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Abstract. It is shown that the characteristic Cauchy problem - —A

.w(x,ί) = 0, M(X,-|x|) = /(x), xeR", n^l has a unique finite energy weak

solution for all / such that Jrfx(|P7/|2 + |/|2)<oo and all finite energy weak
solutions of the equation are obtained in this way.

1. Introduction

We shall consider the characteristic Cauchy problem for the Klein-Gordon
(K — G) equation

£-, + lWt)-0, (1.1)dt2 }
ι(x,-\x\) = f(x), (1.2)

where xelR", n^. 1 and £eR We shall prove that this problem has a unique finite

energy weak solution for all / such that J dx(|P/|2 + |/|2)<oo, and all finite
R»

energy weak solutions of (1.1) are obtained in this way. In fact the energy E fulfills

i l=l/2 J r f x f
du

(1.3)

We shall also give an explicit formula for w(x,ί) in terms of its light-cone
restriction / with the help of a "light-cone Fourier transform".

For some general results on characteristic Cauchy-problems see Hόrmander
[1]. The wave-equation has been considered by Riesz [2] and Strichartz [3].
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They consider the wave-equation inside the light-cone and prove that the problem

(1.4)

φ,-\x\) = f ( x ) , (1.5)

has a unique weak solution for all / such that

In the K — G case we get global uniqueness and our approach is very different
from theirs.

In Section 2 we recall some simple properties of smooth solutions to the K — G
equation in particular two local conservation equations are given. The behaviour
of a smooth solution along a light-cone is considered in Section 3. In Section 4 this
together with one of the conservation equations is used to express the energy-
integral as an integral of the solution over the light-cone [Eq. (1.3)].

The K — G equation is written in terms of light-cone coordinates in Section 5
for n ̂  3 and in Section 6 the spectral theory is developed including a so-called
"light-cone Fourier transform". In Section 7 the general case n ̂  1 is considered by
expressing the K — G equation in terms of sesquilinear forms. We end with
conclusions in Section 8.

2. Local Conservation Equations

In this section we review some well-known properties of smooth solutions (defined
below) to the Klein-Gordon (K — G) equation in n + 1 space-time dimensions,

With smooth solutions we shall mean those solutions whose initial data
du }

M(X, 0), — (x, 0) > are both in the Schwartz-space ^(W1). This means that a smooth

solution can always be written

-n!2 Γ dk _ίω t + ίk.χ - ίω t + ik.x -

where ωk= |/|/c|2 + l and /±(/c)e^(IR").

Notation. Let xμ, μ — 0,1,..., n be the components of the n+ 1 dimensional vector
(ί,x), ίeIR, xeIR" and let xμ denote the components of (ί, — x). Let furthermore Vμ

d d
= -— and V.=-—. We note that D=PμP/y (summation convention) and that P

dxμ

 μ dxμ μ μ

(8 \
are the components of the n +1 dimensional gradient —, PI.

\St /
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Definition 2.1. Let u and v be two smooth solutions of ( Π+ l)w = 0 and let Jμ, and
Tμ be given by

(2.2)

τ

μ = OW + (Fϋ) ' (Vu) + vu, ϋtVu + (Vϋ}ut}μ , (2.3)

du
where wt = — .

It is a simple consequence of the equation (D+ l)w = 0 that

17̂  = 0, FμTμ = 0, (2.4)

which are usually called local conservation equations.
If we choose v = u and then integrate the equation PμTμ = 0 over the region in

IR"+1 between two different hypersurfaces inconstant, it follows from Gauss's
theorem that the so-called energy integral

x,t)\2 + \u(x,t)\2), (2.5)
Rπ

is independent of t. By integrating Vμ J μ = 0 similarily we find that

Φ> u}=^$ dx(v(x, ί)wt(x, ί) - vt(x, t)u(x, t}) , (2.6)
ZlRn

is also independent of t.
If (2.1) is inserted into (2.5) a simple calculation gives

