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Abstract. For Ising models with pair interactions in zero magnetic field a class
of linear combinations of products of two correlation functions is studied. We
derive sufficient and necessary conditions under which a function in this class is
(a) zero for all values of the coupling parameters, or (b) nonnegative for all
nonnegative values of the coupling parameters. Examples of correlation-
function identities and inequalities of this type are given.

1. Introduction

In a recent paper [1], to be referred to as I, it was proved that for a (zero-field)
Ising model on a planar graph the correlation functions for spins on a so-called
boundary set satisfy certain algebraic relations which are valid for all values of the
coupling parameters between the spins. These relations can all be derived from a
set of identities which can be written in the form

where (vl9...,vn) is a sequence of (not necessarily distinct) vertices which is a
boundary sequence of the planar graph [cf. I Eq. (17)].

The left-hand side of the above equation can be considered as a special case of
a function of the type £ ^(^^G^B^D^ where G is an arbitrary graph, A is an

BCA
arbitrary set of vertices of G, D a subset of A, the sum is over all subsets of A, and
the coefficients λB are independent of the coupling parameters the case where all
vertices in the boundary sequence are different then corresponds to the case D = A,
i.e. σBσD = σA\B.

In this paper we derive sufficient and necessary conditions on the coefficients
λB under which a function of this general type for an Ising model with pair
interactions in zero magnetic field is (a) zero for all values of the coupling
parameters, or (b) nonnegative for all nonnegative values of the coupling
parameters, respectively.
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In Section 2 such conditions are derived for the case D = A on the basis of an
expansion of the Boltzmann factor with respect to the coupling parameters. They
take, respectively, the form of a set of linear equations and a set of linear
inequalities for the λB with coefficients 0 and 1. In Section 3 the results are
extended to the general case DC A. Section 4 is devoted to an analysis of some
properties of the sets of correlation-function identities that can be obtained in this
way. In Section 5 various examples of such identities are given, among which those
derived in I. In Section 6 we show that some known correlation-function
inequalities follow from the general analysis given in this paper and we derive a
new inequality. We end this paper with a few concluding remarks.

Since the extension of the partition function and the correlation functions of
Ising models to complex values of the coupling parameters is sometimes useful, we
allow for these complex values where possible. This implies that the partition
function may take the value zero, in which case the normalized correlation
functions are not defined. For this reason we shall work almost exclusively with
unnormalized correlation functions the translation of the results to normalized
correlation functions is trivial.

2. Conditions for the Existence of Certain Identities and Inequalities
for Correlation Functions

As in I we define a graph to be a pair (V(G\ E(G}\ where V(G) is a set of elements
called vertices and E(G) a set of unordered pairs {v, v'} of distinct vertices, called
edges. G is finite if V(G) and E(G) are finite. For definitions used but not defined in
this paper the reader is referred to [1] and [2].

An Ising model on a finite graph G is defined as a triple (G, £f, K\ where y is
the set of all functions σ: F(G)->{ — 1, 1} (called configurations) and K a complex
function on E(G) (called the interaction function). The spin variable συ is the value
of σ at the vertex v, the coupling parameter Ke is the value of K at the edge e. The
set of all interaction functions will be denoted by Jf , the set of all Kε tf such that
Ke^0 (Ke>0) for all eeE(G) by ^(^ + ); an Ising model (G,y,K) with
KeάF (^+) is called ferromagnetic (strictly ferromagnetic).

For any set A C V(G) we define

^=ΓK; W
vsA

for A = 0 we have σβ = l. For any edge e={v,v'} and any set^c£(G) we define

σe = σvσυ, (2)

(3)
eeX

The Hamiltonian of an Ising model (G, £f, K) is defined by

#G»=- Σ Keσ<, (4)
eeE(G)

the unnormalized and normalized (spin) correlation functions (σA)G>κ and (σAyG>κ,
respectively, for any set A C V(G) by
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where Z, the canonical partition function, is defined by Z = (1)G κ. For brevity, we
shall often suppress the index K, and, where no confusion can arise, the index G as
well. We have taken /? = !.

Since the Hamiltonian is quadratic in the σv, the correlation function (σA)G κ

vanishes if \A\ is odd. Therefore, we shall henceforth consider only correlation
functions (σA}G κ for even sets A, i.e. for sets with \A\ even.

We now consider an arbitrary even set AcV(G). Let λ = {λB}BcA be a set of
complex numbers defined for all even sets Be A, with the restriction λB = λA\B for
all B. We introduce the following quadratic combination of unnormalized
correlation functions :

ΛA(G, K) = Σ* ^B)G,K(^A\B}G,K , (6)
BCA

where the sum is over all even sets B CA. For convenience, a function of the type (6)
will be referred to as a A- function. We shall now derive a condition for λ under
which a /L-function satisfies the equation AA(G9 K) = 0 for all Ke JΓ (to be referred to
as a A-identity], and a condition for λ under which it satisfies the inequality AA(G, K)
^0 for all Ke^ (to be referred to as a Λ-inequality).

We first consider an arbitrary product of two unnormalized correlation
functions (σβ)G(σc)G with B, CcF(G), Br^C = 0. If we expand the Boltzmann
factors in this product with the aid of the elementary relation

eκ*"e = ce + seσ
e, (7)

where e is an arbitrary edge, ce = coshKe and se = sinhKe, we obtain

K)G(σc)G = {ce(σβ)G, +se(σβσ%,} {ce(σc)G, + se(σcσ%,} , (8)

where (σB)G, etc. are correlation functions of the Ising model (G', £f, K'} obtained
from (G9y9K) by deleting e from G and restricting K to E(G)\e [which is
equivalent to putting Ke = 0 in HG κ(σ}~\.

