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Abstract. We prove the existence of the limit Gibbs state for one-dimensional
continuous quantum fermion systems with non-hard-core, non-negative, rap-
idly decreasing pair interaction potentials. Existence of the limit Gibbs state is
also established for one-dimensional continuous quantum boson systems with
pair interaction potentials as above which, in addition, increase sufficiently fast
at small distances.

0. Introduction

The mathematically rigorous theory of phase transitions in systems with infinitely
many degrees of freedom [1-3] is now developped in the main for the class of spin
systems (see, e.g., [4, 5] and references there). The case of continuous systems,
particularly, of continuous quantum systems (c.q.s.) is more difficult. Even
fundamental physical notions such as those of time evolution and equilibrium
states have yet no satisfactory definitions, except a number of exactly solvable
models [3, 6]. One of principal difficulties is that the Hamiltonians of c.q.s. in
bounded domains are unbounded operators.

The main method for studying the c.q.s. is now the Wiener integral repre-
sentation based on the Feynman-Kac formula and used first by Ginibre [7]. This
method allows one to exploit an analogy between classical and quantum systems
and to investigate dilute quantum gases [7] and one-dimensional c.q.s. [8]. In
particular, in [8] we considered the case of one-dimensional c.q.s. with a hard-
core, long-range interaction between particles.

The present paper deals with several types of one-dimensional c.q.s. where the
particles interact via a non-hard-core long-range interaction potential which is
non-negative and rapidly decreasing. We establish here the existence of the limit
Gibbs state in the infinite volume. Its properties such as regularity (cluster
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property), etc., which illustrate the absence of phase transitions will be proved in a
separate paper.

Notice that c.q.s. have, in general, some properties which are surprising from
the point of view of a "traditional folklore". In particular, even such model as the
one-dimensional free boson c.q.s. may exhibit a phase transition [9]. This suggests
the detailed study of "simple" classes of c.q.s. where the physical arguments lead to
the hypothesis about the absence of phase transitions.

The method of the paper is analogous to that used earlier in the case of one-
dimensional classical systems [10]. The main step in the proof is a transfer matrix
formalism (see Section 8) combined with some preliminary estimations (Sections
5-7).

In the Appendix we briefly sketch generalizations of the results to some other
classes of one-dimensional c.q.s.

In the second part of the introduction, let us fix the interaction of particles we
consider. Denote R}.=(0,oo) and £!j.=[0,oo). Suppose Φ:R1

+-+Ri

+ is a
C°-functίon, possibly having a singularity at the origin1.

We shall impose the following conditions :
a) there exist d^O and a monotonic function ψ :£ + -»£ + such that

lim e*rψ(r) = 0 for every α > 0, and Φ(r) ̂  ψ(r) provided r > d,

b) there exist <f>0, a>\ and a monotonic function ιp~:R\-*R\ such that

$ιp~(a(2tlnlnl/t)1/2)dt=ao, and Φ(r)^t/f(r) provided r<d~.
o

Condition b) is used only for the boson case. The more strong condition is
sufficient for b): for some ε>0 and ά\ >0

Let A be a bounded interval of jR1. As usually, we consider the n-particle
Schrodinger operators Hn(A) in L2(Λn) :

HQ(Λ) = 0 , HΛΛ) = - l/2d2/dx2 ,
(0.1)

Hn(Λ) = - 1/2 d2/dx2 + Σ *(\Xi ~ Xj\) > n = 2, 3, . . . .
i = 1 1 ̂  ί < j i n

They are symmetric on natural domains in L2(Λn). We shall deal with the self-
adjoint extension Hn(Λ) oϊHn(Λ) which is given as follows. Consider the semigroup
of operators in L2(Λn) given by the kernels

(0.2)

see [7, (2.7)] whence the notations are taken. We take, as Hn(Λ), the generator of
this semigroup. It corresponds to the Dirichlet boundary conditions on dΛn 2

1 We exclude the case of non-zero hard cores considered in [8]
2 The extension of the results to other types of boundary conditions on dΛn will be given in the
second part of the work
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and, if Φ is "too singular" at the origin, on the diagonal part of An [as we shall see,
it is the case if Φ satisfies condition b) above]. See [7, Section 1.3] for connections
between (0.1) and (0.2).

1. Gibbs State in a Finite Volume

We adopt in the main the definitions and notations of [1, Chapter 1, 3, 5-7]. Let
00

ΩCR1 be a bounded Borel set (b.B.s.), Jfε(Ω)= 0 L2(An) be the Fock space of a

boson (ε= -f) or fermion (ε= —) c.q.s. in Ω, WΩ be the C*-algebra of bounded
operators in 34fε(Ω} and $Γ be the jB*-algebra of the infinite boson or fermion c.q.s.
in R1: W is the completition (in norm) of the inductive limit (or union, if one
prefers) 2Γ of WΩ. Let {τα, αe^R1} be the group of space translations acting on 2Γ.

Given a bounded interval /1C.R1, we denote HE}n(A) = PE>nHn(A)PBin where the
operator Hn(A) is introducted in the preceding section, and Pε n: L2(An)-*L2(An) is
the "canonical" projection. Let βeR\ and μeR1 consider the positive operator

co

00

then Eε

β μ(A) is of trace class, and Ξε

β μ Λ = tr^ε(Λ}E
ε

β μ(A).
The Gibbs state of the c.q.s. in A is given by

, ε , (1.1)

where ^ f μ f y l = (S^μ^)-1£^μϊ(Λ).