E= f dfc(|/+|2 + |/_|2), (2.7)

(2.8)

and similarily we get for σ(u,u)

ok
σ(«,«)= ί— (|/+|

2-|/_|2).
Rπωk

3. Decay of Solution Along Light-Cones

Let M be a solution of (D+ l)w = 0 with data {M,M t}eC* x C^ (infinitely differenti-
able and compact support) at ί = 0. Let furthermore pμ be the components of a
vector (p°,p)e!R"+ 1 with (p°)2 - |p|2 <0, i.e. it is a space-like vector. It then follows
from the finite propagation velocity that u(λp,λp°), AelRhas compact support in λ,
that is M(X, ί) has compact support in space-like directions. One can now ask how
M(X, ί) behaves in light-like directions, i.e. when (p°)2 — |p|2=0.

The solution w(x,ί) has the representation (2.1) with /± e ̂ (IR"), i.e. it is
sufficient to consider the behaviour of

(3.1)

with geέf, for |x| large.
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Proposition 3.1. For each meN there exists constants cm and dm such that

(3.2)

Proof. Choose the coordinate system such that x2 = ... =xn = ΰ and x1 ^0, i.e.

v(x)= ίdfc^ ί(ωk + k l ) X l sf(k) s (3.3)

Let us then introduce ς — ωk + /c1 as integration variable instead of /c1 that is

fcι = i(- Σ *?-ι+ZS \ i = 2

and we get

t;(x) = J dk2...dkn]dξei^h(ξ,k29...,kJ9 (3.4)
-oo 0

with

(3.5)

It follows from this formula that h extends to all ξeIR in a natural way and that
dph

?). It also follows from (3.5) that — -0 at ξ = 0 for all p = 0, 1,2, ... , due to
oζ

the fact that ge£f(Sίn). Partial integration with respect to ξ in (3.4) gives the first
part of the proposition (the uniformity of the fall off in all directions follows easily).

For the proof of the second part we note that

7υ(x) = i J dk(ωke + k)eiωM + ik'xg(k] , (3.6)

where e = — and the second estimate follows in complete analogy with the one
\x\

above.

4. The Light-Cone (LC) Energy Integral
and the Hubert-Space 2tf of LC Data

In this section we shall express the energy E given by (2.5) as an integral over a
light-cone, in fact we shall prove the following.

Proposition 4.1.
Let u be a smooth solution of the K — G equation ( D+ l)w = 0. It then follows that

E = if dx(\ut(x, 0)|2 + 1 Vu(x, 0)|2 + MX, 0)|2)

= iJdx(|Γ/(x)|2H-|/(x)|2), (4.1)

where /(x) = w(x, — |x|).

Proof. Let Ω = {(x,ί); ί^O, ί2-|x|2^0}. Let us then consider a solution tφc,f)
with compact support at f = 0 and put ι; = w in the expression for Tμ given by (2.3).
We then integrate the equation 7μTβ = 0 over Ω. Let C = {(x,f); ί= -|x|}, and let
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(e°, e) be the upward unit normal to C. Gauss's theorem then gives

e}, (4.2)
C

where dC= ]/2dx. It is convenient to absorb the j/2 in (e°,e), i.e. (e°)2 + \e\2 = 2,
x

£° — 1 and £ = - — . By completing the square on the r.h.s. of (4.2) we get

u2 + \u\2\9 (4.3)
c
3

where —-=^P (the co-normal derivative) and D = V—e(e V\ Let
<7£ μ

/(x) = u(x,-|x|). It then follows that ~(x,t}\ =-e Vf(x\ and DM(x,ί)|=D/(x).

Inserting this into (4.3) finally gives (4.1).
The vanishing of the surface term at infinity and the convergence of the r.h.s. of

(4.1) follows from the results in the previous section.
Equation (4.1) implies that the solution w(x,ί) is uniquely determined by its

restriction / to C.