Using c2 = l+s2 we rewrite Equation (8) as

+ ̂ 2{K)G'MG' + (^σ%,(σcσ%J . (80

We now repeat this process for all other edges of G. To write the result in a
compact form we associate with each term in the resulting expression a function

Θ:E(G)->{0,1,2}, (9)

where θe = Q, 1,2 labels the first, second and third term in the right-hand side of
Equation (8'), respectively, and the edge sets Lθ = {eEE(G)\θe = l} and
Mθ = {eεE(G)\θe = 2}. The set of all functions θ is denoted by Θ. We further define

0(0)= Π 9e(θe), (10)
eeE(G)

where ge(0)=l, ge(l) = cese, ge(2) = s2

e, and

Γθ(B,Q= Σ Σ (σBσ
xσ\0(σcσ^xσ\β , (11)
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in which G0 is the graph defined by F(G0)=F(G), E(G0) = 0.
The result of applying Equation (7) to all edges of G is

M>C)G= Σ 0(0) WO- (12)
θe<9

A convenient way to characterize the various terms in ΓΘ(B, C) is the following.
We define for each θ a graph Gθ by V(GΘ)=V(G\ E(Gθ) = LθuMθ; i.e. Gθ is
obtained from G by deleting all edges e with θe = 0. For each pair of sets X C Lθ,
YCM0 we define a function

where Z2 is the field of integers modulo 2, by

"(1,0) if eeX

(0,1) if

(1,1) if eeY

(0,0) if eeMθ\Y.

Conversely, every function of the type (13) with the property

*•-*•« ™th fctfcii ί :;«.
defines two sets XCLΘ, YcM0, and hence a term in ΓΘ(B,C\ by

(16)

We remark that in the terminology of algebraic graph theory φ is a 1 -chain of Gθ

over 7L2 x Z2 (cf. [3]).

Let us now analyse the various terms of ΓΘ(B, C). Since (σA)Gβ = Σ <*A and
σ

Σ σt> = 0, we have
σ v = + l

(σJGi =2'^G>'^fβ for all ^CF(G). (17)

Hence, the only nonvanishing terms in the right-hand side of Equation (11) are
those for which

The first condition requires that every vertex in B is incident with an odd number
of edges of XuY and every vertex in V(G)\B with an even number of edges of
XuY; the second condition is analogous.

These conditions can easily be translated into a condition on the function φ if
we introduce the functions dφ : F(G)->Z2 x Z2 defined by
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where the sum (taken in TL2 x %2) is over all edges in Gθ incident with the vertex v9

and χ(B9 C) : V(G}-+TL2 x TL2 defined by

Γ(l,0) if veB

χυ(B,Q=\(0,l) if veC (20)

[(0,0) if vφBvC.

dφ and χ(B, C) are 0-chains of Gθ over Z2 x TL2, dφ is called the boundary of φ.
In terms of these functions, Equation (18) can be written as

dφ = χ(B9Q. (21)

The set of all functions φ which, for a given choice of θ, B and C(Br\C = 0), satisfy
Equations (15) and (21) will be denoted by ΦΘ(B,C). Since every non-vanishing
term in the right-hand side of Equation (11) is equal to 22|K(G)I we have

Γe(B9Q = 22\vW\Φe(B9C)\. (22)

We now proceed to derive a few properties of the sets ΦΘ(B9 C).
We call a set S of edges of a graph G a (generalized) cycle of G if each vertex of

G is incident with an even number of edges of S. The total number of cycles of Gθ,
including the empty cycle 0, will be denoted by γθ.

Lemma 1. If, for θeθ and for disjoint sets B9CCV(G)9 Φθ(B9 C) is not empty, then
\Φθ(B,C)\=yθ.

Proof Let φeΦθ(B,C\ ScE(Gθ)9 and define φ' = φ + ψ, where

(23)
(0,0) if eφS. ( }

Then it is easily verified that φ'εΦθ(B, C) if and only if 5 is a cycle of Gθ

 l. Since this
establishes a one-to-one correspondence between the functions φ' in ΦΘ(B, C) and
the cycles S of Gθ, the lemma follows. D

For any graph G and any set A C V(G) let π(A9 G) denote the partition of A
induced by G, i.e. the partition in which two vertices of A are in the same block if
and only if they are in the same connected component of G. If H is a spanning
subgraph of G, i.e. if V(H) = V(G\ E(H)CE(G\ the partition π(A9H) is a refinement
of π(A9 G), i.e., the blocks of π(A9 H) are subsets of those of π(A9 G). If H is a
subgraph of G such that π(A, H) = π(A9 G) and no proper subgraph of H has this
property, we call H a skeleton graph associated with the partition π(A, G).
Evidently, a skeleton graph is a forest, i.e., it contains no circuits. It is easily seen
that for each partition π(A9G) with A + 0 there is at least one skeleton graph.

