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Fluid Dynamical Limit
of the Nonlinear Boltzmann Equation
to the Level of the Compressible Euler Equation

Takaaki Nishida
Department of Applied Mathematics and Physics, Kyoto University, Kyoto, 606, Japan

Abstract. The nonlinear Boltzmann equation for a rarefied gas is investigated
in the fluid dynamical limit to the level of compressible Euler equation locally
in time, as the mean free path ¢ tends to zero. The nonlinear hyperbolic
conservation laws obtained as the limit are also the first approximation of the
Chapman-Enskog expansion.

§ 1. Introduction

The dimensionless Boltzmann equation in the kinetic theory of gases can be
written for the mass density distribution function F(t, x, v), t=0, xe R?, ve R? in
the form (cf. [4])

oF oF 1

—a?+Zvja—xj=gQ(F,F), (1.1)
where ¢ is the mean free path and

Q(F,G)=3% [ (F G, +F,G'—FG,—F,G)Vrdrdpdv, . (1.2)

Here, V=|v—v,], v’ and v/, are the velocities after the interaction of the molecules
whose velocities were v, v, before the interaction, and r, ¢ are the polar coordinate
in the impact plane. Also F =F(t,x,v,), F'=F(t,x,v), F,=F(t,x,v,) and G, G,
G, are defined analogously. Define the summational invariants

{q]j};=15{lav_j(j=192a 3)902}, (1.3)
which satisfy
[ ¥,0(F,G)dv=0 for j=1,2,...,5. (1.4)

The hydrodynamical quantities are defined as follows : The mass density and fluid
flow velocity are given by

o(t, x)= [ F(t,x,v)dv, (1.5)

u(t, x)= % [ vF(t,x,v)dv. (1.6)
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120 T. Nishida
The velocity relative to the mean is given by ¢=v—u. The stress tensor and heat-
flow vector are defined by
P= | cc;F(t,x,v)dv=p;;+pd;;, (1.7)
qiE%IciCZF(ta X, U)dv’ (18)
where p=2XP,,/3 is the scalar pressure and p;; is defined by (1.7). The internal
energy per unit mass is

1.1
E'§I§CZF(t’x’ v)dv. (1.9)

The conservation laws for g, u, e can be written in the form.

5_@ +Zég_ul =0

ot 0x;

dou, 0

7""2‘&2(@“1”]4‘[7,14‘[)5”):0 (110)

0 0
EQ(H_ %u2)+25;j {oue+3u?)

+ 2Zupy;+ oy ) +4;5 =0,

where the equation of state is that of “the ideal gas”, i.e.,

2
RTEB=§e.

0

(1.11)

The system (1.10) is not closed by itself, because for P;; and g; we need the higher
momentum of F. But if the distribution function F(t, x, v) is locally Maxwellian, i.e.,

o(t, x) (u(, x)— 0)2)
= — 1.12
%0 = G R T 0 e"p( WRT(,x) )’ (1.12)
then the conservation laws (1.10) can be simplified by p;;=¢;=0 to
% 5% _g
ot 0x;
oou; 0
LY (ouu; =0 1.13
g e, (113)
—q(g(e-l- 1u?)) +Zi(gu (e+3u?)+pu)=0
ot 2 ox; 2 g
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The latter, supplement by (1.11), is now closed and may be considered as the
compressible Euler equation derived from the Boltzmann equation. The system of
nonlinear hyperbolic conservation laws (1.13) is also obtained as the first
approximation of the Chapman-Enskog procedure. The second approximation is
the compressible Navier-Stokes equation [17.

Following Grad [6, 8] we consider the Boltzmann equation (1.1) for gas
molecules with cut-off hard potentials in a neighbourhood of the absolute
Maxwellian state:

M(@v)=(2r)~ 2 exp(—v?/2). (1.14)
Taking initial data
F(0,x,v)=F(x,v), (1.15)

whose deviation from the absolute Maxwellian state (1.14) is assumed to be small
0(¢), we solve the initial value problem (1.1), for fixed ¢, locally in time [5, 7] and
globally in time [18, 19, 14] and [17]. The solutions of (1.1) decay to the absolute
Maxwellian state as t— + 0.

Asymptotic problems of the Boltzmann equation as the mean free path ¢—0
and asymptotic relations to the hydrodynamical equations as determined by the
Chapman-Enskop expenasion have been considered by Grad [7] for the “semi-
linear” Boltzmann equations

of of 1

§+Zvja—xj—gLf+vF(f,f) (1.16)
and

0 of 1

a—{+2vja—£=gLf+8vI’(f,f). (1.17)

[Compare them to the full Boltzmann equation (2.14).] He showed as e—0 that the
solution of (1.16) is asymptotic to that of linearized Euler equation in a finite time
interval 0=t=t,<oo and that the solution of (1.17) is asymptotic to that of
linearized Navier-Stokes equation in 0 <t <t,/e. The asymptotic problems have
been also considered by McLennan [10], Ellis-Pinsky [2, 3], and Pinsky [16] for
the linearized Boltzmann equation (2.22).