Proposition 1.1. Let Φ satisfy conditions a) and b) above for ε= -f and condition a)
above for ε= — . Γ/zβπ /or any βe#^ anrf μeR1, Ξε

β μ Λ<oo and the RHS o/(l.l)
defines a state of WΛ.

The proof of Proposition 1.1 is carried out in Section 3. It is convenient to
consider Gjj μ Λ as the state of the C*-algebra W using the "canonical" inclusion
WΛ ^$P. If Ω C A, then the restriction of Gε

β μ Λ to 51̂  is given by a positive trace
class operator g^Λ in JTε(Ω) with tr^e(β)^ιyl = 1 :

(1.2)

It is not hard to check that, with the "canonical" identification
\Ω} (see [1, Section 7.1]),

The operator gε

β'
Ω

μ Λ being of trace class is given by its kernel Qε

β

Ω

μ Λ:
Γ oo ' '

x (J Ωm -^C1 [Ω° consists of the unique element (vacuum)]. Namely, if

/= Θ /»> fn^Ll(Qn\ then g^tAf= 0 /„, where
n = 0 ιι = 0

oo

= 0 Ω
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Actually, in our case, ρε

β'
Ω

μ A(xn,ym) takes only real values and vanishes for
(see [7, Sections 1.3 and 2.1]). Hence, we deal with a function

'β°Λ U

2. Results

In what follows we always suppose that Φ satisfies the conditions of Proposition
1.1 and do not specify this every time again. Let Λ-+R1 denote the set of finite
intervals A C R1 directed by inclusion. The main results of the present work are the
two following theorems :

Theorem 1. Let AeW. For any βeR\. and μeR1 there exists the limit

The limit state GE

β /ί:^ίε-^C1 is locally normal and invariant under action of the
group {τ^aeR1}.

Theorem 2. The states Gε

β μ are extremal points of the set of locally normal states
invariant under action of {τα,αe JR

1}.

In this section we give a sketch of the proof of the both theorems. The first (and
main) step in the proof of Theorem 1 is

Theorem 3. For any b.B.s. ΩcR1 the operators g£βΩ

μ>Λ converge to a limit g^Ω

μ as
A-tR1 in the Hilbert-Schmidt norm in J

HS-Jm^^^. (2.1)

The operator gε

β'
Ω

μ is non-negative and of trace class with tr^ε(Ω)#0 ^ = 1.

It follows from Theorem 3 and from Lemma 1 of [11] that the operators gε

β\
Ω

μίΛ

converge to the limit gε^Ω

μ in the trace norm in J^ε(Ω). Hence, for every Ae$lε there
exists the limit (2.1), and for Ae^lε

Ω, Gε

β μ(A) = tΐ^ε(Ω)g
ε

β'
Ω

μA. This implies the
convergence of G ε

β f μ f Λ ( A ) for any A&W.
The invariance property of G^ μ follows from the relation

πε,Ω_ ε,Ω + a
—

r πε,_ ε, a
τa9β,μ — 9β,μ j

where Ω + a={xeRί :x — aeΩ} and gε

β'
Ω

μ,g
εβΩ

μ

 + a are considered as elements
To prove Theorem 2, it suffices to verify that

of 3Γ.

(2.3)

in the case ε=~ , we can consider _/4 1 ? J ί4 2e2I e~ e n [1, Sections 6.3 and 7.1].
Moreover, in both cases it is sufficient to take Aί,A2EW. Let Ωί,Ω2cR1 be b.B.s.,
and ae R{ be chosen so that Ω l Γ Λ ( Ω 2 + a) = 0. Denote Ω(a) = Ωl u(Ω2 + a).
Let the operator gε

β'
Ω(a) correspond to gεβ'Ωμ

(a) by the identification
^(Ω^c-^ίΩ!)® Jfε(Ω2). It is not hard to check that Equation (2.3) for Ate^
(9Iβι>even for ε= ~ ), i= 1,2, follows from

1im ||?ίε,β(α) ε,Ωiχ~\ ε,Ω2\\ _ A
(J,1^ "9β,μ ~9β,μ ^9β,μ ! l

t r-
U '
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or, due to Lemma 1 of [11], from the corresponding Hubert-Schmidt norm
convergence.

Summarizing what is said above, we formulate

Theorem 4. i) For any aeR1 and b.B.s. ΩcR1 the operators gε

β'
Ω

μ obey (2.4).
ii) For any b.B.s. Ω1 and Ω2

lim ||^ε'^(fl)_ nε>Ωl(χ}nε>Ω2\\ — 0 (Ί 4Ϊ
|Λ|"io "»/ϊ,μ yβ,μ ^yβ,μ "HS — u vz ;̂

In Sections 3-8 we prove Theorem 3. The proof of Theorem 4 will be
completed in the next paper.

3. The Ginibre Representation

The analysis of gεgΩ

μ Λ is based on the representation of the kernels ρε

β'
Ω

μ Λ in terms
of Wiener integrals used by Ginibre [7]3. We will use (with little changes) the
notation system and definitions of [7]. For brevity, we omit, whenever it is
possible, the indices /?, μ, and ε.

At first, let ε = -f (bosons). Ξ^ introduced in Section 1 has a general
representation [7, (2.33)]. As we shall show, condition b) imposed on Φ allows us
to simplify this representation and reduce, in a sense, the Bose statistics to the
Maxwell-Boltzmann one.

