where F is FINE and ωf — ωn^ > 0, Dh is not empty since it
contains points σ with all σ slightly smaller than 0, except σjh taken slightly larger
than — ω.) More generally Dh gives a geometrical way to study convergence: if Dh

is not empty, Gh is finite, and actually independent on the choosen point σ in Dh, as
can be seen by Cauchy theorem, since M(z7 ) is analytic in this domain.

But we prove in Appendix A the converse assertion: convergence of integral
(III.8), which is implied by the existence of the Feynman amplitude before scaling,
is sufficient to prove that Dh is not empty. Therefore we may write an absolutely
convergent MM-representation in each sector for any finite euclidean Feynman
amplitude. We shall see in the following section how this representation induces an
asymptotic expansion in the scaling parameter.

Remark on Ultra-violet Divergent Graphs

The case where zeros of U induce ultra-violet divergences can be reduced to the
convergent case along the following lines: in the α-parametric integral repre-
sentation, these divergences are renormalized by Taylor subtractions. But the
remainder of the Taylor expansion may be written as in [16]:

(l-τ-)/W=ί^-l ζ

,^€

« + μ + 1

(III. 17)

By regrouping the nests which belong to the same equivalence class as
explained in Ref. [16], we obtain in each sector and for each equivalence class, a
finite sum of convergent integrals which are exactly of the same type as in (III.8),
provided that the various ^-variables are simply renamed as supplementary
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jS-variables. Thus we have again an MM-representation, with only some un-
essential new features: the number of β-variables becomes larger, and the splitting

M
into FINE pieces £ vj f] β"lj has to be performed only after renormalization. In

j = l i

the following we keep the notations corresponding to the convergent case.

IV. Asymptotic Expansion

Starting with the MM-representation (III. 15), if we now scale some invariants
and/or masses by λ we get:

N

Gh(λ)= J λ&ZjM(z}) (IV. 1)
σeDh

M

with M(ZJ) given in (111.16), where uω~DI2 Y[ v** has a simultaneous Taylor
7 = 1

expansion in the /Fs, with non-vanishing constant term. When Rez = σeDΛ, M(z3)
is analytical and the integral is absolutely convergent. So we may give a first
bound:

GΛ(λ)< Const'λph + ε, (IV.2)

where ε is positive and arbitrarily small, and

Ph = Infi>r (IV 3)
Dh j=i

Actually ph is always finite since in Dh:

N M

£ σj=-ω- £ σj>-ω.
7=1 j=N+l

We note that ph is rational, as given by intersection of hyperplanes with rational
coefficients.

Next we perform an analytic continuation of M(z-) up to points z' where
N J

ψ0(σf) = Σ σ'j~Ph becomes negative. Let us relabel the bounds of Dh by:
7 = 1

Dh{σ\\pv(σ)>Q,v=l,...,M + /-!}, (IV.4)

where the complete list of t/\'s, in the space of independent variables σ t, . . . ,σ M _ 1 ?

is:

φ v(σ)=-σ v, v = l,...,M-l

ψv(σ) Ξ σ 1 + . . . + σ M _ 1 + ω , v = M

M-l

Ψv(σ}= Σ (nij-niM)
7 = 1
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Of course several φv's may be identical. Each singularity — — may be easily
Ψv(Z)

isolated in the integrand :

— for v = l,...,M by Γ( -*_,.)= -- Γ(-Zj+l),

— for v = M + ί by integrating over βt with the first-order term in the Taylor
expansion of uω~D/2 Y[vZjj. The integrand M(z) becomes:

m:} αv 51

where M'(z) is now analytical in a bigger domain :

N

But since ψ0(σ)= ]Γ σj~Ph *s positive in DΛ and vanish only on its bound, it must
j = ι

be a linear form which belongs to the convex space generated by the φv's there
exist (generally not unique) non-negative dv's, with :

M + l- 1

Ψ0= Σ <-W (IV.6)
v= 1

Thus

For a given term in this sum, if there still exist non-negative coefficients d'v, such
that:

Ψo^ Σ rf>V' (IV.8)
v ' Φ v

it means that ψ0(σ] remains positive in the bigger domain :

ίφ»+l>0

and we write :

This procedure is repeated again and again, until we obtain :

M + /-1 ι ^ i

where each £ is a subset of {1, . . . ,MH-/— 1} such that φ0 does not belong to the
convex space generated by the subset {ψv, veE}, which means that ψ0(σ) becomes
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negative somewhere in the domain DE :

(IV.ll)

In such a way we decompose the MM-representation as :