In the present paper we consider the asymptotic problem for the nonlinear
Boltzmann equation (1.1) or (2.14) as ¢—0, at the level of the nonlinear
compressible Euler equation, in the class of analytic functions in a finite time
interval 0=<t=<t;<oco. In §2 we summarize some results on the linearized
Boltzmann equation and define a scale of Banach spaces of analytic functions. In
§ 3 we solve the initial value problem for the nonlinear Boltzmann equation (1.1)
for £e(0,1]. It is equivalent to solve a nonlinear integral equation (3.1) by use of
the solution of the linearized Boltzmann equation. Then it is shown that there exist
the analytic solutions for the nonlinear integral equation (3.1) with small analytic
initial data (3.3) in a finite time interval independent of ¢(0, 1]. For this purpose
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we use the spectral theory (cf. §2) of the linearized Boltzmann equation and an
abstract nonlinear Cauchy-Kowalewski theorem in a scale of the Banach spaces
(cf. [12, 137). This abstract theorem is an improved version of Ovsjannikov’s [15],
where it is used to get the local existence of analytic solutions to the initial value
problem for incompressible fluid motion with a free surface (cf. [11]). In §4 the
asymptotic behavior of solutions of the nonlinear Boltzmann equation as the
mean free path ¢ tends to zero is investigated for a finite time interval. The
convergence of the solution F, of the Boltzmann equation (1.1) to the locally
Maxwellian distribution F, as ¢—0 is proved by the uniform estimate and the
equicontinuity in te(0,t,) of the solution with respect to ¢€(0,1] and by the
nonnegativity of the solution. Thus it is shown that the Boltzmann equation with
small analytic initial data can be approximated locally in time as ¢—0 by the
compressible Euler equation (1.13). An analogous asymptotic problem was
considered in [9] for the Broadwell model of the Boltzmann equation for a simple
discrete velocity gas by using [12, 13]. But the arguments in §4, especially the
treatment of the initial layer, also apply to the Broadwell model and improve the
results in [9]. In the Appendix, we prove the nonnegativity of solutions of the
Boltzmann equation for non-negative initial data.

§2. Notation and Preliminaries on the Linearized Boltzmann Equation

Letters x, v, keIR® denote independent variables, L?(-) (- =x, v, or k) denotes the
Lebesgue space of measurable functions whose p-the power (1=p<+ o) is
summable in R3 with the usual norm |f lLo(y- HY(x), 1=0, denotes the Sobolev
space of L*(x)-functions, the derivatives of which, up to and including order I,
belong to L2(x); H'(k) is the Fourier transform of H'(x) with the norm

Iflﬁl(k) =|(1+k?)"? f(k)]Lz(k) = |f|Hl(x) . (2.1)

H denotes the Lebesgue space of square summable functions in (x, v)eIR® with the
norm

LF1=(] £ Cx, v)|>dxdv)V/>. (22)

Let us introduce the partial Fourier transform in x of fe H as

" 1 .
f(k,v)=Wje_”""f(x,v)dx (2.3)

and denote H={f; feH}. For fe H, we define
1712 = § | f(k,0)*dkdv=1lfII2. (2.4)

Definition2.1. We set Hy=H and for each >0, we define H, as the Hilbert
subspace of H consisting of all H'(x)-valued L?-functions of veR* with the norm

”f”,s(f Lf(-, U)IHz(x)zdv)l/z

=([J (1+k2) | f(k, v)[> dkdv) > = fl, < oo (2.5)
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Definition 2.2. For each m, [ 20, we define B,, ; as the subspace of H consisting of all
H'(x)-valued continuous functions of ve R® ‘with the property

L+ f (-, 0)lpy—0 as |v|—>o0. (2.6)

The norm for feB,, ; is defined by
”f”m 1= sup(l + 0?2 (-, IHl(x)
= sup (L+0*)"2 1, 0l gy < 0. 2.7

It is easy to see that by Fubini’s theorem
Ifl,=clrl,, for m>3/2, 120, (2.8)

and that by Sobolev’s lemma if feB,, ; for m, [>3/2, then f is bounded and
continuous in x, v.

Definition2.3. For any 120, we define the scale of Hilbert spaces S,= | ] H
20

1,0
where

Hz,osza

H, ,={feH;;||fll,,=le"e f(kv)ll, <0} .
Definition2.4. For any m, 120, we define the scale of Banach spaces St

= J B,,,,,» where
020

(2.9)

B,,1.0= B>
e 7 (2.10)
By 1y =SBy 15 1l o =llee fk, 0)l,, , < 00
with the property

: vlligaw (1 +v2)™2(elMe f(k, v)|gigy =03 . (2.11)

Then the functions f(z,v) of H, , or B,,, , are analytic in z=x+iy for |y|<¢ and
belong to L(z) for any fixed y, | y| <o. The following lemma concerning our scale of
analytic functions is fundamental in applications of the abstract nonlinear
Cauchy-Kowalewski theorem (cf. Propositions 3.1 and 4.1).

Lemma2.1. For any 120, the scale of Hilbert spaces S, has the property :

1Kl f e, I, =0=ar A, (2.12)

)a
for any feH, , and any ¢’ <o, 0<o=1.
The proof is easily obtained by the definition of the norm ||| ||, ,, if we note that
K7k <[kf7(g—g)e™ M~ ele/(g — gy
<eMef(o—g)* forany ¢ <g,0<o<I1.
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In order to linearize the Boltzmann equation (1.1) in a neighborhood of the
absolute Maxwellian state, we set

F(t,x,v)=M +M"2 f(t,x,v). (2.13)

If we substitute (2.13) into (1.1) and follow the arguments [6, 7] for gas molecules
with a cut-off hard potential, we obtain the following equation for f{(t, x,v) t =0,
xeR3, velR3:

%+Zvj;€=§(Lf+vF(ﬁf)). (2.14)
Here L is a nonpositive linear operator acting on velR® with the properties that

(LS, N2y =0 for  f LfeL*(v), (2.15)
and

Lf=0 iff fe{y};_,={M"20,M"?0>M"?}. (2.16)

L can be decomposed as
L=—v)+K in L*v), (2.17)

where v(v) is a monotone nondecreasing function in || satisfying
0<vy=v(v)<v,(1+]v]), vy v, positive constants, (2.18)

and K is a compact selfadjoint operator on L*(v) with the following smoothing
properties:

“lemm,l,g = Kl”f”lm— 1,10 fOr any m g 1’

B (2.19)
K S Mo .1, =xllA
for some constant k =x(m)<oo and for any ¢ =0, [=0.
The nonlinear operator
vI(£,9)=3 [ (f' 9+ 10 —19,—F,9Mv,) > Vrdrdgdy, (2.20)

acts on ve R® and is bilinear in f and g. It has the following estimate, which will be
used in the proof of Propositions 3.1 and 4.1.

