
Communications in
Commun. math. Phys. 61, 275—284 (1978) MatheΓΠatiCdl

Physics
©by Springer-Verlag 1978

The φ\ Quantum Field as a Limit of Sine-Gordon Fields
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Abstract. We exhibit the λφ4 quantum field theory as the limit of Sine-Gordon
fields as suggested by the identity

φ4/4l = lim (ε~4 cos εφ - ε~4 + f ε~ V)
ε^O

The proofs of finite volume stability for the two models, due to Nelson
and Frόhlich respectively, are unrelated. We find a generalized stability
argument that incorporates ideas from both of the simpler cases. The above
limit, for the Sch winger functions, then proceeds uniformly in ε.

As a by-product, let (φ,dμ) be a Gaussian random field, φκ (1 :g K < oo) a
regularization of φ, and V a function satisfying :

(i)

(ii) || V(φ) - V(φκ) ||p £ bpβκ~\ 2 £ p < oo .

Then e~V(φ}εL\dμ) provided κ(β - 1) < y.

I. Introduction and Results

In this paper we show how to obtain the λφ4 quantum field theory as a uniform
limit of Sine-Gordon (λs cos εφ) quantum fields. Formally one might expect such
a relationship as a consequence of the identity

λφ4/4l = lim λ(ε'4 cos εφ - ε~4 + \ ε~2φ2), (1.1)
ε->0

which suggests convergence of the λs cos εφ model to λφ4 as ε -» 0, provided we
perform infinite vacuum energy, mass and coupling constant renormalizations.

There are serious technical problems to be overcome before this idea may be
extended to quantum field theory. To prove convergence of the corresponding
Schwinger functions, some uniformity in ε will be needed, such as a uniform bound
for <e~F ε> where Vε is the finite-volume action. However the proofs that e~v is
integrable for the φ4 and Sine-Gordon theory, due respectively to Nelson [1]

* Supported in part by the National Science Foundation, grants DMR-77-04105, PHY76-17191,
MCS-76-01273



276 O. A. McBryan

and Frόhlich [2], are unrelated in structure. Thus a uniform bound on <e~F ε>
cannot be obtained directly. We will generalize Nelson's proof (see Theorem 3)
so as to allow interactions of Sine-Gordon type which have a Wick lower bound
V(φκ) ^ — κε2/4π as compared to — (In κ)2 for φ4 . One of the basic estimates
required for Theorem 3, a bound on || V(φ)— V(φ^\p, will require Frόhlich's
methods as well as φ4 estimates. We have therefore combined Nelson's and
Frόhlich's results in a more general framework. A smooth transition from Sine-
Gordon to φ4 is possible in this setting, and in fact we prove uniformity in ε — see
Theorems 1 and 2. Since the essential difficulties are ultraviolet effects, we will
consider only the finite-volume interactions in this paper, but extension to the
infinite-volume limit will not be difficult.

The Sch winger functions for volume A, which we take to be a unit square,
for the models in (1.1) are defined by:

ι > > Λ) = ί dμ,e-λv*φ(f,) . . . tf/J/f dμ0<ΓAK% (1.2)

, ... ,/J = Sdμ0e-λVφ(f1)...φ(fMdμ0e-λV. (1.3)

Here s2 <4π,λ^ 0,/e^CR2),dμ0 denotes the measure for the free euclidean
field of mass m0 > 0 with co variance C = ( — A+ m2)" ̂

V = \d2x :φ4 : (x), V£ = J d2xε~4 cos sφ - 1 + ±ε2φ2 :(x),
A Δ

and Wick ordering will always be with respect to dμ0 . We define || / || = || C1/2/ || 2 .
Our principal result is:

Theorem 1. S(/1,...,/n) = limSβ(/19...,/Λ). For | ε |< l/2 there are constants
ε-^O

cί,c2 independent ofε,{fί},c2 independent of λ, with

ί=l

Proof. We reduce the bounds (1.4) and the convergence to the corresponding
results for e~λVε. First, note that by Jensen's inequality the denominators in
(1.2), (1.3) are bounded below by 1. Consequently it suffices to prove the bounds
(1.4) only for the numerators in (1.2), (1.3). The Schwartz inequality yields

and similarly

ί=l
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where we have used Holder's inequality and the hypercontractivity of the free
field. Thus Theorem 1 is proven if we can establish the following uniform bounds
which are the technical core of this paper.

