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Proof of an Entropy Conjecture of Wehrl
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Abstract. Wehrl has proposed a new definition of classical entropy, S, in terms
of coherent states and conjectured that 5^1. A proof of this is given. We
discuss the analogous problem for Bloch coherent spin states, but in this case
the conjecture is still open. An inequality for the entropy of convolutions is
also given.

I. Introduction

In a recent paper [1], A. Wehrl introduced a new definition of the "classical"
entropy corresponding to a quantum system, proved that it had several interesting
properties that deserve to be studied further, and posed a conjecture about the
minimum value of this "classical" entropy. The main purpose of this paper is to
prove WehrΓs conjecture. It is somewhat surprising that while the conjecture
appears to be almost obvious, the proof we give requires some difficult theorems in
Fourier analysis. The conjecture may or may not be important physically, but it
reveals an interesting feature of coherent states.

To briefly recapitulate WehrΓs analysis, consider a single particle in one
dimension, so that the Hubert space is L2(IR). (The generalization to IRN is trivial.)
For each z = (p,g)eIR2, define the normalized vector |z> in L2(1R) by

These vectors are the coherent states used by Schrόdinger [2], Bargmann [3],
Klauder [4], and Glauber [5]. If

Pε = \z><z\ (1.2)

is the orthogonal projection onto |z> then

cdz
f~Ps = /' <U)
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where dz/π = dpdq/2πh and / = identity. The integral in (1.3) can be defined as a
weak integral and (1.2) is simply the Plancherel equality.

For a "density matrix" QQ (a positive semidefinite operator of trace 1) on L2(IR),
its quantum entropy is

SQ(ρβ)=-TrρQlnρβ^O. (1.4)

The right side of (1.4) is well defined, although it may be 4- oc.
For a nonnegative function / on IR2, with §f(z)dz/π= 1, its classical entropy is

S(/H-j~/(z)ln/(z). (1.5)

In general this integral may not be well defined, but even if it is it can be negative.
Given a quantum density matrix ρQ, Wehrl defines the function

ρcl(z)Ξ<z|ρ%>, (1.6)

whence 0^ρc l(z)^l. Then

Scl(ί?Q)ΞS(ρcl). (1.7)

This is the classical entropy of ρβ. [Note that by (1.3), Jρcl(z)dz/π=l.] Since
Orgρc l(z)rg 1, the integral in (1.5) is now well defined, and 5cl^0.

The positivity of Scl is one advantage of WehrPs definition. On the contrary, if,
as is usual, ρQ = ZQ

 ] exp \_ — β( — h2A/2m+ V(q))~\, the customary classical approxi-
mation is f(z) = Z~l

 1 exp[-β(/?2/2m + V(q))~\. The difficulty with / is that S(f) can
be negative and, in general, £(/)-» — oc as β-^cc.

A second advantage of WehrΓs definition is that Scl is monotonic. If ρf 2 is a

density matrix on L2(JR)®L2(IR), and |z 1,z 2>Ξ|z i>(x)|z 2>, one defines

ρf2(z1,z2) = <z l ϊz2 |ρ?2 |z1,z2>. (1.8)

One can then define ρ^zj by partial trace on 2 (either first on ρ^2 or else on the
right side of (1.8); by (1.3) they are identical). Wehrl shows that the entropies
satisfy

= $?, (1.9)

in an obvious notation. This property, which is obviously desirable physically,
does not hold in general for either the quantum entropies or for ordinary classical
continuous entropies (see [6] for further details). It does hold for these particular
classical entropies.