Gh(λ) = ̂ cEGhE(λ) (IV. 12)

where ME(z) is now analytical in DE and

Inf Σ^ = Ph-^ (IV 14)

^E being a strictly positive rational number.
By Cauchy theorem, we may displace the integration path up to a point σ' in DE

where

N

Σ 0-}=p*-
j = l

This gives :

with:

1—77 ί rqE~qME(z), (IV.16)

where F7 is the differential operator along any direction crossing the plane φ0(z) — 0
in the positive direction, and :

HhE(λ) = j λ^ + ** qε

l

+ ME(z) < Const^ λp»-"* + ε. (IV. 1 7)
σ' Ψθ (Z)

Therefore the "leading-power" part of the expansion in the sector h is

determined. In the same way we can extract all singularities — — - - from M(z),

and similarly determine the complete asymptotic expansion.
It may be noticed that the leading term of this expansion is :

where

,= Σ T
Sectors/i such iϊsυch jίmax ' σeDE

that ph = Pmax that qE = gmaχ ψ0(z) = 0
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is a sum of positive terms: no cancellation between different terms in a sector, nor
between different sectors, can occur for the leading behaviour of G(λ) (except in the
case of ultra-violet divergent graphs, where differentiations respective to new
variables ξ may introduce negative terms).

V. Feynman Amplitudes in Minkowskian Metric

For physical amplitudes with minkowskian metric, each propagator is written as :

1 7 , .
ζjf — /rr-Hε o

and integral representation (II. 1) is replaced by:

G = l i m f Πdα.yljβ-'Ji'1^ (V.I)
ε-*0 o / = ! U

with (II. 3) replaced by:

, (v.2)
2 T\iφ2 T

where now the invariants /]Γ p\2 are Lorentz invariants and Fhas no positivity

property. As before, we split the scaled W-part and the unsealed K-part of V into
FINE pieces V , j = 1, ..., M. Integrating again over βl in each sector h we get:

with:

(V.3)

V \
we know that L <Infπ- since — never becomes infinite . A particularly simple
. . j u . (

situation emerges if all pieces V do not vanish for non-vanishing α's, and have the
same common sign (as an example, it is actually true for on mass-shell vertex
graphs in quantum electrodynamics : see § 6, Sect. VI). In this case indeed, after
/^-integration is performed, we may interchange the order of limit and in-
tegrations, and write :

(V.4)
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where u and [i;^ again have upper and lower strictly positive real bounds. One way
to check such an assertion, along the lines of our paper, is shown in Appendix B.
Thus we are left again with an euclidean problem which may be handled exactly
like before.

In any case, we could attribute the Mth part of ε to each iV and write:

1 /I- 1 \ M

Gh = lim Π Π βf'-tdβλu"-012! Π (Γ(-zW), (V.5)
t-»0 o \ i = l / σ 7 = 1

where

δ l~l δ
A.= -- iViT\βϊj, R e ^/=T7>° and Aί is FINE.J M Y=ι J M J

For strictly positive ε, δ remains positive and each |arg Aj is bounded by a value

Absolute convergence is verified again and we may write an
MM-representation :

M

0 \ i = l

This form however is not yet satisfactory since we cannot take ε = 0 in each A in
order to exhibit relevant singularities. We must study carefully the absolute
convergence of integrals like :

[A\
in the limit arg — -> ± π. This convergence can be deduced from integrations by

\BJ
parts, isolating threshold singularities. But we leave for a later paper a more
complete study of this problem.

VI. Discussion and Examples of Applications

1.

First we note that the MM-representation (IV. 1) can be used directly to find an
asymptotic behaviour in λ when /t-»0. Indeed it is sufficient to work like in Sect.
IV, but with

N

p -Sup X σ.. (VI. 1)
Dh j = l

The result is of course an expansion with increasing rational powers of λ,
starting from pmin, and integer powers of Inλ Actually, since each Dh is a non-
empty open domain,

p'h>ph. (VI.2)
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This ensures the existence of a simple Mellin transform (Π.5) for each Gh(λ). But
G(λ) itself has a simple Mellin transform only i f :

Examples of direct applications of the techniques exposed in this paper are given
in §§6 and 7. These applications are performed in Hepp's sectors. Theoretically, we
give one way to compute the coefficients gpq of the asymptotic expansion (1.2). But
this method is rather lengthy: one first divides into / ! sectors, then one has to study
the relative positions of the hyperplanes ιpv(σ) = 0 and to determine the convex
polyhedron Dh. Finally one must find ph and decompose ιp0 into convex linear
combinations of tpv's as many times as needed. Hopefully, for a given asymptotic
problem, especially for the leading power terms, all these operations turn out to be
simple, due to topological properties of Feynman graphs. Moreover in some cases,
it can be sufficient to obtain results on the powers in the expansion, and then to use
differential equations and symmetry properties, in order to sum the logarithms
without computing explicitly their coefficients.