Lemma 2.2. Let f(x,v), g(x,v)€B,,, , for 0=0,1>3/2,m>5/2. Then (p;, vI'(f,9)) 12y
=0,j=1,2,...,5, and

VI, 9, = CNECS s Dl }

Z Cl S Ml NG (2.21)

Proof. The first inequality follows easily from (2.8) and (2.18). The second
inequality is proved by the argument in [7] and the Hausdorff-Young inequality.
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In fact we have for [=2
WM 2,0 = sup (1+ 22| e(1+ k2 I (f; g) (k, 0)l 2o
< C{sup(1+v2"2|ele f(k, )], 14}
- {sup(1+ 2" [el*e(1L + k) gk, v)| 2}
+ {sup(1 +0?)"?[el*e(1 + kz)ﬂLl(k)} {sup(1 +0?)"? |e|klgg|L1(k)}
< C{sup(1 +v2)"2[elle(1+k2) f1,24,}
- {sup(1 +v2)"2|e™e(1 + k) gl 20}

= Cllf Ml 2,6 llglllm, 2, -

This completes the proof of the lemma.
Our aim in the remainder of this section is to summarize some results on the
linearized Boltzmann equation

of _ 5,9

=_ 2.22
o 16 te Lf Bf (2.22)

Consider the two operators

1Ag=—21)jg— v(v),

¥ ‘Z; 1 (2.23)
1

EB«E:—Zng—_Lf

1 1 . .
with the common domain D(— Aa) =D(g Bs> maximal in H;, [=0. The operator
&

1 . . . . .
EA‘ generates a strongly continuous semigroup in H,, given explicitly by the

formula

= -t t ik-x 7

e f=e ”f<x— P 0) 2n )3/2 fer e ™™ Jk v)dk, (2.24)
where

As — lBk ‘U— V(U) . (225)

Since B,=A,+K and K is a bounded perturbation, the linearized Boltzmann
1 . . t .
operator — B, also generates a strongly continuous semigroup {exp (; Be>} n H,
& t=0
for any ee(0,1].
We have the following result.

Theorem 2.1. The linear Boltzmann semigroup is represented by

"= W [ e xe ™™ 7k, v)dk (2.26)
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for f (k,v)eH » where for each ke R3
B, = —ick-v—v(v)+ K (2.27)

is an unbounded linear operator on L*(v) with domain D(B,)={feL*(v),
B, fe L*(v)}, B,, generates a strongly continuous contraction semigroup on L?*(v)
such that for any t =0, fe L?(v),

t
—Bgk
esf

L2y =2 - (2.28)

Furthermore there exist 8, ,, 8, >0 such that the following Eqs. i) and ii) are valid

for any fe D(B,,).
i) For any k, |ek| <o

t—ng 5 Lazj(sk)
e f: Z et (ej( - 8k)> f)LZ(v) _](Sk)
j=1

t t

te " fre o Z ek tle) f, (2.29)
where o, e; are the eigenvalues and the corresponding eigenfunctions of B,. They
have the expansions

3
a(ek) =3 ay(ielkl)"+ O(lek|*)

n=1

3 (2.30)
ejek)="3. e; (k/Ik|) (iclk])" + O(jek|*),
n=0
where a; , are constants, a; ,>0 and
(e(—ek), e(ek))2y=0;, Jon=1,...,5.
ii) For any k, |ek|>6
“Bu Lp
“f= e‘E “fte ! *Z,(ek, t/e) f, (2.31)
where

Z ek, tfe) J= lim 51,; [ ¢ 2(=B,+inek) fay,
- 2.
Z(A,ek)=(A—A,) "U—K(A—Ay,) ) ' K(A—A4,)"* (2.32)
and
|Z (ek, t/e) f1 12 = CIf 120y » 233

C being independent of ¢, k, t =0.
Proof. See Ellis-Pinsky [2], Ukai [19], and Nishida-Imai [14].
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1
Proposition 2.1. The linearized Boltzmann operator — B, also generates a strongly
g

continuous semigroup in B, |, (m>3/2, 120, ¢ =0) and satisfies a uniform estimate

m,l,e

t
e;Baf

for any m>3/2, 120, 0 =0, C being independent of ¢(0, 1].

mise = CNS s> (2.34)

Proof. The first part comes from the property (2.11) of B, , ,; cf. Ukai-Nishida [20]
and also Shizuta [17]. It follows from (2.26), (2.28), and the Plancherel equality
that for any feH, ,, 120, 020, any 120, and for any ¢€(0, 1]

t

Eke""g(l + k22 flk, v)Lz(v) dk

<IN o (2.35)
In order to get the estimate in || ||, , we use the relation
‘s LS4 K
fol)=e"" f= e'S “f+ f ?fo(s)ds. (2.36)
It is easy to see that for any ¢ =0, [=0, m=0
La L,
e Ef“m o= * S M, (2.37)

It follows from (2.19), (2.36), and (2.37) that

oAl cfish,+ mem,,g}

e

forany feB;, ,nH,,(j=0,1,...,minductively) and ¢ 20. Thus if m>3/2, then (2.8)
gives (2.34).

This completes the proof.

In addition to Theorem 2.1 and the uniform bound (2.34) for ¢€(0, 1], we need
the Holder continuity in t, uniformly for ¢e(0,1]. of solutions of the linearized
Boltzmann equation. It will be formulated in Proposition 2.2 after the following
two auxiliary lemmas.

Lemma23. Let feB,,, , (0=0,l,m>0) and consider exp(EtAs) fint=0,6€(0,1].