The set of all partitions of A will be denoted by 77A, the set of all even partitions
of A (i.e. partitions of A into even subsets) by Πe

A, and the set of all even partitions
of A induced by spanning subgraphs of G by Πe

A(G). Obviously, ΠQ = Πe

Q = Πe

0(G)

1 If S is a cycle of Gθ, \p is a cycle vector of Gθ [3]. If we denote the number of independent cycle
vectors (the cycle rank or cyclomatic number) of a graph G by c(G\ we have yθ = 2c(Gθ). It is well known
that c(G) = \E(G)\ - \V(G)\ + number of connected components of G
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Lemma 2. If, for θeΘ and for disjoint sets B,CcV(G), Φθ(B,C) is not empty, then
π(B, GQ) and π(C, Gθ) are even partitions.

Proof. Let H be any connected component of Gθ, BH = Br^V(H\ and CH

= CnF(//). Consider a function φeΦθ(B,C). By Equation (21) we have

Σ (3Φ)υ= Σ χυ(B,Q= Σ σ,o)+ Σ (<U).
veV(H) veV(H) veBH veCH

On the other hand, we have, by the definition of dφ9

Σ (8Φ)a= Σ Σ 0β=(o,o),
veV(H) veV(H) eincυ

since every edge in H is counted twice in the double sum. It follows that \BH\ and
\CH\ are even. Since H is arbitrary, the lemma follows. D

Lemma 3. If, for θeΘ and for disjoint sets B,CcV(G\Φθ(0,BuQ is not empty and
π(B, GQ) is an even partition, then ΦΘ(B, C) is not empty.

Proof. Suppose that Φθ(0, /?uC) is not empty and that π(B, Gθ) is an even partition.
Consider a skeleton graph H associated with π(B,Gθ). The set E(H) is the

disjoint union of two uniquely determined sets E1 and E2 with the property that if
an edge eeE1(eEE2) is deleted from H the connected component of// containing e
breaks up into two components, each one containing an odd (even) number of
vertices of B. Each vertex in B is incident with an odd number of edges of E15 each
vertex in V(H)\B is incident with an even number of edges of Ev We now delete
the edges of E2 from H in the resulting graph H' the vertices of B are the only
vertices of odd valency.

For vεB we have χy(0,5uC) = (0, 1), χv(B9Q = (l,Q) and hence

Consider a function (/>eΦθ(0,£uC). We define a function φf:E(Gθ)-*Z2 xTL2 by

Φ'e = φe + ( l , l ) if eeE,,

φ'e = φe if eeE(Gθ)\E1.

Obviously φ' satisfies Equation (15) by the above-mentioned property of//' it also
satisfies Equation (21). Hence φ'εΦθ(B,C\ which proves the lemma. D

Let, for AC V(G) and πeΠe

A(G\ θπ(A) denote the set of all functions θeθ such
that π(A, GΘ) = π and Φθ(0, A) is not empty.
Lemma 4. For any AcV(G), and any πeΠe

A(G\ Θπ(A) is not empty.

Proof. If Πe

A(G) is empty, the lemma is trivial, so let ΠA(G) be non-empty, and
πεΠA(G). Then, by the definition of ΠA(G), there is a spanning subgraph G of G
such that π(A, G') = π. Let H be a skeleton graph associated with π(A, G'\ and E1

and E2 the corresponding edge sets defined in the proof of Lemma 3.
We now define for each eeE(G)

ίO if eφEίuE2

θe=\ 1 if eeE, (24)

1 2 if eeE2,
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and for each eeEl^jE2

,l) if eeE1

,0) if eeE2.
 (25)

The functions Θ:E(G)->{0,1,2} and φ:E(Gθ}-+Z2xZ2 thus defined have the
following properties: (a) since Gθ = H, we have π(A, Gθ) = π(A, H) = π(A, G') = π; (b)
by its definition, φ satisfies Equation (15); (c) since the vertices of A are the only
vertices of GΘ = H incident with an odd number of edges of E1 (cf. the proof of
Lemma 3), φ satisfies Equation (21) with B = θ, C = A. It follows from (b) and (c)
that φeΦθ(09A), i.e. Φθ(β,A) is not empty, and from this fact together with (a) that
θeΘπ(A\ which proves the lemma. D

It follows from Lemmas 1-3 that

\πmr\\ |Ίφθ(0>βuC)l if πCB>Gθ) is an even partitionΦ 0W^)=1 Λ ,1 (26)
[0 otherwise.

From Equations (12), (22), and (26) we conclude that

(σB)β(σc)G= Σ Σ 2 W I M ( π ( 5 ) , (27)

where for any set B C A and any partition

1 if the number of elements of B in every block of π is even

0 otherwise.

We observe that the factor in front oϊηπ(B) in Equation (27) depends only on
not on B and C separately. This implies that the function ΛA(G, K) introduced in
Equation (6) can be written in the form

ΛΛ(G,K)= Σ I Σ ^v^γβ9(θ)}IΣeλBηπ(B)}. (28)
πeTIf(G) (θeΘπ(A) J (BcA J

We now have the following two theorems:

Theorem I. If A is an even set of vertices of a finite graph G, and {λB}BcA a set of
complex numbers defined for all even sets BcA, with λB = λA\B for all B, then

y]e λ (σ ) (σ ) =0 (29)
BCA

for every I sing model on G if and only if

= 0 (30)
BcA

for every partition πEΠe

A(G).