On the other hand, in order to interpret the coefficients and eventually to sum
over all graphs the logarithms of the leading power terms, it would be better to
express the coefficients in terms of subgraphs and reduced graphs. This is generally
not apparent when the coefficients are computed in the sectors: it would be useful
to have at one's disposal a formalism working directly in the α-space repre-
sentation, as it is the case with simple Mellin transform. Then one could obtain
general results on the various problems mentioned in the introduction.

Thus, more important are the indirect applications, where our method justify
certain manipulations of the α-integrals in order to compute gpq in terms of
Feynman-like integrals attached to subgraphs and reduced graphs. Such appli-
cations are commented in §§3 and 4.

3. Large Momenta Behaviour in φ4 Field Theory

Given a graph G of φ4 field theory and its Feynman amplitude IG(p, m). We scale
all external momenta p by λ and we look for the coefficients gpmaκq of the
asymptotic expansion when λ->oo. Such a problem was solved in Ref. [3]. It was
shown there that the polynomials in α which determine the asymptotic behaviour
are FINE, and consequently the single Mellin transform was sufficient to prove
Theorem (1.2). The Mellin transform MG(x) is meromorphic with multiple poles at
integer values Ω, Ω — 2, Ω — 4,... (Ω is the superficial degree of divergence of the
graph G). It was shown that there exists an operator R which acts directly on the
α-variables, and which analytically continues MG(x) beyond the first pole and
extracts in the α-variables all the structure of the residue at x = Ω. We give here the
result for non-exceptional momenta in Euclidean space:

dq?+δ

where δ= + 1 if Ώg:0 and 0 otherwise.
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In (VI.4) we sum over all (possibly empty) forests ̂  of q& divergent gen-
eralized vertices different from G itself. The functions β and y, and the
numerical coefficient χ^ may be found in Ref. [3]. It is important to note that
these functions are attached to reduced graphs [β~\^ (and [G]^) obtained by
shrinking into points all the elements of J^ inside S (and G). The factorization
property observed in the result (VI.4) explains the infinite summation of loga-
rithms over all graphs of a vertex function [12] and reconstructs a solution to
the homogeneous Callan-Symanzik differential equation [19].

4. Large s Behaviour of Four- Bodies Amplitudes in φ3 Field Theory

Given an essentially planar graph G of the four point vertex function in φ3 field
theory, that is a graph the Feynman amplitude of which is only a function of s and
ί. We wish to determine the large s behaviour at fixed t. It is shown in Ref. [13]
that the polynomial in α which determines the asymptotic regime is not FINE. The
consequence is that a priori the R operator used in §3 does not desingularize the
single Mellin transform around the leading pole. This is why the example of §7 is
performed in the sectors. We are presently working on the construction of a new
operator acting in the α-variables space which should be able to desingularize the
single Mellin transform even when the polynomial is not FINE. A detailed
knowledge of multiple Mellin transform techniques is needed for such a con-
struction. Fortunately, as we show in Ref. [13], for a large class of amplitudes in
φ3 field theory, and especially for all leading amplitudes (behaviour in s"1 up to
logarithms), the convex polyhedrons described in Sect. IV are such that despite the
non-FINE character of the polynomial, the R operator does desingularize the single
Mellin transform. If we decompose the graph G in two particles irreducible kernels
JV f in the ί-channel, the leading graphs are found to be those graphs in which at least
one kernel Nt is a single rung. If G contains r kernels Nt which are single rungs and if
J is a non-empty subset of these r kernels with v(J) single rungs, we have proved that

The function M[G/J] is defined in Ref. [13] and is attached to the reduced graph
obtained from G when the v(J) single rungs are shrinked into v(J) points. This
function factorizes into several parts and such a factorization as well as the general
structure given in (VI. 5) is the cause for a possible summation of all Ins over all

/ s \<x(t,m,g)

leading graphs to give a behaviour of the form /?(f,w,0) — where α(ί, w,0)

and β(t,m9g) are known as power series and described in Ref. [13].
A similar program is now in the process of being performed by us for φ4 field

theory.

5. Technical Comments on the General Method in Hepp's Sectors

We now turn to the cases where the jR operator does not desingularize the single
Mellin transform expressed in the α-variables, as is the case for instance in the on
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mass-shell infrared limit of quantum electrodynamics or quantum chromody-
namics. Presently, we have not yet found the algorithm in the α-variables which
replaces the R operator and we are condemned to work in the sectors.