Then we have for 0 <o <min(l, l,m)

" t—s\’
=Pl ose 2 W 3%)

for 0<s<t, where C is independent of ¢€(0,1].

Proof. Remembering that

—t—A,c \ (v(v)+tsk v) 4
(e f) =& (e, )
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we have
t S m-—aog t S
—Ae —Ag _— — —(v(v) +iek-v) ——(v(v) +iek-v)
e f—e flln-gi-g=sup(1+v?) 2 1(e s g )
v
l—g
-eMe(1+k2) 2 f(k,v)|120
m—ag

t—s s
— ——((v) tiek-v)| ——(v(v)t+ick-v)
<sup(l +v?) 2 (1—e € )e e

-ele(q +k2) f

L2(k)

{(EZ_S ”(”))a re (t—s)k-vl"}

S =0
e« elMe(1 4k 2

m-—ao

<Csup(1+0v?) 2|

L2(k)

e VU k o
HUR

(1+K2)2elkle f

<Csup(1+v?) 2 (ts_s)

-0

elfle(14k2) 2 f

L2(k)

=C (t;—_s) sup(1 +v?y™?

t—s\°
=[5 Wl

This completes the proof.

L2(k)

Lemma2.4. Let g(t)e B, for each te[0,T] and for some ¢=0, ,m>0. Put

m,l,o

su =
3D 1190l =Co and assume

190 — g0 0.a < C (555) for 0<s<t<T

and some o€ (0, min(1, [, m)).
Then for 0<s<t<T, T>O0 arbitrary,

)= g ei_AE@g(s)ds

satisfies the estimate

15 Oll1 = Co- d 2.39)
O M0, S0+ )
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where C is independent of ¢€(0,1].
Proof. We have

/@ =M= 5,1- 0,0
jes e—g(t—r)d‘c—feg Y gs—1)de

m—g,l—0,0

- je;Asz(g(t—r)~g(s—‘c))dI+je; sgg(t—‘c)drl
(0] s
s/2 —-—(v(v)+lsk )V
< [ le —(g(t—f) gis—1))d
0
((v)+zsk v)V
+f2 W]l dz + f (t*f)
s/
s/2 t—s \7 -Zyvv
< & _
Csupj(_/z) 8dr

dt -y 1 t_yy
+C,(t—5s) ¢ —1|—+4+C ¢ —d
( S) SUII)S;[2 ) (e ST)S/Z Osuvpge p T

§C(co+cl)<—g—s)a.

The term W in the second integral after the first inequality denotes the same
expression which appears in the first integral after this inequality. This completes
the proof.

t
Proposition 2.2. Let fe B, ; , for some ¢20,1>0, m>3/2 and set f,(t)= e f. Then
we have for 0<o<min (1/2, [, m—3/2)

WM SC( ) W (240)

o= oM ag<C( ) T 241)

where C is independent of e€(0,1].

N.B. Here we may note that the singularity 1/t° of the Holder coefficients near t =0
corresponds to the initial layer of the rarefied gas motion described by the
Boltzmann equation.

Proof. We recall the representation of fo(¢) in Theorem 2.1:

folt)= n )3/2 fe"‘ x ekf(k v)dk

= [ + | =L0O+LO.

lekj<o  |ek|>o
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I, has the representation

ek x{ ”"f(k U)+ hm Ll _ﬂ?—we: Z(/l 8k)f(k U)dl}

—B2—iy

1
H0= o L,

l>

=1,()+1,().

I, can be treated in the same way as in Lemma2.3:

30 =I5, - 6,0 = CN 3O = L3N - 6,1 -6,

<C< ) Ny, for O0<o<min(1,l,m—3/2).

To estimate I, we consider the integrand

1 —Ba2t+iy L s .
] (ee —e ‘) Z(, ek) (k, v)d2

m —
7= 2 =B2—iy
(—ﬂzt__s ) -8,% . 12 2 X -
=le T —1)e Evlgluloz_fyeEZ(—ﬂz—ly,sk)fdy
—ﬁ b it__sy iﬁ
+e F lim — (e ’ _l)e Y Z(— B, —iy,ek) fdy
-7
=Il+15.
The estimate
t—s\% -
IISILZ(v) =C e [f(k, U)|1,2(u)

is given by (2.32) and (2.33). I can be treated as follows:
t—s
[ -1)

(&

—C (-t;—s)aZz(ﬁz, ek, /s, 1/5) f

-Bs2[t—s i ; 2
Ig=e (T) lim - 2n I yl® e e Z(—Py—iy,ek) fdy

We claim that Z,(B,, ¢k, s/e, t/¢) is weakly absolutely convergent for
(1+ k22 (1 + 02 f(k, v)e L2 (v),
and

1Z,, Fliap < CA +1ek?)2 (14027 f20»
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where C is independent of k, 0<s<t and (0, 1]. In fact

ey
(t—lm)
K(= By —iy— A (ko) (— By iy — A%) 1k, )y

C [ (191°] £k, v))?
=hm o “uv) B+ (4 ok o

[ (Iyl°1g(k, v)))? 12
' _fy (V(0)— Bo)* +(y +ek-v)? d”dy}

flvl" s((1 K(—p,—iy—Ay,)~")"

?-‘00 27r

dvdy

2 b lekv)* +y+ek-of??
<limz~ {W' D) o B+ ek o

lek-v]?° 4|y +ek-v]*” } /2
, (Vo= B,)* +(y +ek-v)?

figP o |

d
s (e e § s

Y 20
e 17 d § o) ok i o

B dy 2o b Py )}”2
e [1gP dy
Erey e LAl W oy 3
SCI(1L+ k)72 (1+ 0272 Flk, 0)l 2y - I(1+1ek|?)2 (140272 4K, )] 2
for 0<o<1/2. Thus for ¢e(0,1]

l-g
2

(L4 [ek|?)72(1+K>) 2 lkle

W01 = (5]
(1 + 0272 f(k, v)'LZ(v)‘LZ(k)

<5 ey zemte +op f ol

gc(t—;—f) .