Proof If Equation (30) holds for all πεΠe

A(G\ then by Equation (28), AA(G9K)
vanishes [i.e., Eq. (29) holds] for all KeJf. Conversely, suppose that ΛA(G,K)
vanishes for all Ke JΓ. Let π be an arbitrary element of Πe

A(G\ H a skeleton graph
associated with π, E1 and E2 the edge sets and θ and φ the associated functions
defined in the proofs of Lemmas 3 and 4. It was shown in these proofs that θ and φ
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satisfy Equations (15) and (21). On the other hand, if φ' is a function on E(H)
satisfying Equation (21), the set of edges e with φ'e + φe must be a cycle of//. Since
the only cycle of H is the empty cycle, we have φ' = φ, i.e., φ is the only function
with domain E(H) which satisfies Equation (21). Equation (15) then shows that the
function θ defined by Equation (24) is the only element of Θπ(A) such that θe = Q
for eeE(G)\E(H), i.e. if θ'eθπ(A) and θ' + θ then θe + 0 for some eeE(G)\E(H).

Let now K0 be a positive real constant and K the function on E(G) defined by

Ke = K0 for eεE(H)

Ke = 0 for eeE(G}\E(H). (31)

By Equation (10) we have in this case

(c0s0)lE'l(s^l, (32)

where c0=coshK0, s0 = sinhK0. On the other hand, we have γθ = l. For any other
function ΘΈΘπ(A\ g(θf) contains at least one factor cese or s^ for eeE(G)\E(H\
and hence vanishes. The same applies to any other ΘΈΘ such that
E(GΘ,)\E(G0)Φ0, in particular to any ΘΈΘπ,(A) where n' is not a refinement of π.

Consider now a partition π'eΠA(G) where π'(φπ) is a refinement of π, and a
function θ'εΘπ,(A) such that E(Gθ,)cE(Gθ). From the definition of the set Eί and
the fact that π' is even it follows that θ' is obtained from θ by replacing the value 2
by the value 0 for one or more properly chosen edges of E2. Hence,

g(θt) = (c0s0)^(s^-r with r ^ l . (33)

It follows that 2"2|F(G)|(c0s0)" |£lU^(G,K) is a polynomial in s2

0 of degree |E2|, in

which the coefficient of the term of highest degree is ^ ηπ(B)λB.
Be A

Since ΛA(G, K) = 0 for all values of the constant K0, we must have

Σe^lπ(B)λB = Ό9
Be A

which completes the proof of the theorem. D

Theorem 2. If A is an even set of vertices of a finite graph G, and {λB}BcA a set of
real numbers defined for all even sets BcA, with λB = λA\Bfor all B, then

Σβ -U'lλϊKiΛ^O (34)
Be A

for every ferromagnetic I sing model on G if and only if

0 (35)
Be A

for every partition

Proof. For KE^ we have g(θ)^Q for all θεθ. Therefore, if Equation (35) holds for
all πeΠe

A(G\ then, by Equation (28), AA(G,K) is nonnegative [i.e., Equation (34)
holds] for all Ke^. Conversely, suppose ΛA(G,K)^Q for all Kε^. Let π be an
arbitrary element of ΠA(G). Following the lines of the proof of Theorem 1 we
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construct an interaction function KE^ for which 2~2|F(G)l(e0s0)~ |£l |yl^(G,K) is a
polynomial in SQ. Since this polynomial is assumed to be nonnegative for all
nonnegative values of K0, the coefficient of the term of highest degree must be
positive, i.e.

Be A

which completes the proof of the theorem. D

Corollary. If A is an even set of vertices of a finite graph G, and {λB}
e

BcA a set as
defined in Theorem 2, then

Σ^B(σB)G(σ^B)G>0 (36)
Be A

for every strictly ferromagnetic I sing model on G if and only if Equation (35) holds for
all πEΠA(G} and in addition

Q (37)
Be A

for at least one πeΠA(G).

Proof. The corollary follows immediately from Theorems 1 and 2 together with the
fact that ΛA(G, K) is an (entire) analytic function of all coupling parameters. D

3. Generalization of Theorems 1 and 2

Theorems 1 and 2 can be extended to identities and inequalities for correlation
functions on a vertex set A in which the products (σB)(σc) refer to subsets B and C
of A which satisfy the condition that their symmetric difference (to be denoted by
BC) is a given set D C A the case discussed thus far, where B and C are disjoint and
their union is A, corresponds to the choice D = A.

It is possible to derive these generalizations by a proper extension of the
analysis of the preceding section. However, for reasons of transparency, and in
order to show that the general case is, in a certain sense, already included in the
special case D = A, we shall present another derivation, starting from the results of
Section 2.

Let A be a (not necessarily even) subset of a graph G, and D an even subset of
A. By ΠA(D) we denote the set of all partitions of A in which the number of vertices
of D in each block is even, and by ΠA(D, G) the set of those partitions in ΠA(D) that
are induced by spanning subgraphs of G.

Theorem 1*. If A is an arbitrary set of vertices of a finite graph G, D an even subset of
A, and {λB}BcA a set of complex numbers defined for all even sets Be A, with λB = λBD

for all B, then

Σe^K)cKβ)G=0 (38)
Be A

for every Ising model on G if and only if

0 (39)
Be A

for all partitions πeΠA(D,G).