Definition 4.2. Let J^ denote the completion of C^(IRΠ) in the norm

i.e. ̂  is a Hubert space [the so called Sobolev space Jff^lR")].
Let w(x, t) be a smooth solution of the K — G equation. It then follows from (2.1)

that /(x) = w(x, — |x|) is given by

dk _ ..„_,„,^,,.^ _ _..,.,,„,,..,_* „,-, (45)

Equations (2.7) and (4.1) give

(4.6)
R"

which is a kind of PlanchereΓs theorem which means that the mapping
{/+,/-}->/ extends to an isometry from L2(IR")0L2(IRn) into tf.

In the following sections we shall prove that this isometry maps onto #?.
By integrating the equation PμJμ = 0 over Ω (in analogy with the proof of

Proposition 4.1) we get

σ(v, u) = - j dx(ΰ(x, t)ut(x, t) — vt(x, t)u(x, t))
2{Rn

^ f7/)' (4 7)zc \x\

where /(X) = M(X, — |x|) and g(
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5. The K-G Equation in LC Coordinates for n Ξ > 3

In this section we shall express the K-G equation in "light-cone coordinates" for

Definition 5.1. Let us consider the coordinate transformation {x, f}-»{x, τ} where

τ = t + \x\. Thus a τ = constant surface is the backward light-cone with apex at (0, τ).
Let us furthermore put M(X,T) = M(X, — |x|-f τ).

It then follows that Vύ = Vu — ute, where e = — and — = ut. The K-G equation

can then be written

d2

=0, (5.1)

i.e. the second order τ-derivative cancels and we get

(5.2).
cτ

Definition 5.2. Put S0 - - i(Γ - e + e - V) with @(S0) = C£(IRn) and T0 - - zl -f 1 with
0(Γ0) = CQ (R11) considered as operators in L2(IR"). Γ0 is essentially self-adjoint. Let
T denote the closure of T0 in L2.

We note that the Hubert-space 3^ given in Definition 4.2 can be identified with
in L2(IRn) with

(5.3)

It is easily verified that (S0/)(x)= — 2i— -^-(raf(x)), where r = |x|, α= —-—and

Proposition 5.3. For w ̂  3 the following inequality holds

| |S0/||2^4. J|F/| 2rfx,/E^(S 0). (5.4)
Rπ

Proof. We get

Due to the inequality (5.4) we can extend S0 to ^(T1/2), and let this extension
be denoted S, which also is symmetric in L2.

The K-G equation can then be written

tf^ = T«, (5.5)

and it is now tempting to try to invert S, which in fact we shall do.
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Proposition 5.4. The range of S0 is dense in L2.

Proof. We will prove the proposition by showing that the nullspace of S* in L2 is

trivial. It follows that 0(SS)= |/eL2;- --(rα/)eL2l. Let us then consider all
[ r* or }

1 d c(e)
solutions of -^^-(rα/) — 0 which lie in L2

OC, i.e. /(χ)=— — - where c is square

integrable on the unit sphere. These solutions are not globally in L2.
This means that S has a densely defined inverse in L2, i.e.

(5.6)

Proposition 5.5. T~*S defines a continuous self -adjoint operator on ffl with a dense
range.

Proof. Proposition 5.3 implies that | |S/Hl^8| |/|& for all /eJf. This gives

IIT^S/ll^illT-1^ (5.7)

and the symmetry follows from

(/, T- lSg}^ = i(/, Sg)2 = i(S/, g)2 = (T~ *Sf9 g)* , (5.8)

for all f 9 g e J f . Let us then assume that there is a vector ipeJjf such that
(ίp,Γ~1S/)JP, = 0 for all feJV. This implies that (φ,S/)2 = 05 i.e. φ = 0 due to
Proposition 5.4.

Definition 5.6. Let ®(^l) = T"1Se^ and A:2(A)-^J^ be given by ̂  = 5'̂ .
The following theorem is a direct consequence of Proposition 5.4.

Theorem 5.7. A:2(A)-*3tf is self-adjoint.