To prove the Holder continuity of I, (¢), we can treat it by (2.29) in the same way as
I,(t) and I,(t) except for the term

1 a, ek A
0= g J % 3 e e, el

|<é j=1
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But this can be treated as follows:

(&)= LM~ g,

5
=3[ ]
j=1\|ek| <o

5
éz(f e
J=1 \lek] <6

o _t=s . N
~{(E;a;f(93k)(sk)2/2> fe v o /Zl(t—s)ocjlkl"}

1/2

t s l-a
—ojlek)  —aj(ek —— 2
(eea, e _eeaJ € )>(1 +k2) 2 'elklgﬂiz(v)dk)

s
Sy (ek
eaj(e )

1—

S(14Kk2) 2 eltlef

1/2
iw&)gawwwmm

Since we have shown (2.40), we can use the expression (2.36) to obtain the desired
estimate (2.41), where the first term is estimated as in Lemma 2.3 and the second
term is estimated by (2.40) and the smoothing properties of K (2.19). In fact

t t—1

r4. K S 4K
je ¢ — folr)dr— je ¢ — folr)de

0,l-a,0

tt—_isK
fer = e

N

0,l—a,¢

+

A

0,l-0,0

<C s WMo )

N

1 e: “°§ 1ot =7)=fols = Dl -, o

t— a s/2 s e—":‘\’o t—s o
éC{(TS) + [+ - (—S_T) dr}
0 s/2

<C (t—_—s) . (2.42)

The same is true in the norm B;,_, ,for j=1,2,...,m—1 and in the norm
B This completes the proof of Proposition 2.2.

m—og,l—a,0°

§3. The Solution of the Nonlinear Boltzmann Equation for ¢ (0, 1]

In order to get the solution f,(t) of the nonlinear Boltzmann equation for any
€€(0,1] in a finite time interval (independent of ¢) we use the abstract nonlinear
Cauchy-Kowalewski theorem in the scales of Banach spaces S, and S, ; (/1=2,
m=3), this theorem has been formulated in [12] and [13].
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Making use of the linear Boltzmann semigroup expEB8 in (2.26), we use that
€

the nonlinear Boltzmann equation (2.14) is equivalent to the integral equation
B 1

f0=e" f+ fe T, £, 6.1

Definition. Give [ =2, m=3, and suitably small a >0, we denote by IB the Banach
space consisting of all continuous function f(¢) from ¢ in B,,; , such that

NLA= - sup (@l (1—t/aleo— @) < + 0. (3.2)

= 0
0=t<a(go—0)

N, [f] defines a norm on IB.
We seek the solution f(¢) of (3.1), for any e€(0, 1], in the space IB, At the same
time, we get an estimate for f,(¢), uniform for ¢€(0, 1], provided that the initial data

fO)=f€B,,,,, (0,>0,1=22,mz3). (3.3)

Theorem 3.1. Consider the initial data fe B,,, ,  for some 0,>0,122, m=3 so that

ELST=M1f M, 00 < + 00 - (34

Then there exist E,>0, a>0 such that for any f with E[ f]1<E, the Equation (3.1)
has the unique solution f(t) for any ¢€(0,1], any te[0,a(go,—0)), (2€[0,0,) fixed).
Uniformly for ¢(0,1], f.(t) satisfies the bound

£, = CELf] (3.5)
for any t, 9 as above.
Consider the function h(t) defined by the quadratic term

t t—sBEI

h(t)= (f)eT gvl" (f(s), g(s))ds, (3.6)

where f and g are any functions satisfying N,[f], N,[g]<+o. A proof of
Theorem 3.1 is based on the following proposition :

Proposition 3.1. Let f, g satisfy N,[f], N,[g] < + co. Then we have

N,[i]<CRN,[g]SCRN,[g] forany b<a, (3.7)
where R= sup [ f(Oll,... o
0=t<b(go—0)
0=e¢<eo

Proof. Noting that (e(0),vI),,,=(p, V=0, j=1,...,5, Theorem 2.1 gives the
following:

S e,
{Z e v "Vik(e)(— 0ek), (vTY)e (ek)

Jj=1

t
1
)=\ |—=—
& g [(2n)3/2 |ak;j<a
t—_sAE t=s

+e

kE(VF)”+e—TB‘% -Z,(ek, t/s)(vF)'}eik'xdk

't_—iAek 1 —t-_—s'ﬂz 1 ;
+ {e ¢ g(vl“)‘ +e ¢ gZz(sk, t/e) (vl")”} e”""dk} ds.

|ek| > 6
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Define f,=min(v, B, B,). Taking the norm in H, , gives

0 s
o gy{ [ iz e

-ik(e’( — Oek), (VI )e(ek) 72 dk}ll2

_ZTsﬁz 1/2
+{ | (1+k2)’e2"‘|968—2(1+||ZZ||2)|(vF)”|f2(,,)dk}

|ek| > o

aEarayd 1/2
+{ { (1+k2)’e2“‘|@e8—2(1+||le|2)|(vl”)‘|fz(v)dk} }ds
|ek| <&
_t_-g,,
t 0
<cCf [(j (1+k2) 2ok |(yI)y > dk)? + mvrm,@] ds
0
LN
v, re
SC| ke et (I, ds
(j; Q(s)_Q g P ”I '“l,g

for some choice of g(s)e(g,0,—5/a); we have also used Lemma 2.1. Using the
property of vI" from Lemma 2.2, we have for m=3, [=2

(1S M1, o) MG,
W0l < {f WMt 10 s
n=Cy as)—e
: -'—Tsﬂo
+ g I ()Ml Illg(S)HIm,z,gdS}