200 R. J. Boel and P. W. Kasteleyn

Proof. Let Q = A\D, and Q a set of vertices not in V(G) which are in a one-to-one
correspondence with the vertices of Q the vertex in Q corresponding to veQ will
be denoted by υ'. Let G* be the graph defined by F(G*)=F(G)uβ', E(G*)
= £(G)u{{ι;5 v'}\veQ}, and let A* = AuQ. We extend the interaction function K to
a function K* on £(G*) by defining

K* = Ke if

K* = K 0>0 if eeE(G*)\E(G).

It is readily verified that for any set of complex numbers {λB}
e

BcA we have,

)G^σBD)G κ. (40),
BCA BCA

It follows that the sum in the right-hand side of Equation (40) vanishes if and only
if the left-hand side is zero, i.e., by Theorem 1, if and only if Σ* ηπ*(B)λB = Q for

BCA
every π*eΠA*(G*); strictly speaking this requires the symmetrization of the set
{λB}BcA with respect to A*.

Consider a partition π*eΠA*(G*). Since π* is an even partition no vertex v'εQ'
can form a block by itself. Therefore every vertex vΈQ' is in the same block as the
corresponding vertex veQ; hence, the number of elements of D in every block is
even. Let now π be the partition of A obtained from π* by deleting all vertices of
Q'. Obviously, πeΠA(D, G). Conversely, every πeΠA(D, G) can be supplemented to
a partition π*EΠA*(G*) by putting each vertex vΈQ' into the same block as the
corresponding vertex veQ, and hence the theorem follows. Π

The corresponding generalization of Theorem 2 (to be referred to as Theorem
2*) is obvious and will not be discussed explicitly. Equation (38) and the analogous
generalization of Equation (34) will again be called a /1-identity and a A-
inequality, respectively.

Theorems 1* and 2* remain valid if the unnormalized correlation functions are
replaced by the corresponding normalized correlation functions, provided we
restrict ourselves to Ising models with ZΦO; in Theorem 2* this condition is
always satisfied. The resulting identities and inequalities remain valid if for some
edge e = (w, v} we take the limit Ke-> oo, i.e. if the edge e is contracted and the spin
variables σu and σv are identified.

Using Equations (28) and (40) and the relations

we also find that taking the derivative with respect to any coupling parameter
Ke(eeE(G)) in a /[-identity (/t-inequality) results in a Λ-identity (yl-inequality). For
/L-inequalities this implies, in the terminology of Newman [5], that they apply
strongly.

4. Some Properties of Sets of Λ-Identities

It follows from Theorem 1 that for a given graph G and a given set A C V(G) the
number of linearly independent /L-identities, with D = A, for spin correlation
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functions on A, to be denoted by LA(G\ is equal to the number of linearly
independent solutions of the set of linear equations (30). The latter number
depends on G and A only through the set of partitions ΠA(G). In general, the larger
the set ΠA(G), and hence the number of conditions on λ, the smaller the number of
linearly independent solutions of Equation (30), and hence LA(G). In particular, we
have the following theorem.

Theorem 3. // G and G' are finite graphs, and A is an even subset of V(G) and V(Gf\
then

i) LΛ(G) = 0 if Π«A(G) = Πe

A, (41a)

ii) LA(G')^LA(G) if Π*A(G)CΠ*A(G')9 (41b)

iii) LA(G) = 2^'2 if Πe

A(G) = 0. (41c)

Proof, i) If ΠA(G) = ΠA, Equation (30) is required to hold for all even partitions π
of A. We shall show that already the set of equations obtained by restricting π to
the partitions of A into one or two even subsets has no nontrivial solution.

If Pπ and A\Pπ are the subsets into which A is partitioned by π (where for
convenience a one-block partition is considered as a partition of A into 0 and A),
then for any even set BCA

ίl if |BnPj is even
η"( ' JO if |BnPj is odd,

The set of equations (30), with the restriction imposed on π, can therefore be
written as

Σe(i+(-i) |βnp|μ*=o (42)
BcA

for all even PC A; observe that the equations with P and A\P are identical.
Multiplying Equation (42) with (- l)lB/np |, with B'CA, \B'\ even, summing over P
and using the relation

.
PCA

for U = B' and U = BB'9 we obtain

BCA

It follows that λB> + λA\B, = 0 for all even sets Bf C A. Since we have taken λB, = λA\B,,
it follows that λβ, = Q for all even sets B'cA. Hence, LA(G) = Q.

ii) If Πe

A(G) C ΠA(G')> the set of linear equations (30) for the graph G is a (proper
or improper) subset of that of G', and hence the set of identities of the type (29)
valid in G' is a subset of the set of identities valid in G. Statement ii) follows.
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iii) If Πe

A(G) = 0 there are no linear equations for the coefficients (except the
condition λB = λA\B for all B\ and we have LA(G) = %\{B\BcA,\B\ even}| = 2μ ι~2.
The simplest set of independent identities then consists of the equations
(σB)o(σA\B)G = ̂  f°r a^ K£<^ (BtA, \B\ even), the validity of which is trivial. D

Examples of the three cases considered in Theorem 3 are :
i) G is a complete graph, i.e. G = (F,EC), with Ec = {{v,vf}\v,vΈV,v + v'},

ii) G is a spanning subgraph of G',
iii) G is an empty graph, i.e. G = (F, 0).
If G = (F, E) with E φ Ec there is at least one set A C V for which LA(G) > 0, viz.

A=V. This is expressed in the following lemma.

Lemma 5. // G = (V,E) with E = Ec\e (eεEc) we have the following identity

Σe(-^{Vί'V2^B}G(°v\B)G = V, (43)
BCV

where vl and v2 are the vertices incident with e.