This means that the K-G Equation (5.5) can be written

dύ
lTτ=AU' (5'9)

and we now specify that ύε@(A), i.e. a solution is given by ύ(τ} = e~iAτf, fe^(A).

6. Spectral Theory for A and the LC Fourier Transform

In this section we shall rederive the PlanchereΓs type formula (4.6)

with the difference that this time the /'s on the l.h.s. belongs to a dense subset in
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00

Let {E(λ}} be the spectral family associated with A i.e. A = J λdE(λ). The
— co

following well-known formula allows us to express E(λ) in terms of the resolvent

. (6.2)

We shall evaluate the r.h.s. of (6.2). For that we need a more explicit formula for R(z).
Consider the equation

(6.3)

for ImzφO. Let us consider this equation as an equation in L2 and apply S to it

(T-z%^S/eL2. (6.4)

Definition 6.1. Let FZ:Q->L2 be given by

(6.5)

This operator extends to a bounded operator for Imz<0, to a unitary operator
for Imz^O and to an unbounded operator for Imz>0.

Proposition 6.2. For φe QW, J7Ve0(T) and

[T-zSlF V-F ^T-z2]^. (6.6)

o/ Follows from a straight-forward computation.

Let Imz<0, i.e. Vz is bounded in L2 and let us act with it on (6.4)

(6.7)

Equation (6.6) implies that VZ[T — zS~] V~ l = T~ z2 on ail functions in L2 for which
both sides make sense, i.e.

(T-z2)Vzg=VzSf. (6.8)

We can now easily solve for #, i.e.

R(z)f^V-\T-z2ΓlVzSf, Imz<0. (6.9)

For/eCJ(IR") we get

^ , Imz<0, (6 10)

where " denotes the ordinary Fourier transform and M is the multiplication
operator k2 -f 1. The r.h.s. is analytic in z except for z2 ̂  1 and can be analytically
continued to all ze€\{z2^l}.
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Inserting (6.10) into (6.2) gives

(/,(£08)-£(α))/)jr= J dk\f+(k}\\ β>*>\
a<ωk<β

= j dk\f^k)\2,a<β<-l
— β < Ok < ~ y.

= j dk\f_(k)\2+ j dk\f+(k)\2, α<-l , j8>l , (6.11)
ωk< -α ω k </?

where we have defined

/±W = ̂ C?m (6-12)
Δωk

and we have furthermore used that

iTζ^S/±(k)=±/±(fc). (6.13)

In the limit α~> — oo and β-+ + oc we get

ι ι / ι ι i = ι ι Λ ι ι i + ι ι / - i ι i /ecgw. (β.i4)
Let us define

u±(x,k) = (2πΓn/2e±ί(°Meίk'x, (6.15)

and let us furthermore for f^ge^f introduce [compare (4.7)].

dx
2σ(g,fi = (g9Sf)2 = il—l(X rg)f-g(χ.r)n. (6.16)

|X|

We can then write

/±(fc) = — (κ±( ,fc),/) j r=±σ(«±( >fc),/), (6.17)
ω

Theorem 63. TTie "light-cone Fourier transform" F :C^(IR")->L2(IRn)eL2(IRn) given
by F f = { f + , f _ } extends to a unitary operator from Jf onto L2©L2, which
diagonalizes A

(6.18)

Let us then consider the characteristic Cauchy problem

(D+lWχ,ί) = 0,tφc, -|x|) = /(x) (6.19)

for those feJf such that /±eί^(lR"). The solution then becomes

dk
u(x, t) = (2π) ~ π/2 j — [e - ''""<' + a' */+ (k) + eίω" + *'*/_ (k)] . (6.20)



116 L.-E. Lundberg

7. The K-G Equation in LC Coordinates
and Spectral Theory for n > 1

We have so far only considered n ̂  3. In the general case n ̂  1 we are forced to
work with sesquilinear forms because of the singular nature of the transformation
to LC coordinates. The singularities are worse in lower dimensions and that is why
we could manage in a L2 setting for n^3.