Not only is Scl^>0, but Wehrl proves [1]

Scl(ρQ)>SQ(ρQ). (1.10)

[To prove ^ note that s(x)=-xlnx is concave, so s(ρcl(z))^<φ(ρQ)|z>. But
SQ(ρQ) = j<z|s(ρe)|z>dz/π.] While the minimum of SQ is zero (for any pure state, i.e.
one dimensional projection) the minimum of Scl is not zero. WehrΓs conjecture is
the following:

Theorem ί. The minimum of Scl is 1 (independent of h). This minimum occurs if
ρQ = Pz for any z.
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Remarks. 1) There is no upper bound or lower bound (other than zero) for Scl(ρQ)

-sQ(βQ).
2) It is easy to see from Theorem 1 that in L2(IRN), the minimum of Scl is N.
The proof of Theorem 1 will be given in Section II. An analogous conjecture

can be posed for Bloch coherent spin states and this is discussed, but not proved, in
Section III. In Section II an inequality (Theorem 3) on Lp norms is also presented.
Section IV contains an inequality which may be of use for related problems.

II. Proof of WehrPs Conjecture

From now on we set h= 1. As a preliminary remark we note:

Lemma 2. // QQ minimizes Sc\ QQ must be a pure state.

Proof. If QQ= Σ^π,., the πf being one dimensional orthogonal projections, /;>0

and £^=1, then ρcl(z) = ΣΛ £, (z) with £i(z) = <>N*>- BY concavity of S, S(ρcl(z))
^]Γ /.%>;), with equality if and only if ρ.(z) = ρj(z) almost everywhere for all ij.
Suppose ρi is a projection onto φteL2(lR). Let w = q + ipe(C and let ft(w)
= jφ ί (x)exp[ — x2/2-f- wx](^x, which is an entire analytic function of w [3]. Then
equality almost everywhere implies that |/ί(w)| = |/)(w)|, all w, and hence ft(w)
= /;.(w)exp(zθ(w)) and θ is real and analytic on the complement of the zeros of ft.
Hence, θ(w) = const. By the uniqueness of the Fourier transform, 1/^ = 00^, with
|α| = 1, almost everywhere, and, hence π — π^, which is a contradiction. Π

Thus, to prove Theorem I we have to consider

f(p,q)=$ιp(x)R(x\p,q)dx (2.1)

with || tp || 2 = 1, and show that

WI2) = 1 (2.2)

with equality if ψ(x) = R(x\p,q) for some (p,q).

We will first prove Theorem 3 which concerns Lp norms of/(p, g). Theorem 1
is a corollary of Theorem 3.

Theorem 3. Let φeL2(IR) with ||φ||2 = l? and f given by (2.1) and (1.1). Then, for

s^2

Is^tt\(f(p,q}\sdpdq/2π^2/s (2.3)

with equality for s>2 if ψ(x) = (x.R(x\p,q) for some p, q and |α = 1. For s = 2, (2.3) is
an equality for all ψ.

To prove Theorem 3 we will require the following two lemmas (for N = 1). The
first (best constant in the Hausdorff- Young inequality) was proved by Beckner [7]
and the, second (best constant in Young's inequality) simultaneously by Beckner
[7] and Brascamp and Lieb [8].

Lemma 4. Let /eZ/(IRN), 1 gpg2, and f its Fourier transform (/(fc) = J/(x)Λ/x).
Then, with 1/p-f l/p' = 1,

||/||p^{C/2π)^yj/||p, (2.4)
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where

C2

p=pί">(p'Γlίp' and C 1 =C a o = l.

Remark. Equality holds in (2.4) if / is any Gaussian, i.e. /(x) = αexp{ — (x,Mx)
-f (x,b)}, αeC, beCN, and M positive definite.

Lemma 5. Let /eLp(RN), geL*(IRN) l^p,q^oc . Then, wit/? l + l/ r=l/p+l/g,
r ̂  1, and * — convolution,

\ \ f * g \ \ r ^ { C p C q / C r } N \ f \ \ p \ \ g \ \ q . (2.5)

Equality holds [8] /or r > 1 and N = 1 if and only if f ( x ) = a exp [ — p'(x — b}2 -h iδx]
and g(x) = α exp [ — q'(x — β)2 + iδx~] for some α, α 6 C and δ,b,βe R For r = 1 f a / / JVJ ,
p = q = l and (2.5) is an equality for all positive f,g.