<R (10 mis o | o a

— o e9-e o € mhe
This is valid for 0 <t <b(g, —0), 0= 0 <g,, where b is any number less than a such
that ¢ <g(s)<g,—s/b. Hence

t—s

ds Le ¢ po ds
A, 0= CRN,[g] {f (1 —s/b(gy—0(s))) ((s) — @) + (s) s (1—s/blgo— Q))}

If we now choose o(s)= (¢, —s/b+9)/2, we have
oSup IO, (1 ~t/bleo —))

0=t Sz @2 o)

=CRN,lg] sup  (L—t/blgo—

022802 o
. { 2b(t +blo,—0))t 1 1 }
(bloo—0) (blog—0)—1) = By 1—1t/bley—0)
(3.8)

=C(@b+1/B,)RN,[9g].
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In order to obtain N,[h] from (3.8) we note that (3.6) is equivalent to

t t—s

h(e) = f ool V(s g(s)ds+ e "X his)ds. (3.9)
0 & 0 &

It follows from the Definition (2.10) of ||| ||, , and the smoothing properties (2.19)
of K that for 0=<9¢<g, and 0=t <b(9,—0)

t t—_sAs 1 ! t_—sAc K
a1, = |[f e © ~“=vI(f,g)ds+ [e * “—k(s)ds
0 & 0 € 0,0
A Y (2] L0k
ssup e« "Rl dst [e 7 MO, s

£Svw)  N,lg]
<CR € — 2= d
SCRsup e e 1—shbloo—0)"

_t__sv(o)
€

t

d
+CrRN,[g] £ >
0

1—s5/bloo—0)
S CRN,[gl/{1—1t/ble,—0)}-

Repeating the same argument inductively for j=1,2,...,m in the norm || ||

gives
A1, < CRN[g1/{1 —1/bleo — 0)}

in 0=50<gy, 0=51<b(g,—0). This completes the proof of Proposition 3.1.
Now we introduce a successive approximation scheme to solve (3.1).

f)=e"" T,

ots g (3.10)
90(0)=[e = " VTS, So9)ds,

J1O=g,0)+fo(9),

t t—s

00=[e ™ "L OTU0.o6) +7T0oo) fos)) s,

B0= e ™ " LT, )T, 00y D).

Sor1=g,()+£,(2)

t 1Zsp 1

=50+ [e TG0, s,
n=1,273,...

Since we assumed that fe B, ; , (0o >0, =2, m=3 fixed) it follows from (2.34) that
for any ¢€[0,g,) and any t=0

ISo@ll, 1,0 = CllA Mz, = CUL M1, 00 =Ro - (3.12)

(3.11)
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To estimate g,(t) in ||| |,,,,, We proceed as in the proof of Proposition 3.1

Cj L (fo(), fo(DM, o) ds
o(s)—o

t—s
e

+cfé
0

llgo®l,,o =

IV (fo(s), fo(Il;, ,ds

=C sup lbvr (fo(s),fo(s))ml,go‘(éoi—g"' g < dS)

< Clag+1/B) Nf 3o
for 0=t=ay(0,—0), 0=0<g,, wWhere a, is any positive number. Thus we get

Nlg o1, < Clao + 1/Bo) 1 f 11,0 < CRE.-

Therefore for any a,>0 fixed, we arrive at

o= sup  lgo(dlln, =CR3. (3.13)
0<tZaoeo~ o)
Then it follows from (3.13) and (3.11) that
2Ol .0 = Ro + o (3.14)

in 0=0<gy, 0=5t=ay(0y—0)

Define a, =a,>0,

Gyy1=a,(1=1/(n+1)*) for n=12,.. (3.15)
and
N,[gl=N,[g] for n=0,1,2,.... (3.16)

To estimate g,(t) we can use Proposition 3.1. In fact we may assume from (3.12),
(3.13), and (3.14) that by taking R, suitably small

IS0 @M1, I3 O 1, =

for 0=0<go, 0=t=<a, (9,—0), where R>0 will be chosen small later.
Therefore Proposition 3.1 gives that

1 =N,[g,]=CRN,[g,]=CR sup. Mg oMl
(e

0=e¢
0st<a oe)

=CRpuy, <+ .
Hence for 059 <g,, 0=5t<a,(@,—0)
g 3 Ol o < 111/(1 = ay/a,) < + 0

and this gives for 0<t<a2(Qo— 0)

72OM1,e = 7= / A1l

Hy
<t +R
_1—a2/ 1+.“0 0
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We will require that for k=1,2, ...

+po+Ry<R. (3.17)
,+1/a Ho

Then we obtain for 0=Z9<g,, 0S5t <a,, 1(00—0)

e+ 1Ol <R-

Hence we can construct g, ;(¢) in (3.11) and use Proposition 3.1 again to conclude
that

Hie+ 1 =Nyt 1096 1 J= CRpy . (3.18)
Now we choose R such that
,uj__<_,uo(j+1)‘4 j=12.... (3.19)

In fact if we assume this is true for y,, then we find from (3.18) that

k+2
b 1 S CRp S CRusg(k+1)™* S gk +2)” “{CR(;{L)}
< polk+2)7*

provided

R< @)4 / C. (3.20)

Hereafter fix R as in (3.20). At last we can choose R, so small that (3.17) is valid for
this choice of R. In fact it follows from (3.15), (3.19), and (3.13) that

+ o

k
Z +uo+Ro=po ), (+1)7+R,
j= J+ 1/ j=0
<R,+CR2Z(j+1)"*<R (3.2.1)
provided that R, is small. Because of (3.12), this is achieved if || f|ll, ; ,, is small.
Therefore we arrive at the desired estimate for k=0,1,2, ...
e+ 1M, o <R (3.22)

for 0=t <ale,—0), 0=9<g,, where a=aq, ﬁ (1=(G+1)"2)>0. Furthermore for
k=0,1,2,.., 0=t <aloy—0), 0S0<gy
i+ 1) = Sl 1,0 = MGa(OMl 1,
= /(1= t/aleo — ) = /(1 —t/ale, — 0)) -
Thus, we have shown

Na[fkﬂ_fk] Sy -
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Since X, < + o0, it follows that the f, converge to some f,(t) in B for any ¢e(0, 1]
fixed. Also (3.22) gives

MM, =R in 0=t<aleo—0), (3.23)

where R is independent of e€(0, 1].
The limit function f(¢) is the desired unique solution of (3.1). This completes
the proof of Theorem 3.1.