Proposition 3.1. Ξ^ obeys the representation [7, (2.16)] :

where [/L] is the collection of the finite families of simple (time length β) closed
loops starting in Λ, n(Y) is the number of loops ωeY and the measure dY is given by

Proof. Repeating the arguments of [7, pp. 358-361] which lead at [7, (2.31)-
(2.33)], one has to show that non-trivial permutations π give the zero contribution
in the final result [7, (2.33)]. In fact, the problem is to prove that, given x 1,x 2eR 1,

β
xί=£x2, the equality u(ωl9ω2)= §Φ(\ωί(t) — ω2(t)\)dt=ao holds for a.a. pairs

o
(ω l 9ω2) of the simple trajectories with ω1(0) = ω2(j8) = x1, ω1(β) = ω2(0) = x2 w.r.t.
the measure dPβ

x χ (04) x dPβ

X2 Xl(ω2). Since ω(ί) = ω1(ί) — ω2(ί) also forms the
β

Wiener process, one has simply to show that j Φ(\ω(t)\)dt = oo for a.a. ω w.r.t. the
measure dPβ_x x. °

Every trajectory ω with ω(0)= — x, ω(β) = x passes through the origin (one-
dimensional case!). We use the fact that the (random) moment ί0 of the first
passage through the origin is a Markov moment and the Wiener process is strictly
markovian (see, e.g., [12, Chapter 1, Section 4]). As a consequence, we have that,

3 Formally speaking, singular potentials in one dimension are excluded from consideration in [7],
see condition A) in [7, p. 346]. However, the formula [7, (2.7)] [(0.2) of Section 0] and all others related
to the Wiener integral structure (particularly, those leading at [7, (2.31)-(2.33)]) keep the sense for our
case and are used without making such a reservation every time again
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given the value f0e(0,/J), the (conditional) probability distribution for the piece of
the trajectory (ω(ί)|£e(ί0,/?)) is merely given by the measure dPβ

0~^°. Hence, the
β-to

problem is reduced to the proof that j Φ(\ω(t)\)dt= oo for a.a. ω w.r.t. the
measure dPβ

Q~^°. °
Now we use the loglog low for the Wiener motion: for (Pξ^0) — a.a. ω,

lim sup (2r In In l/ΐ)~1/2\ω(t)\ = l ([13, Chapter 6, Section 4, Theorem 4]).

Substituting t/f instead of Φ and a(2tlnlnl/t}ί/2, a> 1, instead of |ω(ί)|, we arrive at
condition b). This completes the proof.

Next pass to ε= — (fermions). For this case we also modify formula [7, (2.33)].
Given 7, a finite family of simple closed loops, we set: α°.(Y) — 0 if there exists a
pair ω,ωΈ7, ωφω', with inf \ω(i) — ω'(t)\=Q9 and α°(Y) = l, otherwise.

Proposition 3.2. Ξ^ obeys the following representation :

where, as above, dY is given by [7, (2.12) and (2.13)].

Proof. Let Sn(Λ) denote the n-dimensional symplex {xn = (x1,...,xn)eΛn:xί^...
^xj. The mapping T n : f e L 2 _ ( Λ n ) ^ > n l ( f \ S n ( Λ ) ) e L 2 ( S n ( Λ ) ) is an isometry.
Consider the self-adjoint operator H(Sn(A)) in L2(Sn(Λ}) given by the RHS of (0.1)
with the Dirichlet boundary conditions on dSn(Λ). It is not hard to check that

)) = TnH.tn(Λ)T*. Hence,

Sn(Λ)

Now (3.1b) is obtained by the summation procedure and a simple change of
notations.

We are now prepared to prove Proposition 1.1.

Proof of Proposition ϊ.L Since α°_ ^1, for the both cases ε= ±, Ξε

A is less then or
equal to the RHS of [7, (2.16)]. Since ΦΞgO, the functional U is also non-negative.
Then [7, (2.17)] (with B = 0) gives:

which is finite for all βeR\ and μeK1. Q.E.D.
It is convenient to introduce the "fictitious" functional α+ = 1. Then we can

write the unique formula for ε = + :

(3.1)

Let ΩcΛbe ab.B.s; the kernels ΞΩ

Λ(x\yn\ x\yneQ\ n = 0, 1, ..., are defined by4

n [Λ\Ω] [x",y"]<

°(Z, 7) exp [ - U(X, Y) + βμn( 7)] . (3.2)

4 In what follows we shall use the notation [6>] for denoting the space of the finite sets of simple

closed loops ω starting in Θ for arbitrary b.B.s. ΘcR1
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Here π < = π < (5c", y") is a permutation of n'th order satisfying the condition: xi

^Xj=>yπ<ί^yπ<j, l^ij' = w? ^Λ and [^">Pn]< is tne collection of families X
= (ω1? ...,ωM) of simple (time length β) trajectories with ωi(0) = xί, ωi(β) = yπ<i, and
finally, ώ: = dPgWj7C<?n(X).

Proposition 3.3. The following representation holds:

~Ω(—n ~n\ _ /77 \ — 1 ^Ω/— n —n\ f j o\g^v* ,y )— (&Λ) ^Λ(X >y )- ( j 3)
Proo/ We omit the detailized proof: (3.2) and (3.3) are analogous to [7, (2.10)-
(2.15)]. The change of the domain of integration Jdy([Λ\Ω] in (3.3) contrary to
[/I] in [7]) is caused by the difference of the traces in the definitions of our g^ and
of the RDM in [7]. The functional α° in (3.2) plays the same role as in (3.1).