Remark. In the classical inequalities, Cp is replaced everywhere by 1 in Lemmas 4
and 5.

Proof of Theorem 3. As a first step apply Lemma 4 (with p' = s) to the function
gq(x) = ιp(x)π~l/4Qxp[ — (x — q)2/2], with g regarded as a parameter. (^eL&'(IR) by
Holder's inequality.) Thus,

-*ι*φW , (2-6)

where φs is the convolution

0 sHv>WI4 '*exp[-s'x2/2]. (2.7)

The second step is to integrate (2.6) over q and use Lemma 5 with p = q = 2/s'

and r = s/sr. Since ||exp(-x2/2)||2 = π1/4, /4^{Cs,(C2/>5,)2/5'(C5/sO"1/5'}4 = 2/s.
Equality holds in the first step if i/; is any Gaussian. In the second step, since

p = q = 2 / s , equality holds for s>2 if ψ is a Gaussian with the same variance as
exp( — x2/2), which is the condition stated in the theorem. When s = s' = 2, equality
for all ψ is a simple consequence of the Plancherel formula. Π

Proof of Theorem L We continue to use the notation of Theorem 3. Let £>0.
Since /2 = 1, K ε-ε~ 1{/ 2-/ 2 ( 1 + ε )} ̂ (1 4-ε)-1 by Lemma 5. Assuming S(|/|2)<oc

(otherwise, there is nothing to prove), we claim that limKε = S(\f\2\ which proves

that S(\f\2)^ 1. To see this note that by Theorem 3 or by the Schwarz inequality,

l / M I ^ I I / l l o c ^ l > and hence 0^ε- l |/|2{l-|/|2 t}^-|/|2ln|/|2. Thus,
Kε-*S(\f\2) by dominated convergence. Π

III. Bloch Coherent Spin States

Instead of L2(1R), one can consider the finite dimensional vector space JfJ = C2 J + 1,
J = 1/2,1,3/2,.... The analogue of the vectors |z> are the Bloch coherent states [9-
13] in Jfj. These have been used to prove the classical limit of quantum spin
systems [13]. For each unit vector ΩeIR3, the vector |Ω)eJ fj is defined as the
normalized vector (unique up to the phase) satisfying

(3.1)
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where S = (SX, Sy, Sz) are the usual angular momentum operators satisfying [5X> 5y]
= iS. and cyclically. An explicit representation is

j
|Ω>= ^ AM(θ)exp( —ίMφ)|M>, (3.2)

M= -J

9 7 \ ι/2

f - f - J /

where (θ, φ) are the polar coordinates of Ω. |M> is the normalized vector satisfying
SJM)=M|M) and whose phase is given by |M> = (pos. const.) (Sx — ίSY~M\jy.
With the measure

dμj(Ω) = (2 J + 1) sin θdθdφ/4π (3.4)

on the unit sphere 52, and

PΩ = \Ωy(Ω\ (3.5)

the projection onto |Ω), one has the analogue of (1.3):

$dμj(Ω)PΩ = I . (3.6)

Now given a density matrix QQ on ̂  one can imitate the Wehrl construction:

ρc\Ω) = (Ω\ρQ\Ωy (3.7)

and Sc\ρQ) = S(ρcl) with

S(f)= ~ $f(Ω)lnf(Ω)dμj(Ω). (3.8)

The monotonicity of 5cl and the inequality Scl ̂  SQ carry over to this case.
It is easy to compute that since [13] <Ω/|PΩ|ί2/> = [cos^6>]4J, where Θ is the

angle between Ω and Ω\

l). (3.9)

The analogue of Theorem 1 is then

Conjecture. Scl(ρQ)^2J/(2J + 1).

We will have to content ourselves with the following remarks.