§ 4. Fluid Dynamical Limit as ¢—0 to the Level
of the Compressible Euler Equation

In order to take the limit of f(t) as ¢—~0 we need more than the uniform bound
(3.5) for f,(t) in e€(0, 1]. For this purpose we show the Hdlder continuity of f,(¢) in t
uniformly for £€(0,1]. Let us consider the initial data f(0)eB,,, ,, (¢o>0, [=2,
m = 3), for which Theorem 3.1 holds; i.e., if

If Ol 1,00 =ELS1<E,, (4.1)

then the corresponding solution f(¢) satisfies the uniform bound

MM, =CELf] for O0=t<algo—0), 0=e<g,. 4.2)
Definition. For 0<o<1/2 fixed and [=Z0, m=3,

LELESLY

p—p 4.3)

M[fl= _ sup g)IIIf(t)—f(S)Illm-a,z—a,g{

<s<t<a(go—
0=¢<eo

Theorem4.1. Let the initial data f(0) satisfy (4.1). Then there exists E; >0(E, S E,)
such that if E[f]<E,, then the solution of (3.1) is Hélder continuous in t:

M[f1=C\E, (4.4)
where C, is independent of ¢<(0,1].

Before we prove this theorem, we reconsider the quadratic term (3.6):

t t—s

h(t)= g eT”“%vr( 1(s), g(s))ds, 4.5)

where f(s), g(s) are any functions which satisfy the bounds
MM, gs Mgll,r, o <R (4.6)
[for 0=t<a(p,—0), 0=0<g,] and which are Holder continuous:

M,[f], M,[g]<+o0. 4.7)

The proof of Theorem 4.1 depends on the following proposition.
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Propositiond.1. Let us consider h(t) in (4.5) with f(¢), g(t) satisfying (4.6) and (4.7).
Then for the same o and any numbers s, t satisfying 0<s<t<a(g,—0),

W0~ HOM - SCR+ M1 + MLV R L 43)

M, [h]£CR(R+M,[g]+M,Lf]), (4.9)
where C is independent of e€(0,1].

Proof of Proposition 4.1. We have
! Ip.v
h(t)—h(s)= J e S TU =1 g(t—1)de

+J e (- gle= )~ T(fls— ) gls =) b
=Il,+1,.

By Theorem 2.1 we have

o1 . L e .
If"j[wlekf e”""{Ze8 (b(g(—ek),?l”(ﬂg))ej(sk)

s |<é
_Blf_ V A ik-x Z X A
e 2,0k 1) Tk [ 456 g
&

_—1 ik-x _BZE V A
+ 2n)p? j e**e Z,(¢k, T/S)Er(f,g)dk] dr

|ek| > o
=L+1,+1+15.
For I, we have

T

W= | A e+{ye

<o

aj(ek)

ik(e,(— 0ck),vI)e j(.sk)} dk

l—o,0

< ‘ Cl“vl"(f(t—r), g(t_T))(“l,g(t—r) dr
s {ot—=1)—0}' 7"

_ " ClIvE(f(3), g, o)
s fem—o} "

dt,

where we can set o(t)=(g, +0—1/a)/2,

2t—s 2a 1-¢ 5 .
Y 0
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The other terms in I, can be treated as follows.

1 ~Bo~
&

t
s+ Is+16lli-5,, <CJ SMvENl -5, 04

el g0t t—s\°
SO M1, e °sd1§cm(.s_) ,

where f, =min(v(0), f,, 3,).
Now we estimate I,, noting that if s/3 <t —s, then I, may be estimated in the
same way as I,.

L= e " LI (-9 fls— gl —)
0

+I(f(s—1),9(t—1)—g(s—1)}dr.
Since each of the two terms in the integrand can be treated analogously, we treat
the first term here. We have

R (Y L

S 1 ik-x %aj(ek) V a
= i ERE e {Ze (ej(—ek),gl")ej(sk)

|ek| <6

Lot 7 ek, T/e)gﬁ} dk

+j'eik~xe§A"‘§f'dk+ j eik'xe_ﬁzzzz(gk,t/s)gfdk}df

|ek| > &
=l +1,+1,,+1,
s 1 Tayek)., ox
gll—. = jmlquzee “ik(e, vT)e (ek)e™ * dk L
<c j IVC(f ()= f (e — (= 9)), GO - 4. oo e
: o(t)—¢
<C j‘ ”f(T) f(T (t_s))mm a,l— O’Q(t)”lg T)”lm a,l— GQ(‘[)d
- o(t)—o
<c 3 t—s M(a[)f]j
T o(t)—
== ( " —Q(r)))

_ ¢ {algo—0)+t+t—s}dr
= ORGS0, gy~ g — (=40}

s/3 s
§CM.,[fJR(r—s>“2a{a(go—Q)+t}“(f + f)

0 s/3

a

t—s\’
éCMa[f]R<T) (1= t/algo—0)1



Nonlinear Boltzmann Equation and Compressible Euler Equation 141

Setting B, =min(vy, fi;, f,), we estimate I, I,,, and I, as follows.