For any Feynman amplitude, in a sector h(akί^ak2^ ... ^ak) the last ( / — I )
linear forms ψv, v — M + ί, are the powers of βi in Mh(z) (see Sect. IV):

where ntj is the factorized power of β. in VJ9 ω = z+ I ω -- L, , Lί is the factorized

power of βi in U. Thus ntj and L are also the degrees of vanishing of V and U
when αkι, ... ,α fcι go to zero linearly. Let us call St the subgraph formed by the lines
k ! , . . . , & - . Then, the problem is to find nested subgraphs S{ such that the
corresponding linear forms ιpv, together with the linear forms ( — z;.), generate ψ0

with positive coefficients : we call such a set of S/s a "leading nest".
With this notation, the determination of the leading power term, in the

asymptotic expansion, amounts to the research of the leading nests which are
subsets of the same nest (corresponding to a given sector). Finally, one has to find
how many times one can remove one St in each leading nest, until one reaches
minimal leading nests (leading nests not containing smaller leading nests): the
number of such removals gives the maximal power of In λ.

6. Infra-Red Limit for Electron- Photon Vertex

As we said in the introduction, this problem has been studied by many authors [8-
10], but the general result is not rigorously proved, due to the non-validity of
power counting. We shall present elsewhere [20] our own results and proofs : the
purpose of this paragraph is simply to illustrate our method by the examples of
graphs in Figs. 1 and 2. We simplify again by considering only spinless particles

2

with squared masses m2 ("electron" lines) and — ("photon" lines). The external
Λ

electron lines are on their mass-shell: pl^pi^m2, q2 = (pl — p2)
2<^ Then for the

graph in Fig. 1 :

3

Π/*i 3

'

Fig. 1. Pi ] P2
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Fig. 2.

Fig. 3. Γ-S

with:

L/ = α 1 +α 2 + α3

W = q2oc2K3-m2(a2 + a3)
2

We are in the simple situation treated in Sect. V since F is a sum of negative
monomials. Furthermore W and R are FINE polynomials. Thus a straightforward
application of our technique allows to recover quickly the very well known result:

where η is positive and A = — i f -
-2

Let us consider now the graph given in Fig. 2. For this graph :
ω = l — 2L is equal to the number of photon lines.
R= —μ2(o>l -f ... -f αω)^ is a FINE polynomial, but W is no more FINE.
Among the properties of the ^-function for a graph Γ in Q.E.D., let us note the

following ones :
i) If i is a photon line :

where Γ— {i} is the graph obtained by removing the line i from Γ, Γ/{i} is the
graph obtained by reducing the line i to a point.

ii) If S is a chain of electron lines linked to an external vertex as in Fig. 3, and if
the external electron is on its mass-shell, p2 = m2:

WΓ=WΓ_S, (VI.9)

where Γ — S is obtained by removing the chain S from Γ.
Using these two identities, we decompose W into ω FINE pieces :
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Fig. 4.

Λ
Fig. 5.

where Γ is given in Fig. 4 and obtained by:
- removing the photon lines z = 1,... J— 1,
- removing then the external electron chains,
- reducing to a point the photon line i =j.
Again each Wj is a FINE polynomial with only negative coefficients, and we

recover the simple situation of Sect. V.
With this splitting of W for the graph of Fig. 2, we determined all leading nests

[20]. The leading power is pmax = 0 (only logarithmic divergences). As an example,
the leading nest giving the highest power of In λ is given in Fig. 5. It contributes to
the leading term in the asymptotic expansion:

ωl
(VI. 11)

where A is the same quantity as given in (VI.7): this is not surprising since we
expect exponentiation of infrared divergencies. But the application of such
methods to the whole set of vertex graphs will give, in our opinion, the first
rigorous proof of these old results.

7. Example of Infinite Energy Limit

As another illustration of our method, we indicate here how to find the s->oo
behaviour of the particular graph given in Fig. 6: one may verify that R is FINE,

Fig. 6.
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and W may be split into N = 4 FINE pieces

4

W = s X Vj (VI. 12)
j = ι

with

KL = α1α5(α2 + α3 + α4)(α6 + α7 + α8)

where the lines are numbered as in Fig. 6. One of the leading terms of the
expansion in s is found in the sector: α t ^α2 ^α3 rg ... ^α10 and the relevant linear
forms come from subgraphs S{ for z = 1, . . . , 8 :

The minimal leading nests are :

with the notations of §5, and we find for the amplitude an expansion:

ln4s). (VI. 13)

In the same way, one could rigorously extract the complete expansion.
Actually for this graph, the partial result (VI. 13) was already known and may be
found for instance in a paper by Tiktopoulos [4].
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Appendix A

Let Gh be an integral like (III.