Notice that the kernel (3.3) is a continuous function of 3c", yn. This follows
easely from (3.1) and (3.2) in view of properties of the Wiener measure and the
continuity of the function Φ. Hence, by the Mercer theorem,

It is useful to write down bounds for the kernels ρ^ (cf. [7, Section 2.1]):

\QΩ

Λ(X\ yn}\ g Ψ(x\ yn) - J dX eβ»n \
[ χ n , y n ] < nl

^^cS, n = 0,l,..., (3.4)

where c 0eP+ depends on j8 and μ. Moreover,
oo oo

Σ ί dx"dpniP(3cw,7)2<oo, Σ ί ^nιF(3c",3c")<oo. (3.5)
n = 0 Ωn XΩn n = Q Ωn

We conclude this Section by indicating two "Poissonian" properties of the
measure dY repeatedly used below. The first of them is identity [7, (2.14)], and the
second one is given by

^ dY,... I dYJ(Y^ ...,Yk)= ί dYf(Y«\...,Y<»), (3.6)
[ Λ i ] [An] •> [Λ]

k

where Λl,...,Λk are b.B.s., [J ΛS = Λ, /l n/l^φθ for iφj and Y(ί} is the part of Y
s= 1

including those loops ω which start in /t , l^ij '^fc. The integral in the LHS of
(3.6) will be denoted as J d(Y1? ..., 7fc).

[Λ]

4. Convergence of the Kernels ρ^

In this section we reduce Theorems 3 and 4 to statements about the kernels ρ .̂

Theorem 5. For any b.B.s. ΏC.R 1 and α/ί xn, ynεΩn, n = 0, 1, ..., ffeere βxί5ί5 ί/ie /imzί

lim ρ^(3c", pn) - ρΩ(3c", yn) (4.1)
Λ +Ri

for fixed Ω and n the convergence is uniform in xn,yneΩn,
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~ ~
The limit operator gΩ in Jf (Ω) is given by gΩf = @ fn, where /„ consides with

n = Q

the RHS of (1.3) where ρ^ *s replaced by the limit kernel QΩ.
Given aeR\ denote by άn

0 the vector (α, . . ., α)e K". Let Ω1 9 £22 C R1 be b.B.s. and
α be chosen so that Ω1n(Ω2 + α) = 0. Let ρβ(fl) denote the kernel of the operator
~Ω(a] in ^(Q^j^(Q2)t Clearly,

ρΩ(«>(x^, F2

2 y\\ y"2

2) = QΩ(a\^ΐ, ̂  + ̂  ί PΊ1, 72

2 + ^o2) ,

5c^eί2«>,n. = 0,l,. . . , z = l, 2. (4.2)

Theorem 6. i) For any b.B.s. ΩcR1 and aeR1 and for all 5c",y"eΩ", w = 0, 1, ...

ρΩ(x", p") - ρΩ + fl(5c" + ZΓ0, 7 + α"0) . (4.3)

ii) For any b.B.s. Ω 1 ,Ω 2 cK 1 απJ α// 3c^1, y" l6Ω?1, ^ = 0, 1, ...,i-l,2,

lim ρΩ(α)(3c^, 3c"2

2 7/, 72

2) - ρΩί(x%, yn^QΩ\xn

2\ yn

2

2) . (4.4)
α-^ oo

Theorem 3 follows from Theorem 5. In fact, the limit kernels ρβ(x", p") obey
(3.4) and, due to (3.5), the limit operators gΩ are of the Hubert-Schmidt class.
Moreover,

[ρ V, 7) - ρ«(x", y")]2 ^4^(x", y")2

and hence, by Theorem 5 and the Lebesque convergence theorem, (2.1) holds.
Clearly, gΩ is non-negative. Since the convergence in (4.1) is uniform, the limit

oo

kernel is continuous. By the Mercer theorem, tr^(β)0
Ω= ^ j dxnρΩ(xn, xn), and

n = 0 Ω"

hence, by the Lebesgue convergence theorem, tΐ^(Ω)g
Ω = l.

Similarly, Theorem 4 is a consequence of Theorem 6. The relation between the
statements i) of the both theorems is obvious, and now we explain how to get ii) of
Theorem 4 having ii) of Theorem 6. The kernel ρΩ(α) satisfies a bound analogous to
(3.4); its RHS is denoted as Ψ J^\\xn

2

2 \y\\y\2} . It is not hard to check that, for
fixed Ωz , x"1 and y"\ z=l ,2 , Ψa monotonically decreases w.r.t. a for α^α(0) (a(0)

depends on Ω1 ;Ώ2). Hence, for such a

[ρΩ(fl)(ά^, xn

2

2 Fi1, y"2

2} - ρΩl(x^, y'}1)^2^ F2

2)]2

^ 2 [^(oίxΐS x? Fi1, F2

2)2 + ̂ (xΐS Pϊ1)^^ ̂ 22)] -

The kernel Ψa(0) satisfies bound (3.5) as well as Ψ. Due to the Lebesgue
convergence theorem, (4.2) and (4.3) imply (2.4).

In Section 5-8 we give the proof of Theorem 5.

5. Preliminary Estimates

To be definite we suppose below that n ^ l in (4.1); the reader can repeat all
arguments for n = 0 without difficulties. We also can suppose without loss of
generality that xπ, yn in (4.1) are chosen so that π< is the identity permutation and
omit the index < in [3cn, y"] <. Our arguments will be applied to the both cases ε =
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+ simultaneously. Fix a b.B.s. ΩcR1 and denote y _ =infx, γ+ = supx, γ = l/2(y_
xeΩ xeΩ

+ y + ). Next fix t1,t2eR1

+. Let Λ = (a_,a+) be a bounded interval with

a_ ^y-(t1+t2\a + ^y + (tί +t2) (5.1)

consider the partition of A into four parts 5 :

a+). (5.2)

For brevity, denote: A# = Λ#( — )uΛ # ( + ), #=/,£. Elements of [/l#] i.e., finite
sets of simple closed loops starting in A# are denoted by 7#.