Remark A. Suppose ρQ is of the form

ρQ=$dμj(Ω)h(Ω)PΩ (3.10)

with /z(Ω)^0 and §hdμj = l. Every QQ can be written in the form (3.10) with h real
but, for J^l, not necessarily with /i^O, even though QQ is positive. However PΩ

is of this form with h being a delta function. By (3.10)

ρcl(Ω} = J dμ/ΩOCcos i 6)]4J/ι(Ω') .

Since ρcl(Ω) is then a convex combination of |<Ω|Ω'>|'s, the concavity of S leads to

)^.0. The analogue of this remark would, of course, also hold for the original
Wehrl problem.



40 E. H. Lieb

Remark B. Lemma 2 holds for the Bloch case as well. Thus we can assume ρ°~ is a
projection onto tpeJfj. Then

Qcl(Ω) = \f(Ω)\2 (3.12)

/(Ω)= Σ CMAM(θ)e-ίM+ (3.13)
M= - J

and£|CM |2 = l.

If J= 1/2, every ψ = a\Ωy for some |Ω> and α. Thus the conjecture is manifestly
true for J -1/2.

IV. An Inequality for Entropy of Convolutions

Lemmas 4 and 5 yielded a lower bound for Scl. Lemma 5 alone yields the following
entropy inequality which, while not strictly related to coherent states, may be

useful for related problems.
We first remark that if / is a nonnegative function on 1RN with J/(x)dx = 1, and

if /eLs(RN) for some s>l, then S(f) is well defined in the sense that

J /(x)ln/(x)dx< oo. S(f) may be -f- oo, however.
J(χ)> i

Theorem 6. Suppose f and g are nonnegative functions on IRN with j/ = \g = I and
^} for some s>\. Then f*g has the same properties and

exp [2S(/ * 0)/N] ̂  exp [2S(/)/JV] + exp [2S(g)/N'] (4. 1 )

(4.1) is equivalent to the following :

(4.2)

for all Λ6[0,l].

Corollary. S(f *g)^ i[S(/) + %) + N In 2].

Remark. (4.1) is an equality if / and g are any two Gaussians of the form /(x)

~exp[-(x,Mx) + (i>,x)], gf(x)~exp[-α(x,Mx) + (c5x)] with α>0, b j C elR* and M
positive definite.

Proo/ . By Lemma 5, (/ * g) e LP(1RN) for p = 1 and for p = 5(2 - s) ~ 1 , Hence S(f * gf ) is

well defined.

(4.2)=>(4.1): Choose

-exp[2S(/)/JV].

(4.1)=>(4.2): Geometric-arithmetic mean inequality. We now prove (4.2). In

Lemma 5, choose p' = r'//,, q' = r'/(l-λ)9 so that 1 -f r~1 =p~1 + q'1. By convexity,
/eL'nL1 implies /eL f for I g t g s and ί^-^H/Hf is continuous for ίe[0,s]. For r
close enough l,p,^<s, so f*yεLr and (2.5) holds. Furthermore, (2.5) is an equality
for r = p = q=l so one can take the right derivative at r= 1. Without loss we can
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assume S(f) and 5(0)<oo, for otherwise S(/*0)=oc by concavity and there is
nothing to prove. For the same reason, one can assume 5(/*0) < oc. Next, we claim

that if FeZ/nZΛ s>l, and S(F)< oc then l imε" 1 JF(1 -Fε) = S(F). To see this, let
ε|0

A = {x|F(x)<l}. Then for xe4, Og 1 -F(x)εg -clnF(x). For xeA c and

The claim follows by dominated convergence. Thus, the right side of (2.5) is
differentiable at r = l and Theorem 6 follows by explicit calculation. This
calculation can be avoided noting that as r varies, p'/qf = const = (1 — λ)/λ. As noted
in Lemma 5, (if A f = l , and hence for all N) (2.5) is saturated for the Gaussians
/(x) = exp( —x2//,), g(x) = exp( — x2/(l — /)), independent of r. But these Gaussians
also give equality in (4.1). Π
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