Proof. The equations (30) read in this case

BCV

or

Σe ηπ({v^v2}uR)- Σ° ^/π({t;1}uΛ) = 0, (44)
RCV" RCV"

where V" = V\{vl9v2}, and Σ° denotes summation over all odd subsets of V".
RCV"

Consider first a partition π in which v1 and v2 are in the same block. By the
structure of G, partitions in which vί and v2 form a block by themselves are not
contained in Πe

v(G). Therefore, if we denote the blocks of π by Uί9 U2, ...,Ur

(where Uί is the block containing v1 and v2\ U1r^V" is not empty. The first sum
on the left-hand side of (44) is equal to the number of even sets R C V" such that
\Rr\Ui\ is even for 1^/^r, the second sum is equal to the number of odd sets
RCV" such that I^Rnl/J is even for 2^i^r and odd for i= 1. Since U \r\V" is not
empty, the number of even subsets of UίnV" equals the number of odd subsets.
Hence, the two sums in the left-hand side of (44) cancel. A similar argument applies
to partitions in which vί and v2 are in different blocks. D

The generalization of Theorem 3 to the case that A is an arbitrary vertex set of
G and D an even subset of A is straightforward.

5. Examples of /i-Identities

1) As a first example we discuss in detail the case |^4|=4, D = A. Let A
= {vί,υ29v3,υ4}. We have, with λij = λ(ij} and σi = σVι,

(σ1σ4)(σ2σ3)] . (45)

The set Πe

A(G) is a subset of the set ΠA = {πi\0^i^3} where, in an obvious
notation,

π0 = (1234),π1=(12|34),π2 = (13|24),π3=(14|23).
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If we define:

fc»=iΣeV7π(β), (46)
Be A

we find,

kA(π0) = λ9+λ12 + λ13+λl49 (47a)

fc>ι) = Λ β + A 1 2 , (47b)

kA(π2) = λ9+λ139 (47'c)

fe>3) = λ β + A 1 4 . (47d)

a) If ΠA(G) = ΠA, then according to Theorem 3 there are no ^-identities for A,
as can easily be checked by putting all kA(πt\ Orgi^3, equal to zero. As remarked
above, this case is realized e.g. if G is a complete graph, with A C V(G\

b) We now consider the cases where |IΓ^(G)| = 3. One easily verifies that the
only possibilities are ΠA(G) = ΠA\{πi} with 1 ̂ z^3, since π0 is in ΠA(G) whenever
two of the three partitions π (l ̂  ί ̂  3) are in ΠA(G). Without lack of generality we
assume Πe

A(G) = {πQ9πί9π3}. The condition for the existence of an identity now
consists of the equations kA(nt) = 0 (z = 0,1,3), which have as the only solution Λ,0

= ~λί2 = λ13 = — λ14. The resulting identity reads

(I)(σ1σ2σ3σ4) - (σ1σ2)(σ3σ4) + (σ1σ3)(σ2σ4) - (σ1σ4)(σ2σ3) = 0. (48)

The graphs G for which this identity holds are characterized by the fact that
the partition π2 of the set A is not induced by any spanning subgraph of G. This
implies that every chain between v1 and v3 separates v2 from v4 (i.e. has a vertex in
common with every chain between v2 and v4).

The identity (48) is a special case of a general class of identities which formed
the subject of I, and to which we shall return later on in this section (Example 4).

c) Consider now the cases where \Πe

A(G)\ = 2. The only possibility is that where
ΠA(G) = {πθ9π.} for some i (l^z'^3). Suppose i=l . From the equations kA(π0)
= kA(π1) = 0 we find λθ = — λί29 λ13 = — λ14, and hence

;.0[(l)(σ1σ2σ3σ4)-(σ1σ2)(σ3σ4)]+/ί13[(σ1σ3)(σ2σ4)-(σ1σ4)(σ2σ3)]=0 (49)

for any λ& and /ί13. This implies

(I)(σ1σ2σ3σ4) = (σ1σ2)(σ3σ4),

(σ1σ3)(σ2σ4) - (σ1σ4)(σ2σ3). (50)

This case applies when G contains a vertex v (cut vertex or articulation vertex)
which separates vί and v2 from v3 and v4 (i.e., which is contained in every chain
between v1 and v3 etc.); v need not be distinct from vl9v29 υ3 or υ4. This can be
shown by introducing two new vertices u and ur, and four new edges {u, v^}, {u, v2},
{u',v3}, {u',v4} and applying Menger's theorem to the vertices u and u' (cf. [2, p.
129]).

The relations (50) are trivial in that they follow directly from the factorization
of correlation functions in a graph with a cut vertex.



204 R. J. Boel and P. W. Kasteleyn

d) If \Πe

A(G)\ = 1 we have either Πe

A(G) = {π0}, or Πe

A(G) = {π J with i = 1, 2 or 3
suppose z = l. In both cases there are three linearly independent ΛUidentities. In
the former case we find

(I)(σίσ2σ3σ4) = (σ1σ2)(σ3σ4) = (σ1σ3)(σ2σ4) = (σ1σ4)(σ2σ3); (51)

this case applies when G contains a cut vertex v (not necessarily distinct from
vl9v2,v3 or u4) which separates every u. from every vj (l^ίj^4, zφj).