-
γ. γ γ+ /+(t 1 + t 2 )

ΛI(-)—^ k—ΛE(+)—

Fig. 1. The partition

Fix x\yneΩn and let

7,) + j8μw(yE)], (5.3)

SίiVi^yB) = ̂  ί d(YEΉ f dYa^(7E)
Π 1 [κ\β] fx",y n]

a°(Z, 77, 7£)exp[- l/(Y, 7,, YE) + β μn^) + β μn(YE)-] , (5.4)

and

The RHS of (5.3) and (5.4) differ from those of (3.1) and (3.2) in view of the absence

Lemma 5.1. There exist constants q1,c1,c2eR1

+ depending only on β and μ such
that6

whenever t1>q1.

Proof of Lemma 5.1. Our proof is similar to that of Lemma 2.1 in [14]. Clearly,
(Ξ^Γ^Ξ^L We claim that (Ξ(£ ΛΈ)~ l Ξ Λ^l - c\ exp(-c2^) where c^c2εR\

depend only on β and μ. In fact, replace [1 — αyl(7/)] by the sum £ [1 — αyl(ω)] in

5 The indices have the following meaning: / = "internal", E = "external"
6 The factor l/nl is omitted for brevity from the bounds we establish below
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the integrand for Ξ(^ΛE — ΞΛ. Using [7, (2.14)] we then have

Ξ^ΛE-ΞΛ^ JMil

exp[- [7(ω, Y/9

where \^ΛI~]ί is the set of simple closed loops ω with ω(0)e/L/? dω is given by [7,
(2.32)]. Since Φ^O, [/(ω, 7/5 Y£)^ [7(y/5 Y£), and the integral Jd(Y£, y,) is less than
or equal to Ξ^ΛE The integral jdω is estimated using the standard formula for the
probability of deviation of a Wiener trajectory (see, e.g., [13, Chapter VI, §5,
Corollary 2]) and does not exceed c\ exp( — c2tl). This gives the estimate claimed
above.

Take qγ so large that c\ exp( — c2ί^)^l/2. Then the inverse ratio (ΞΛ)~1Ξ(j[}

ΛE

^l + 2c /

1exp(-c 2fϊ) and the LHS of (5.6) is

where the second term is ^26^^ exp( — c2t\\ It remains to estimate the first term
in (5.7), i.e., the difference Ξ(^fE(x\yn}-ΞΩ

Λ(x\yn\ The arguments similar to those
used above give that it is less than or equals ncn

0c\ exp( — c2t\] (the factor n appears
in view of the bound l—aΛ(X,Yj)^ £ [1— αyl(ώ)]+ £ [1— αyl(ω)]). This gives
the assertion of Lemma 5.1. COEX ωeγι

6. Local Particle Number Bounds

For technical reasons we now assume that y, y±, and a+ are integers. The
arguments below may be easily extended to the general case. For the rest of the
paper we also choose ί2 to be of the form y + F(IP(c3lnF) + 3) where y = l/2(y +

— 7-X t^l is an integer, IP denotes the integer part, and c3=c3(/?,μ) will be
indicated in Section 8.

Every set (5.2) is divided into the unit intervals (jj+ 1) where; is an integer. We
denote them as ^#(± fc), k= 1,2,..., φ = /, E. The orJ^r of the numeration of the
unit intervals is different for different sets (5.2), and we will choose it in Section 7.

Given Ye [/I], denote by l(Y) the maximal deviation max sup \ώ(t) — ώ(0)|.
ωeY O ^ ί ^ / ?

Given y#e[Λ#], denote by Y # (±,fc) its "local" part consisting of loops ωeY #

starting in zl # (±,/c):

y # (±,fc)=y # n[/l # (±,fc)],fe = 1,2,. .,*=/,£.

Next fix two sequences of positive integers N = (n0,n1,...) and L=(/ 0 ,/ 1 ? . . . ) and
set: n(

k

I} = n0, I(

k

1] = l0 and n(E} = nk, l(

k

E} = lk, fe = l,2,.. . . We say that 7Ψ is (ΛΓ,L)-
regular if π(Y#(± ;/c))^4*}' f(y*(± fc))^*^ fe = l,2,... 5 #=/,£. Similarly,
J'ίeCx",^"] is called (N,L)-regular if π<π 0 and /(X) = max sup|ώ(ί1) — ώ(ί2)| </0

Let the indicator functional χN L be given by

and 7# are (N,L)-regular, * =/,£

, otherwise.



Gibbs States 129

Denote

Z%N,L= f d(YE9 7,)̂  L(7,, YE}aΛ(YE)aQ(Y^ YE)
[Λ]

, (6.1)

n [Λ\Ω]

α°(Z, Y7, 7£)exp[- ί7(Y, 7J9 Y^ + jSμn^ + jSμn^)] (6.2)

and

(2).Ω /-n τ :w\_/-7(2) \-l^(2),Ω /r:n r.n\ //: o\
fcM,w,iAx 'J7 J — v^/i^iJ i-Λ,Λr,iΛ x >.y J w 3;

We consider a particular case by choosing n0 = /0 = IP(l/6c3lnF) and nk = n0

+ fc, /Λ = /0 + l/2k, fc=l,2,.... The LHS's of (6.1)-(6.3) are then denoted as Ξ^2)

7,

^2j Ω(^ 7) an<d ^ϊj Ω(^"5 7) respectively.