Theorem 2. (a) Let |ε < 1/2. Then §dμ0e~λVε is bounded uniformly in ε,λfor λ
in bounded subsets of [0, GO).

(b) Let α = £2/4π < 1/e. Then || V - Vε || 2 ̂  m~ \ί - αφ.

Theorem 2(a) will be proved by combining a generalization of Nelson's
stability proof for φ*, [1, 3], with Frόhlich's proof for Sine-Gordon theory [2].
Theorem 3 gives the required generalization, while the estimates required to
apply it are proved in Sections 2, 3. Theorem 2(b) is obtained by an explicit compu-
tation which we defer to the end of this section along with the proof of Theorem
2(a).

Theorem 3 provides two conditions on any interaction V(φ) which ensure
that §dμ0e~λv is integrable. In the following, φκ, 1 ̂  K < oo , will denote a momen-
tum cutoff field, for example φκ = φ*hκ with hκeL2(R2\ and we will write V, Vκ

Theorem 3. Let V(φ) be a function such that for constants α,fe,

(i) Vκ^-aκ\

(ϋ) \\V-Vκ\\P^
bPβκ~y> pe[2, oo).

Then e-λVεL\dμQ\ λe[0, oo), provided a(β - 1) < γ.

Proof. Let K. be an increasing sequence of cutoffs with κί = 1, κj -> oo. We will
use the identity, valid a.e. with respect to dμ0 :

e-w= V ( _ γ Γ[ χ(y _ y ^<(fse-λ[(i-s1)vKl + (sι-S2)vK2+... + (sr-ί.-sr)vKr+srvιer + l\^

r=0 7=1

where J<rf rs denotes integration over the domain 1 ̂  sί ^ ... ̂  sr ^0. For
00

0 < v < 1/2 let c(v) = £j~ l ~ v > 2. Since the quantity in the exponent is a convex
i

combination of V , we obtain from estimate (i) and (ii):

j=ι

s Σ
r = 0 j = l

r

where in the second to last step we have used Holder's inequality since X j~ 1 ~ v

c(v)"1 < 1. In particular, if we choose the cutoffs to be κr = rμ,μ> 0, we obtain
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the bound:

Since r! ~ erlnr, the above series converges provided that μα ̂  1 and β(l + v) <
1 + μy, or equivalently if

Because v > 0 may be chosen arbitrarily small we can always find such a μ provided
oί(β — 1) < y. We remark that our bound on \dμQe~λV leads to a bound uniform
in λ on bounded sets of [0, oo). Π

Proof of Theorem 2. (a) In Sections II, III Corollary 2.2, Theorem 3.1, we prove
that for any α = ε2/4π < 1, δ > 0, and a sharp momentum cutoff,

(i) V^-a(δ}κ«+δ

(ϋ) II ̂  - n,κ l i p ̂  fc(φ18κ~y(α),y(α) - 3(1 - α)/8(l + α),

with fc(α) uniformly bounded on closed subsets of [0, 1). The condition of Theorem
3: (α + (S)(18 - 1) <; y(α) is satisfied if we choose α ̂  1/50 δ = 10~3, leading to
the required bound on \dμQe~λVε, uniformly in ε since fe(α) and y(α) are uniformly
bounded on [0, 1/50].

We prove Theorem 2(b) by expanding : cos sφ : in a power series :

n = 3 Δ

We show below that

|| J dx : φ2" : (x) \\ 2 ^ m~ \e/^7i)n(2n) \ , (1.5)
Δ

and consequently

I I ^ - ^ I L ^ Σ ^2n~\2n)Γ1m-\e/4π)n(2n)l = e3(i6π2m0Γ
1(l-^e)^.

n = 3

To prove (1.5) we note that for pe[2, oo), p integral:

P ! II C || P, - + - = 1 , by Hausdorf- Young,

p\{$d2k(4π2(k2 + m2

Q)Γq}Plq

^ m ~ 2(e/4π)pp ! 2 since p ! > ppe ~ " .