If π x is the only partition in ΠA(G\ we find

(σ1σ3)(σ2σ4)-(σ1σ4)(σ2σ3)-0. (52)

Here, G is not connected, v1 and v2 are in one component and υ3 and ι;4 in another
one.

e) The case where ΠA(G) is empty, has been dealt with in Theorem 3.
2) We next consider the case A = {υl9 v2, t;3, t;4}, |D| = 2, e.g. Z) = {t;l5 υ2}. The set

J7ΛAG) is a subset of the set {(1234), (123|4), (124|3), (12|34), (12|3|4)}. Again, if
ΠA(D, G) contains all these partitions, there are no A-identities. In contrast with
Example 1, the deletion of one partition from this maximum set does not
necessarily lead to a Λ-identity. If, e.g., the partition (124|3) is missing (which is the
case if υ3 separates v1 and v2 from υ4\ one easily sees that the equations (39) have
no non-trivial solution.

We discuss only one case in which identities do occur, viz. that where υ3

separates υl from υ2 and ι>4. In that case, 77^(7), G) = {( 1234), (123|4)}. There are
two conditions on the four independent coefficients λB, and we find the following
identities,

(I)(σ1σ2)-(σ1σ3)(σ2σ3),

(σ1σ4)(σ2σ4) - (σ3σ4)(σ1σ2σ3σ4) , (53)

which also follow, of course, from the factorization property mentioned above.
3) We now turn to the case \A\ = 6, D = A. If A = {vt\ 1 ̂  ί ̂  6}, then

(54)

We give one example of a /L-identity which can occur in this case, viz. that with

The corresponding numbers kA(π) are non-zero only for the partitions πa

= (13|2456), πb = (13|24|56), πc = (13|25|46) and πd = (13|26|45). Hence, the corre-
sponding /1-identity holds if these partitions are not in ΠA(G). This can occur in
various ways, of which we mention the following ones.

a) G is the graph obtained from the complete graph K6 by deleting the edge
{ι;1,ι;3}, and A = V(G). This case has been dealt with in Lemma 5.
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b) G is a planar graph and the sequence (vl9v2,v3,v4,v5,v6) is a boundary
sequence of G. A boundary sequence of a planar graph G is a sequence of (not
necessarily distinct) vertices (uί9...,un) of G such that the graph G' defined by
F(GO=F(G)u{w0,w1 ?...,wJ (w^F(G), O^i^n) and £(G/) = £(G)u{{w0,wJ,
{w^wj, { W j j W + ̂ l l^z^n} with wn + 1=w1is planar (see I). It was proven in I that
for any boundary sequence (uί9 w2, u3, u4) every chain between w x and w3 separates
ι/2 from u4 furthermore, every subsequence of a boundary sequence is a boundary
sequence. Applying these properties to the sequences (ι;l5ι;2, ι;3, ̂ ) (z = 4,5,6) we see
that indeed Πe

A(G) does not contain the partitions πα, πb, πc, and πd.
This example can be generalized, e.g. in the following way. Let

(vl9 v29 t>3, ^4, w'1? t;5, ι?6, w2) be a boundary sequence of a planar graph G1? G2 an
arbitrary graph such that V(G1)nV(G2) = {v5, v6, w'1? vv2}, and G = G1uG2, the
union of G1 and G2. A chain between υί and ι;3 which does not contain the vertices
v2, v49 v59 v6 is either a chain in G1 or it contains edges of G2, and hence w^ and w2. In
the former case it separates v2 from v4, v5 and v6 in the latter case it contains a chain
between w\ and υ3, which separates ι;4 from v2, v5 and u6. In both cases Πe

A(G) does
not contain the partitions πα, πb, πc, and πd.

4) As a final example we give an alternative proof of the main result of I
mentioned in the introduction. Let G be a finite planar graph, S = ( v ί 9 ...,vn) a
boundary sequence of G, A the set of vertices occurring in 5, and D the set of
vertices occurring an odd number of times. By Theorem 1*, the ΛUidentity

=o (55)

holds if and only if, for all partitions πeΠA(D, G),

- (56)

Let π = {Uί,...,Ul}eΠA(D,Gl with ^et/!. Then, for all k (l^fc^/), |ί7fcnD| is
even, and so the set Jk : ={71^.617^ l^j^n} is even. Let JΓ

1 = {/oJi5 »Jn} w^tn

J0 = l<j1<...<jm. Since ^ ({^1?^}) = 1 iff ^eJ l5 and //π(0) = l, Equation (56)
reduces to

Since for any r every chain between vjr and vjr+ί separates all u. with jr < i < jr + 1

from all other vertices of S, the set {ί\jr<i<jr+1} is a union of sets Jk, and hence
even. Therefore, (— l)J'r = (— l)r~ 1, which proves the validity of Equation (56), and
hence of Equation (55).

6. Examples of A -Inequalities

1) First consider the first GKS inequality [4], restricted to ferromagnetic Ising
models on a graph, i.e. with pair interactions, which we write in the form

(58)
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Since ηπ(0) = ί for all πεΠe

A, Equation (58) follows from Theorem 2.
2) The second GKS inequality [4] for ferromagnetic Ising models reads

(σ&)(σBσc)-(σB)(σc)^V (59)

for arbitrary sets B, C C V(G). The validity of this inequality in the case of pair
interactions follows from the fact that ηπ(0) = 1 and ηπ(B) = 0 or 1, and hence ηπ(0)
-ηπ(B)^0, for all πe/IβuC(βC, G).