Lemma 6.1. TΓiere ex/si constants q2,c4,c5eR\. depending only on β and μ such that

\n(2),Ω(-n ~n\ (l),Ω(~n ~n\\\QΛ,Ϊ \χ >y )~@Λ,ΛE(X >y )\
^ ncn

0c4(tln t) exp ( - c5(ln t) In In Γ) (6.4)

whenever ϊ^q2 and n0>n,

Proof. First, assume we have the general sequences N, L Clearly, (Ξ(^ΛE)~1Ξ(^}

N L

rgl . We claim that

-c2l^

klnn f e))], (6.5)
k= 1

where c'4,c'5ERl

+. In fact, the factor [1— χN L(Y7, Y£)] in the integrand for Ξ(^}

ΛE

— Ξ(^N L does not exceed ]Γ [1 — χN L( Y#(% /c))] where the sum is taken over all Φ
= £, /, κ = + and fc = 1, 2, . . . . Consider separately a single term corresponding to a
given zl#(κ;k). To estimate the single term we write the integral | d(Y£, Y7) as

Ml

J d(Y£, Y,) j dY° and replace [7(7°, 7/5 Y£) by C/(7J9 7£) and the in-

dicators α(7°, ) by α( ). Since 17(7°, YI9 YE)^U(YI, YE\ this leads at an expression
which is more than or equal to the starting one. Now the integral $dY° may be
separated, and our single term is bounded by

ί dY0l_l-χN^Y0)-]Qχplβμn(Y°)^AF. (6.6)

The factor [1 -χN>L(7°)] does not vanish iff either n(Y°)>n(

k^ or /(Y°)>4* }.
The first possibility gives a contribution which is estimated by exp( — c'5n

(

k*
} Inn^**)

(this may be easily derived from the definition of the measure dY). The contri-
bution of the second possibility is estimated using the same arguments as in the
preceding section and does not exceed c'4 exp( — c2(l(*})2). Taking n(

k*
} and l(

k*
} as it

was indicated above and suming the bounds obtained over φ , κ and /c, we arrive
at (6.5).
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With our choice of £2, nk, and /k, bound (6.5) takes the form

(E^Γ1^2^!-^
(we omit intermediate calculations). Take q2 so large that η(t)^l/2 for all t>q2.
Then for

Now the LHS of (6.4) is

^ [ρ f̂ β(x", P") - (Ξy/lE) ~ l &β Ω(x", 7)]

H-ίS^Γ ™ V,7)[(S!5Γ 'S^- 1] . (6.7)

The second term of (6.7) is less than or equal to 2c^η(t). To estimate the first term
we use arguments similar to those we used above (cf. the corresponding part of the
proof of Lemma 5.1). The first term is bounded by ncn

0η(ΐ). Lemma 6.1. is proved.

7. A Cutoff Interaction

Let us now choose the numeration of A #(± ;fe)'s. Let δ + +=δ_ _ = l,(5 + j _ = < 5 _ > +

-O.We set:

ΔE(± ;fc) = ( y ± ί 2 ± f c - < 5 ± ) + 5 y ± ί 2 ± k + < 5 ± > _ ) , k = l,2, . . . .

The order of Δj(± k) may be arbitrary (see Fig. 2).
The functional U figuring in (6.1) and (6.2) and describing the "interaction" of

β
trajectories is the sum £w(ω, ω) of terms u(ω,ω')=^Φ(\ω(i) — ω'(i)\)dt giving the

o
contritution of every pair of simple trajectories (see [7, Section 2.1]. We intriduce a
new "cutoff term u(h\ω, ω'} by

(h ίtt(ω,ω') if(h
U [CO., CO )

[0 , otherwise .

Next, define Uh(YI,YE)lresp.,Uh(X,YI,YE)'] as U(YI9 y£)[resp., U(X, YI9 Y£)] with
replacing the terms u(co, ω') by u(/l)(ω, ω') in the following cases :

a) either ω or ω' is a simple closed loop from Y/5

b) ω belongs to YE and ω' belongs to X.
Let Ξ($,Ξ($Ω(xn

9y
n) and ρ^x", 7) be defined_by formulas (6.1)-(6.3) with

replacing the functionals U by Uh with ^ =

Fig. 2. Ordering and the graphs for l(

k*ϊn(

k*
}



Gibbs States 131

Lemma 7.1. The following bound holds:

_ ^ ^

where lim ξ(t) — 0.
ί-> oo

Proo/ Clearly, (7Λ(7/5 7£):g U(Yj, YE). We wish to write down an appropriate upper
bound for 17(7,, YE)- Uh(Yl9 YE) whenever χN>L(7/? 7£) = 1.

Fig. 3. The cutoffs. Broken narrows indicate the broken interaction

It follows from the definition of Uh that 17(7J5 YE)-Uh(Yl9 YE) is equal to

1/2 Σ Σ Σ [uK^2)-^v,cu2)]

+ Σ Σ Σ [φ^o^- '̂K,^)]- (7.2)
κ ι , X 2 — ± ki,k2 ωιeΓjE(κι;/cι'), ω2eyj(κ2;/C2)

Suppose χN L(y/; 1^)= 1. First, consider the first line of (7.2). Every internal sum

Σ vanishes whenever d— sup \x\—x>2 =^> otherwise, it does not exceed
C O ι , C 0 2 ^ ^ X j E J / i X j . f c , )