Let φeCo(Rw + 1). The K-G equation can then be written

$dxdtφ( D + l)w- \dxdt{ - φtut + Vφ Vu + φu} = 0. (7.1)

If we now transform to LC coordinates (x, τ) we get

ί - / d \ - / 3 \
f d x d τ < — φrύr -H V + e — \φ \ V + e —\u-\-φu

I \ fa) \ dτ/

Let us from now on drop the . It is sufficient for (7.2) to hold for a finite energy
solution u that; w τeJf, and

i — σ( u( τ}} = ( u(. τ)) (73)ldτ ψ' ' (Ψ>u('>τ))^> - )

for all tpeJf, where

T /7V

°(d, /)=-~ ί π [(x rg)f - β(χ f7)/] (7.4)
2 \X\

for f ^ g e J t f . This form of the K-G equation in LC coordinates makes sense for all

Proposition 7.1. σ : ffl x Jf ~>(C is a bounded, symmetric, non-gegenerate sesquilinear
form.

Proof. The non-trivial part of the proof is the non-degeneracy. This follows from

Proposition 5.4 when n ̂  2, and for n = 1 it can be verified directly.

This means that there exists a bounded self-adjoint operator B in jf such that

σ(g,f) = (g,Bf)#, (7.5)

and the range of B, $(B) is dense in Jf .

Definition 7.2. Let A = B~1 with 2t(A) = &(B).

A \Q)(A}-*3? is self-adjoint and the solutions of (7.3) in ̂  are given by M( , τ)

Let us then consider the equation (A — z)g = f , f e 3 t f , ge@(A)and ImzφO. This
equation is equivalent to

- zσ(/ι, gf) - σ(h, /) , Vhe ̂ f , (7.6)
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and because F-^C^IR") is dense in Jf we can also write

(V^1φ9g)^zσ(Vz-
lφ9g) = σ(V2-

1φ9f)9φeC^n)9 (7.7)

where Vz be given by (6.5) and we have used (7.5). In complete analogy with (6.6) we
have

-z2(φ9Vzg)29 (7.8)

for Imz<0, and (7.7) becomes

(φ, Vzg)# - z2(φ, Vzg)2 = σ(V-z

 1 φ, f ) , φ e Q> - (7.9)

This can be written as

((T-z>, Kz3)2 = σ(P7 >,/), (7.10)

and we get

(Ψ,g)2 = σ(V^l(T-z2ΓίV,ψJ), (7.11)

where ψ = V~l(T— z2)φ. Let ξ = T~ lψ and then we finally get

(ξ,R(z)f)^ = σ(V-;1(T-z2Γ1V-Tξ,f), (7.12)

which replaces (6.10) in the general case rc^l. The rest then follows in complete
analogy with the case n ̂  3.

8. Conclusions

We have shown that the characteristic Cauchy problem for the Klein-Gordon

equation, (-^ -4+ 1) w(x, ί) = 0, w(x, -|x|) = /(x), xeRw, n^l , ίe lRhasa unique

finite energy weak solution for all / such that Jdx(|P/|2 + |/|2)< oo, and further-
more all finite energy weak solutions of the K-G equation are obtained this way.
In fact the following equality holds

E = ̂ dx(\ut(x91)\2 + \7u(x9 Ol2 + |φ, ί)l2)

=tfdx(\rf\2 + \f\2). (8.1)

We have developed spectral theory for the K-G equation in light-cone coordi-
nates, including a "light-cone Fourier transform".

There is a Lorentz-invariant symplectic form σ on 3?

<V,g)=τlrϊ{(χ r7)9-fχ r9} = l—{?+a+-L9-}, (8.2)
Z |X| COk

which also is invariant under the unitary light-cone translation group
ί/(α),αeIR"+1 given by

t/(4/±(/c) - e± ί<°*«° + * «f±(k).
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