3) We next turn to a set of inequalities recently derived by Newman for
ferromagnetic Ising models with pair interactions [5]. Let G be a graph, AcV(G\
A even, andXA a collection of even subsets of A such that every partition of A into
pairs is a refinement of some two-block partition (B\A\B) of A with BεXA.
Newman's inequality reads

(σ0)(σ^ £ (σB)(σA,B). (60)
BeXΛ

By Theorem 2, it is sufficient to prove that

*/*(0) = l^ Σ njβ) for all πeTT^G). (61)
BeXΛ

Consider any πeΠA(G) and let π' be a partition of A into pairs which is a
refinement of π. Since, by definition, there is at least one BεXA such that π' is a
refinement of (B\A\B) every block of π' contains 2 or 0 elements of B. Hence
ηπ,(B) = l, and therefore ηπ(B)=L Since ηπ(B')^Q for all other B'eXA, the
inequality (60) holds.

Our general formalism, applied to this particular case, resembles the derivation
of Equation (60) given by Sylvester [6].

4) Finally we derive a new Λ-inequality for the case |A| = 6, D = A, namely:

(l)(cτj+ Σ (<7 l f f,X<T l f f/Tjg X (σ^X^σ/jJ. (62)
J = 2 ί ,J=2

'<J

By Theorem 2 it is sufficient to show that for all πeΠe

A

1+ Σ »/«({«ι. ̂ »^ Σ »7π(K^}). (63)
. V<=2

If π = (123456), we have ?yπ({^, ̂ -}) = 1 for all ij (iή=j) and hence Equation (63) is
valid. If π is of the type (lj\klmri), the left-hand side of Equation (63) is equal to 2,
the right-hand side to 6, and again Equation (63) is valid. The remaining two cases,
where π is of the type (ίjkl\mn) or (\j\kl\mn\ are dealt with in a similar way. The
extension of the inequality (62) to the case \A\ = n^.6, n even, is straightforward.

The examples of /L-inequalities discussed above are valid for any graph G
containing the given sets A and D. Evidently for any choice of A and D, Theorem
2* enables one in principle to derive all /[-inequalities on A which have the same
general validity. The corresponding sets λ, considered as vectors in Rn (n = 2][A\~2}
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with components λB, form a convex cone. If, for a particular choice of G, ΠA(D, G)
is a proper subset of ΠA(D\ the corresponding set of Λ-inequalities will again form
a convex cone, which may contain the convex cone mentioned above as a proper
subset.

In a subsequent paper [7] we shall investigate the structure of these convex
cones. In particular we shall show that every /t-inequality can be "decomposed"
into a finite number of extremal inequalities. We shall discuss the relation of the
inequalities mentioned in the examples with these extremal inequalities, and derive
new (extremal) inequalities.

7. Concluding Remarks

1) Formally, the analysis of this paper is restricted to Ising models in zero
magnetic field. The case of an arbitrary (not necessarily homogeneous) magnetic
field can, however, be easily included by replacing the field by a "dummy" spin
interacting with all other vertices [8].

2) Theorems 1(1*), 2(2*), and 3 have been derived for finite graphs. The
extension to infinite graphs is straightforward. Consider an infinite graph G, two
finite sets of vertices A C V(G) and DC A, and for each partition πeΠe

A(G) a skeleton
graph Hπ. The edge sets of all Hπ are finite. Hence there exists a finite subgraph G0

of G such that E(Hπ)cE(GQ) for all π. Let G0, G1? G2,... be a sequence of increasing
subgraphs of G such that lim Gn = G and that <σB>G= lim <σβ>Gn exists for all

«->oo n->oo

Be A. Then Πe

A(Gn) = Πe

A(G) for n = 0,1,2,..., and the validity of the theorems
(with the unnormalized correlation functions replaced by normalized correlation
functions) for infinite graphs follows.

3) As the reader may have observed, all examples of /1-identities given in
Section 5 have the property that all λB are equal to 1, — 1 or 0. In a forthcoming
paper [9], devoted to /L-identities for Ising models with general (rc-spin) in-
teractions, it will be shown that for every choice of G, A, and D the set of all
yl-identities can be derived from an independent set of Λ-identities having this
property.

4) Many theorems on inequalities include a specification of the condition
under which the equality sign holds (cf., e.g., [10]). For correlation-function
inequalities such conditions have hitherto not received much attention in the
literature (see, however, [11]). In the case of yl-inequalities they are implicit in
Theorem 1*, since the validity of a /1-equality for all KE^ implies the validity for
all Ke JΓ. The condition takes the form of a condition on ΠA(D, G). For the second
GKS inequality, e.g., the condition reads (cf. Section 6, Example 2): ηπ(B) = 1 for all
πe/7βuC(j5C,G), i.e. all partitions of £uC for which ηπ(B) = 0 are absent from
77guC(£C, G). E.g., if B = {v1,v2}, C = {v3,v4}, the missing partitions are (13|24) and
(14|23), in which case G contains a cut vertex separating v1 and v2 from υ3 and v4

(see Section 5, Example Ic). In case G contains a "dummy" vertex v0 connected
with all other vertices, representing a nonzero magnetic field, v0 must be the cut
vertex. The graph obtained from G by deleting v0 and the edges incident with it
then has t;1 and υ2 in one component, v3 and v4 in another. This specific result was
earlier derived by Setό [11].
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