βnlψ(dί\ where dl=d — 2 — 2l^. With our choice of π0, /0 and /ι, we have: ^^
<c^(lnf)2, and the condition <i>/ί implies that d 1>2/3c 3lnF. Hence, the whole

sum in the first line of (7.2) is bounded by c^F(lnF)3 Σ ψ(Q where c"6

Similarly, every internal sum Σ ύi lne second line of (7.2) vanishes whenever

d^ h, otherwise, it is less than or equal to βn0nkίψ(d2) where d2 = d — 2 — lQ — lkι. A
simple analysis shows that with our choice of nk, /fc, h and the ordering of J(±,fe)'s,

we have ^noΠ^^c^rflnF) (InF+fc), and the condition d>h implies that d2

>i/6c3lnί. The whole sum in the second line of (7.2) is bounded by
Σ k2ψ(k), where c'^ = c'^(β,μ)eR\. Finally, we obtain that

k> l / 6 c 3 l n ί

k> l / 6 c 3 l n ί

where lim ξ'(t) = Q due to the condition of decreasing ψ(k).
r->oo

Thus the bounds

hold whenever χNiL(Yτ, 7£) = 1.
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Similar arguments allow us to establish similar bounds for Uh(X, Y/? YE) and
U(X, Yj, YE) which hold whenever χN^L(X, Y/5 YE)= l This leads at the bounds

£7(2) σ(3),Ω(γ« v")

, 9^ =exp[ξ/(t)]

Hence,

and Lemma 7.1 is proved.
The next step relates to the case ε= — . The functional α° figuring in (6.1) and

(6.2) plays the role of an "interaction" (simple exclusion, or hard core of zero
diameter). We replace it by a "cutoff indicator α° following the same procedure as
above (see Fig. 3). We then obtain some new £<?}, Ξ($Ω(xn,y") and Q($Ω(xn,yn).

Lemma 7.2. There exist constants q3, c7, c8eRί

+ depending only on β and μ such that

|g(3)f β(̂  γ} _ ρtf), ί̂  JTOI ̂  <c7(Fln F) exp [ - c8(ln F)2]

whenever.

We omit the proof of Lemma 7.2 : it is based on arguments used for proving
Lemma 6.1. We also omit the tilde and the index Ffrom Ξ(fy Ξ ,̂ Ξ($Ω(xn, yn), etc.
The final estimate of this section takes the form (7.1) with a new function ξ(n, F),
lim ξ(n, f) = 0 for any fixed n = 1, 2, . . . .
f->oo

8. Mixing Properties

In this section we finish the proof of Theorem 5. The arguments used here are
slight generalizations of those of [10, Section 3] and represent a variant of the
transfer-matrix method. The role of the transfer-matrix is played by an integral
operator acting on a functional space. The functions we consider have, as
arguments, finite sets of the simple closed loops.

Denote: Γ~=[-fe,0], Γ+=(0,fc], and Γ = Γ~uΓ+ where, as above, h
= IP(c3lnF) + 3. Given Ye[Γ], a finite set of simple closed loops starting in Γ,
we denote: 7±-7n[Γ±] and Y(j)=Yn[A(j]] where Δ(j) = [jJ+ 1], ;= -0, -h
+ 1,. ..,/ι — 1. By [Γ]' denote the (measurable) set of elements YE [Γ] which satisfy
the conditions

Let J*?2 denote the space L2([Γ]',dY), and <,> denote the inner product in
Let the kernel tfh(Y, Y'\ Y, YΈ[ΓJ, be given by

(8.1)

where Uh(Y\Ϋ)= ]Γ u(h\ω, ώ) denotes the "mutual interaction energy of the
ωeY^ωeY

loops ωe Y and ώe Y, and 7J denotes the space shift transformation on the vector
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teR1. The exponent in (8.1) gives the difference between Uh((T_hY_)u Y'\j(ThY+)\
the "total energy" of the set of loops (T_hY_)vY'v(ThY+), and the energy U(Y').

Consider the integral operator Kh in ̂ 2 :

KhF(Y)= I dY'J(rh(Y,Y')F(Y).
[Γ]'

It is not hard to check that Kh is a Hubert-Schmidt operator preserving the cone of
non-negative functions FgrO. The key remark is that Ξ(^] and Ξ(^lΩ(xn, y") may be
written in terms of iterations of Kh.

Let y1=yjrh — t2, 72~y~^Jrt2 an<^ & = [ y_ ,y + ] Consider the functions C£,
Bπ and Bπ(-,xn,yn) on [Γ]7 given by

c£(Y)= I dy^jy^α^yXίίT^

[ΩJ

[β\Ω]

Clearly, C£, J 3 , ( ;5cπ,

Lemma 8.1. The following representations hold:

Ξ^^X -^Q), (8.2)

s!1

3) fl(χfI

9y
II) = <^~1βff(- ;χ",nc£>. (8.3)

Proof. (8.2) and (8.3) are verified by a direct (although quite long) calculation based
on definitions introduced above. The crucial step consists of dividing the intervals
Λj(±)\Ω into the intervals of the length h and writing the integrand α°(Yί)
exp[— Uh(YI} + βμn(YI)'] as a product of terms corresponding to the pairs of the
neighbor intervals. Such terms have the form (8.1), and it remains to use (3.6) and an
obvious property of 7^-invariance.

Y-

I'PΛΛTXVvVN _ I

0 h \
T _ h Y _ Th

( T - h Y ) U ( T h Y + )

-h \ 0 / h

Fig. 4. The kernel Jfή and the operator Kh
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Note that in the expressions (8.2) and (8.3) only the vector CE depends on
boundary conditions so, only CE keeps the information about the finite volume A.

Lemma 8.2. The operator Kh (resp., the adjoint operator K*) has a unique positive
eigenvector Qhe $£2(Q*e5£2) The corresponding eigenvalue λh is positive, non-
degenerate and the largest one among the eigenvalues of Kh (resp., K*).