The bound (1.5) follows immediately. D
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Remark. One might wonder whether similar estimates yield the bounds on
II ε̂ ~~ ^ε K l i p required by Theorem 3. Since by hypercontractivity

\\ldx : φ 2 n : ( x } \ \ <(p - 1)^dx:φ2n :(x)\\2

the corresponding bound for || Vε - V^κ \ p converges only if u<((p-l)e) *,
which is useless since we require all pe[2, oo) for each α.

II. Uniform Lower Bounds on Vε(φκ)

Theorem. Let α = ε2/4π and cκ = 2π< φ2 >. Then Vε(φκ) ^ - (3/4π)2c2e"Cκ.

Proof. Vε(φκ) = Jdxε"4 : cos εφκ - 1 + ̂ 2φ^ : (x)
A

= (4πα)~2 $dx{e*Cκ cos sφκ + \(εφκ)
2 - 1 - αcκ}. (2.1)

A

Consider the function on (— oo, oo)

/(x) = a cos x + ̂ x2, a > 1,

which takes its absolute minimum on [ — π, π]. For xe [ — π, π] :

cos x ̂  1 - x2/2 + x4/4! - x6/6!

Thus on [ — π, π] :

/(x) = a cos x + ̂ x2 ̂  a - (a - l)x2/2 + αx4/36

^a-9(a- l)2/4a (2.2)

where the last quantity is the minimum of the fourth order polynomial. Inserting
(2.2) into the expression (2.1) for Vε(φκ) yields:

J/(φκ) ̂  (4πα)~ Vc« - 1 - αcκ - (9/4)(e«c« - l)2e~^}

^-(3/4π)2[sinh(iαcκ)/α]2

= - (3/4π)2[sinh(f αcκ)/αcκ]
2^αc-c2^

^-(3/4π)2cκV
c% (2.3)

since #(x) = x~2e~x sinh2(x/2) satisfies 0 ̂  g(x) ^ 1 on [0, oo). D

Corollary 2.2. Let φκ = φ*hκ where hκ(k) = χ { \ k \ ^κ/m0}. Then for any δ>0
there is a constant a(δ) independent ofε, K with

Vε(φκ)^-aκ«+*. (2.4)

Proof. By explicit computation, cκ = \ln(l + κ2) ^ 1 + lnτc. Since x2^δ~2eδx

and since α < 1, (2.4) follows from (2.3) with a = δ~2eί +δ. D
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In this section we choose for convenience a sharp momentum cutoff: φκ = φ*hκ,
-

Theorem 3.1. Let α = ε2/4π < 1 and p^2. There is a constant b(α), bounded
uniformly on closed subsets o/[0, 1), such that with y(α) = 3(1 — α)/(l + α),

Proof. We introduce an interpolating field φκ(s) = sφ + (1 — s)φκ. Then from
Taylor's formula with remainder

0 0 0 0 0 Oε4 CS A

Consequently with | ε \ g ε0 < ^/4π and p = 2n9 an even integer,

d4 d
Vε - VE)K 12 n

n ̂  sup sup JdμJ j dx —^ —: cos εφκ(s): (x)

Γ 2n ( d4 d \ n Ί
= sup sup Π JA ^4 ^Γ )Jdμ0 Π : cos ε.φ^ : (x4)

|ε|^ε0 se[0,l]L/=l \J ^^i ^7 i = l Js^s
εt = ε

[ 2n / p4 ^ \ v-i "~|

Πίί^i Σ ;ΓΪ;Γ) β~
(1/2)l/ΛειεjCκ(SίSj';X£""j) (3.1)

. . , , ί = ι\A δi=±ιoεi osί/ Js.=s

where

Cκ(st;x) = (3.2)

In Lemma 3.2 below we show that the quantity in square brackets in (3.1) is bound-
ed by:

2n 8n

f I Σ 7Δ-i Δ*ι Δ*ι LJ

2n /

Π K*,Σ
ί=l\A δt = ±

2t)\ t\
2ί -

Ω2r+8t-8n C2t-2n
o ύ

m = l

\δCκ(Xjm-XβJ\e
- (1/2) X M

where the integers i z ,α I 5 1 ̂  / ̂  r, and jm,]8m, 1 ̂  m ̂  ί, satisfy

The Holder inequality is now applied to give the bound

J A, Π cj^^ - x,) Π

(3.3)

ί=ίA 1=1

1=1

m = l

l\
P2

(3.4)
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where p1

 1 H- p2

 1 + p3

 ί = 1 and || \\p denotes the norm for Lp(Δ2n). In Lemmas
3.3, 3.4, 3.5 below we bound the terms appearing in (3.4):

ΓK(s2 ;*,,-*.,)

-ίl/2)ε2

<(c3(αp))2"(2n)!,ifαp<l.

The constants are independent of τςs,ε,c). and of the sequences k

(3.5)

and
c3(x) is bounded uniformly on closed subsets of [0,1). Inserting (3.5) into (3.4),
(3.3), yields for αp3 < 1:

2n 8n

\v -v \\2n<22nc2ny y y yI ' c ' c ,̂  II T n •=.•** *-Ά / , .̂j / j / j

t\

= 4

where c4 = (4π)6. The number of sequences (αj or {/J is bounded by
number of sequences {βm} or {jm} is bounded by (2ny also r + 2ί ̂  12n, n
Thus for K: ̂  1 :

. The

I I 2" ̂

+ C2(p2))c3(αp3), which giveswhere c5 - 2c4(l + c^

II ^ - ^ε>κ II 2n * c6(2n)»κ~ W\ c6 = 6X . (3.6)

Note that since for any p ̂  2 there is an even integer 2n with p^2n< 2p> the
bound (3.6) remains valid with 2n replaced by p provided we change c6 to c7 =
218c6. Finally we make a choice of p 1 ? p 2 ,p 3 above. The only restriction is that
θφ3<L Thus we choose p1=4(l+α)/(l-α), p2 = 4(l-hα)/3(l-α), p3 = (l-fα)/2α.
The bound of Theorem 3.1 follows immediately, with b(ot) = cΊ. Π

2n

\Sι=s^R where R

denotes the expression (3.3).

_ w/ We will use the notation btj = δiδjδCκ(xi - x^ ctj = δiδίCκ(sisj x. - x^.
Noting that the exponent in L is linear in each ε.,s., we apply the identity

— ecxf(x)= ecxi — + c }f(x) successively in each of the variables sί9...,s2n,

ε1 ?...,ε2 / ί.Thus

2n
-(l/2)ΣWj*

y iφj

j=ι
(3.7)
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Expanding out the product P of the differential operators, a given term is charac-
terized by points 1 ̂  iί ^ ... ̂  ir ̂  2n, 0 ̂  r ̂  8n, at most four it equal and points
I ^j1< ... <jt^2n,0^t^2n. With each index z, or jm there is an associated
index αz ̂  iz or βm ̂  jm. Therefore

8n 2n C β r fl *

p = Σ Σ Σ Σ T π|rΠv^ Π ̂  Π vjme^;/
r = 0 f = 0 {αz,iz} { m = l

(3.8)

where Γ is an ordering operator which places — or ̂ — in its appropriate position,
OSt OSj

ordered along with c f j α; or Z?Jw βm . To obtain an upper bound on P, we first replace

bj β ,c . α by their absolute values, which is valid since P is a polynomial in these
variables with positive coefficients. Next we remove the T operation in (3.8) i.e.,
we move derivatives in (3.8) to the left until they reach the positions indicated by
(3.8) without the symbol T. This increases the bound on P since for μ, v, λ positive
integers

d_
-\dx

> 0
^VJ.