M I-I lα

Σ>jΠ/η
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where ω, ωf are strictly positive integers or half-integers,
nt are arbitrary non-negative integers,
u, Vj have upper and lower strictly positive real bounds.

Definition. We call "generalized power-counting condition" the following
property :

for any choice of real r-'s, r ^O, i= 1, . . . , / — 1, the r 's being not all vanishing. (The
naive power counting is only for r f = 0 or 1.)

Theorem. T/?e following three propositions are equivalent :
1) Gh is a convergent integral.
2) The generalized power-counting condition is true.

3) Domain Dh= <σ
M M ,

σ,= —ω; σ,<0; V n. , L σ >0> is not empty.
J J £—J \ LJ f.^ i J I

7 = 1

Proof. First we know that 3) implies 1) as shown in Sect. Ill by the MM-
representation. Furthermore it is clear that 1) implies 2): we may take new
variables by β. = yr

t

l for any subset of variables then convergence of Gh implies at
least superficial convergence of the sub-integration over y-variables.

Finally we achieve the proof by showing that 2) implies 3). Let us introduce the
notations:

- closed first "quadrant": Q = {» iΦθ|r ί^O, i=l , . . . , /-1} ;
- open last "quadrant": —Q = {ίφO|ί ί<0,ι = l , . . . , / — 1 }

- open convex cone: C = < α φ O | there exist τ,>0 with α/= Σ\na L ' T ;

( * / = 1 \ ω

^ / ω- closed dual of C: C' = <! 5 φ 0
ί = ι V ω

l-l

Σ si\nij L -° for every L

We have also: C = open dual of C = < a Φ 0 for any seC">.
i= 1

Proposition 2) means that C r^Q is empty. Thus by Hahn-Banach lemma, there
exists a plane separating these two convex closed cones : there exists u such that

for any seC", which implies w e C ;
i= 1
l-l

Σ wz^ί<0 for any reβ, which implies UE — Q.
i= 1

Now since ( — β)nC is not empty, there exist τ^O with

or with σ = — τ :

M

7 = 1 \ (0,
M

and the last condition, Σ σι= ~ω' ̂ s realized by global normalization.
7 = 1
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Appendix B

Let G be a Feynman integral in minkowskian metric:

G = lim G(ε)
ε-»0

(B.I)

0 \ i = l

with G - £ GH and Gh = lim GΛ(ε).

Theorem. Lei ws assume that G(ε) 0nd G exz'sί (for ultra-violet divergent graphs, we
assume that Gft(ε) and G^ exist for all h, after renormalization). If there exists a
splitting of V into FINE pieces ]/., such that:

no Vj vanishes for non-vanishing α's,
- all VjS keep the same common sign,

then we may interchange in each sector the limit ε->0 and the β'-integrations.

Proof. In each sector, we have an integral like (V.3), where the different terms in
the denominator take values not in the half but only in a quarter of the complex

TC
plane, due to the common sign of the F^'s. By factorizing elθ, θ = ± —, we write:

ΓT ω-DI2

/ - I

* ~ ' β Σ l » j Π #

Now each term in the denominator has a phase equal to ± —: we may write an

absolutely convergent MM-representation with M -f 1 pieces, and simply use our
method for the particular limit ε->0. The MM-representation of Gh(ε) is valid in the
domain:

M + l

Σ <τ,.= -ω; ffj<Q, j=ί,...,M +

where by convention rtίMJrl=Li. Therefore Gh(ε) has an asymptotic expansion
with powers of Inε and increasing powers of ε when ε-»0. Furthermore, in the case
of ultra-violet convergent graphs, no cancellation occurs for the leading term, as
remarked at the end of Sect. IV. Now the existence of a non-vanishing amplitude,
in the limit ε-*0, implies: pmm = 0; 4max(pmin) = 0 that is:

Gh(fi)= 9OQ + °(Rη)' n Positive. (B.3)

But ψ0(z)= —z
M

J = l

M is a singularity effectively present in Γ( — z

For the absence of Inε in the leading term, it must be a simple polar variety : ψ0(z)
no more belongs to the convex space generated by the φv(z)'s, vΦM-f 1. In other
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words, there must exist points σ in:

ωi
ω

which expresses nothing but convergence of the integral (V.4). Moreover g00 in
(B.3) is given by (IV.18) and equal to the integral (V.4).
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