Proof. It is easy to check that the kernel ^(

h

2\Y, Y ' ) = $ d Y j f h ( Y , Ϋ)Jίrh(Ϋ, Γ)>0.
Lemma 8.2 then follows from Proposition β' in [15, p. 274].

Choose Qh and β* so that <βh,β*> = L Denote

According to (8.2) and (8.3),

Q i ' (X , V ) '== 7?
Λ / Ώ^' f}%\\LJ , (Jfr /

1 ι / ί^t— 1 τ>Ω( . ~n ~r.n\ s~\ /^ \\ -i- < l\ . r ί l X VI — (/, (̂  ,-, y

\M r, ^ ' (8 4)

Lemma 8.3. C£^exp(46'0/ι)ρ*.

We omit the proof of Lemma 8.3. The reader can reconstruct it basing on the
arguments used in the proof of Lemma 3.3 in [10]. According to Lemma 8.3,

and

K^-^SX^-β^C^

Lemma 8.4. Let FeJ^2, F^O and <F,β?> = l. Then

<|K?F-βJ,β*>^2(l-exp(-4c0fι)Γ-1, m = l , 2 , . . . . (8.5)

Proof. See the proof of Lemma 3.4 in [10].

Now choose the constant c3<l/4c0. It is easy to check that exp(4c0/ι)
(l-exp(-4c0/z))τ"2Ξζ(ί)->0 as F-*αo._Take q4 so large that ζ(ί)<l/4 for t>q4.
Returning to (8.4), we obtain that for F> q4

where

We used here the obvious bound: ρ(4)'Ω(x",y")^c0". Note that the kernel ρ(4)'Ω

does not depend on A.
Summarizing the estimates of Sections 5-8, we get:
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where limό(w,ί1,F) = 0 as i1 ?F->cx) for any fixed w = l,2, .... Bound (8.6) holds
whenever (5.1) holds. Since ρ(4)*Ω(xn,yn) does not depend on A, bound (8.6) proves
Theorem 5.

Concluding Remarks. 1. The condition Φ^O has been repeatedly used in technica-
lities in the course of the proof of Theorem 5. However, the only points where it is
essential are Lemmas 8.3 and 8.4.

2. The restrictive condition a) of the fast decreasing imposed on Φ plays_the
critical role for our choice of n0, /0 and h. The relations between n0, /0, /ι, and t are
dieted by the cruicial bound (8.5) of Lemma 8.4.
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Appendix: Some Generalizations

The methods of this paper may be also applied to the case of one-dimensional
c.q.s. consisting of a finite number of species. In that case, instead of the Fock
spaces 3tfε(Ω) associated to a b.B.s. Ω we take the tensor product ^m + ^m_(Ω)
= (JΊ? + (Ω)®m + )®(^_(Ω)®m-) where m + , m _ are fixed non-negative integers
giving the number of boson and fermion species. Let $I™ + ' m ~ be the c*-algebra of
bounded operators in ̂ m + m_(Ω) and 2jm^m- the J3*-algebra of the correspond-
ing c.q.s. in R1.

Fix a (m+ + m_)- vector n consisting of non-negative integers
(n(l\...,n(? + \n(±\...,n(™-}). The n-particle Hamiltonian Hm+ m (A) in a bounded
interval A is defined as Pm+ m_.nHnPm + m _ . n where

=ι
m -

(is the "canonical" projection, |n| = Σ n(+4- Σ ft(- and //n is given by (0.1), possibly
i = l i = 1

replacing the potential Φ by a family of non-negative pair potentials Φiε ί ε ,
describing the interaction of particles belonging to the species zf and i'ε,, iε = 1, . . ., mε,
ΐg , = 1, . . ., mε,, ε, ε; = ± . We impose the condition that Φί+ ί+ (boson "self-potential")
satisfies conditions a) and b), i+ = 1, ...,m + , and all other Φ's satisfy condition a).

Fix β>0 and a (m+ +m_)- vector μ consisting of reals
(μ(l\...,μ(™ + \μ(l\...,μ(™-}l The Gibbs state G£t;^- is given by the formula
similar to (1.1). As in Section 1, we introduce the operators g^+^~'Ω and their
kernels ρ . - ; Ω , Ω £ A

Theorem 7. Let ^e5ίm + 'm-. For any βeR+ and μeRm++m~ there exists the limit

G™ϊ™-(A}= lim G^m

A-(A).
Λ-+R1 ' '

The limit state G™+-'m~ is a locally normal and extremal invariant state under the
action of the space translation group {τα, aeR1}.

As for the case of a c.q.s. consisting of identical particles, this assertion is
recuced to statements about the convergence of the kernels Q™+

μ'"^~'ί2 and
properties of the limit kernels ρ^ym" ; Ω. These statements are based on the Wiener
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integral representation. Instead of the ensemble of Wiener trajectories interacting
via fixed Φ, we now have the ensemble of trajectories of various kinds. The key
remark is that all trajectories are simple (of the length β) due to condition b) for
Φi + J + . The further analysis develops following the same scheme and we omit it.

The next step is to introduce several types of particles inside the fixed species.
Here we also can consider various interaction potentials and vector-valued
chemical potentials. We left to the reader the formulation of the corresponding
theorem.

The case of the Boltzmann statistics is also covered by our methods. For this
case a natural object characterizing the infinite system is the reduced density
matrices [7]. Their representation in terms of the Wiener integral and its analysis
do not differ from those given in Sections 3 and 5-8. As the result, we get the
existence of the limit RDM and their cluster property.
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