We can further increase the bound by setting ε. = ε, s. = s in (3.8) (with T removed)
before computing the derivatives rather than afterwards as specified in (3.8).
This increases the bound because for μ., v. positive integers:

Σvί[ N ί 3

,?,(£
Thus our final bound on the derivatives P in (3.7) is:

8n 2n r

^Σ Σ Σ Σ Π
r = 0 ί = 0 {az,iz} {)8m,jm} ί=l

Π
Q \2n-t

Ts.

and inserting this into (3.7) we obtain the bound L^ D

Lemma 3.3. For l^l^r, let z^αj be integers in [l,2π],^ ̂  z'/+1, no five it equal,
^Ίφi^ Then there is a constant ^(p), independent of n, /c,s,/z, {i/?az} swc/z that for
1 ^p< oo :

/=!

(3.9)

Proo/. By using the Holder inequality we may reduce the proof to the case where

*/ < h + ι>ίι < αί w^ P replaced by 8p. To achieve the reduction we decompose
{;} = [1,... ,r] into four subsets such that in each subset it ̂  il+ί. Each subset
may be further decomposed into two subsets characterized by z, < α / ? il > αz respec-
tively. Holder's inequality is now applied to the product of 8 terms resulting from
this decomposition. The cases it > α, and it < αz are handled identically—we
discuss the latter.
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Suppose now that ίt < il+1, iz < α / ? 1 ̂  / ̂  r. Introduce new variables by

>c. if i j£{ij}

' x, — ΛL if i = I .iι αj l

(3.10)

This transformation has upper triangular form because it < αz and has all its
diagonal elements equal to 1. Thus the Jacobian is 1 and then

Lp(A2n) tiφ{iι] A 1=1 A

1/P

by Haussdorf-Young (p ^ 2),

This proves Lemma 3.3 for the reduced cases, and the general case follows if we
choose c^(p) = cr(8p). D

Lemma 3.4. Forl£m^tletjm9βmbeintegersίn[l,2n]Jm<jm+19βmίjm.Then
there is a constant c2(p\ independent ofn, K, t, {jm,βm} such that for 1 g p < oo :

ί

m=l

Proof. As in Lemma 3.3 we reduce to the case jm < βm with p replaced by 2p.
With a change of variable similar to (3.10) we have in that case:

Π δcκ(Xjm - Xβj
m=l

= ί J
\k\ ^κmo

This completes the proof for the reduced case, the general case follows with the
choice c2(p) = c'2(2p), κ~ 2fp replaced by κ~ ί/p . D

Lemma 3.5. Provided αp < 1, there is a constant c3(x) independent o/ε, κ,s,p,n or
[δ. = ± 1}, bounded uniformly on closed subsets o/[0, 1), such that

We show below that for any choice of {<3.

< II -(1/2) ^ '̂-^ II Π i n
^ I l e '^ l lL l ( Zl2n) (3.11)

where εj = ε', i ̂  n, ε'. = — ε', ι > n, εf = p1/2ε. Thus the general case (arbitrary
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(5.,κ,s) is bounded by the case ^ιδi = 0, K; = oo,s = 1. The quantity on the right
of (3.11) is recognized as the classical canonical partition function for n positively
and n negatively charged particles interacting in volume A with Yukawa two-body
potential C(x — y). Frόhlich has studied this quantity [2] — in his notation it is
Zn(Cmo,χA). He proves in Theorem 3.7(2) of [2] that if α' = ε/2/4π < 1 there is a
constant K(af) with

II p -(1/2) Σ είε'jC(Xi-Xj) II < K(n'\nn f 2 Π 1 9Ϊ
[I e IΦJ | |Lι(J2n) ^ ̂ Mα ) n- (J.iέ)

where it can be checked from his proof that K(α') is bounded uniformly for α' in
closed subsets of [0, 1). Lemma 3.5 follows from (3.11), (3.12) if we take c3(x) =

To prove (3.11) we convert the expression on the left to a Gaussian integral.
Defining ε. = p1/2εδ.9 we have

-(l/^ΣW^2;*,-*,),, -(1/2)Σ«
e '*/ f / ^ 2 n Λ = α xe '-̂

i=l A

i=l A

where we have taken absolute values in going from lines 3 to 4 while in the second
last step we have used conditioning, (see for example Simon [4] page 226) since
CK(52; )^C( ) D
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