"|I9+110+111”|l-—o’,g

<Cfe L INT(e—) =) gt~ Dl e
0

N

—potl
o e e B (T [N 7 [
<CRM[f][ e =S "
0¢ (s—'r)(l -z )
a(go—0)
< o1 —ﬂog dr
= CRMa[f] (‘)‘ Ee (S - ,L.)a
a(Qo
o /s/2 s
-CRMIA[——— j + j)
0 s/2
a(Qo

SCRMa[f] ( t— )“'
- Bo s(1—t/a(o, —0))

Thus the desired estimate (4.8) is obtained. Now the procedure for obtaining (4.9)
from (4.8) is analogous to that used in Proposition 2.2; i.e., we use the expression
(3.9), Lemma 2.4, and the argument for (2.42) with the smoothing properties of K
(2.19).

This completes the proof of Proposition 4.1.

Proof of Theorem4.1. Since the initial data fe B, ,, (¢,>0, [=2, m=3) satisfies
(4.1), the solution f,(z) of (2.14) exists and satisfies || f,(t)ll,.; , = CE for any e€(0, 1].
Also

m,l,o =

f)=¢ f+§e€ "I, £5)ds. (3.1)

Remembering the definition of M,[f,] in (4.3) and using Proposition 2.2 and
Proposition 4.1 we have the following for I>0, m=3:

M[If= SUp _ y Cl M (1= t/aleo = )

s<t aQo—
0=e<eo

+CE(E+M,[f)=C,E4+CEM,}].
Therefore if CE <1, then

C.E
CE’

where C, C,, E is independent of (0, 1].

M1
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This completes the proof.

From Theorems 3.1 and 4.1 we conclude the following: the solution f(¢) is
bounded in the norm || ||| for 0=t<a(g,—0) (0=¢<g,), uniformly for
e€(0,1]; in the space B,,_,,_, ,, f{t) is o-Holder continuous in ¢, uniformly for
¢€(0, 17, for ¢ in any compact subset of the interval (0, a(g, — 0)) [where ge[0, g,)]-
Therefore by the Ascoli-Arzela lemma we can choose a convergent subsequence
{/,}, where ¢,—0, such that

I ()= fo(), for 0<t<algo—0), 0=e<g,. (4.10)

The limit function satisfies the bound

m,l,e

foOlllmy, SCE in 0=t<algo—0), 0=0<o,, (4.11)
and is o-Holder continuous (0 <o <1/2):
t—s ‘
= foMm=s.1-0 §C(————> . 4.12
1o = oMo 2 T t0 =) (4.12)
Now we turn to the original mass density distribution function
F (t,x,0)=M()+M(@)'? f(t,x,0), (4.13)

where M(v) is the absolute Maxwellian state. F(t) satisfies the original Boltzmann
equation

OF 3 OF, 1
£ ——==Q(F,F). 1.1
at + j;l DJ ax] 8 Q( 2 a) ( )
Integration with respect to ¢ gives
t 3
F,(t,x,0)— F(0,x,0)+ | Y vjaF {(5%,0) ds
0j=1
1 t
= ng(Fe(S), F(s))ds for O0<t<alg,—0), 0=e¢<go- (4.14)
0

Noting the uniform bound (4.2) on f,(t) for e(0,1] and the convergence (4.10)
along the subsequence ¢;—0, we can conclude from (4.14) that

g Q(F o(s), Fo(s))ds =0 (4.15)

for any ¢ satisfying 0<t<a(g,—0) (0=<¢<g,), where F(t, x,v)=M(v)
+M(@v)2 fi(t, x, ).
We now state the main theorem.

Theorem. Assume that the initial data F(x,v)=M+M?"'? f(x,v)=0, that 0(0, x)
= fF(x, v)dv>0 for any xe R3, and that f(x, v)€B,,; ,, for some 0,>0,1=22,m=3;
set [ fllm,,0o=E and let a be as in Theorem 3.1. If E<E,, where E, is defined
in Theorem 4.1, then for any ee(0,1] the solution F(t,x,v) of the nonlinear
Boltzmann equation (1.1) with the initial data F(x,v) exists in B, o Jor
0=t<alo,—0) (0=p<g,) and is nonnegative there. Furthermore the limit
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li_{lg F(t,x,v)=F(t,x,v) exists in B, , , for 0 <t <al(o,—0) (0<@<g,) and F(t, x,v)

is locally Maxwellian. Hence its hydrodynamical quantities satisfy the nonlinear
hyperbolic conservation laws (1.13).

Proof. The existence of F () and of the limit F(t) along a subsequence as ¢—=0 is
proved above. At the same time for each ¢e(0, 1] the conservation laws (1.10) are
satisfied by the hydrodynamical quantities (1.5)~(1.9) of F (¢, x,v). They can be
integrated in ¢

L 0o U,
Qg(t>x)—Q£(0,x)+ Zj% :09
jo 0X

i

(Qeuezuw + psu + peélj) =0
ox;

(qugi) (t’ X) - (Qeuai) (05 X) + z g
j j (4.16)

gs<e£+%u )(t X)— Qe<e + lu )(0 X)

1
+ Zj {Qs E}(e + 2M ) +usk(pskj+p55kj)+qﬂj}d5‘:0,

where the initial data for the hydrodynamical quantities g,, u,, e, are given by (1.5)
(1.6), and (1.9) with F = F(x, v) and are independent of e€(0, 1]. It follows from the
mass conservation law for F (¢, x,v) (0g,/0t + 0g,u,;/0x;=0) that ¢,(0, x) = (0, x) >0
implies ¢,(t,x)>0 for 0=t<a(gp,—0), 0=<0<g, and any &ee(0,1]. The non-
negativity of F(t,x,v) follows from that of F(0,x,v)=F(x,v)=0 for fixed ¢>0
(proved in the Appendix). The convergence of F, to F, as ¢—0 gives (4.16) with ¢=0
for the hydrodynamical quantities g, u, e of F,. Since F(t, x,v)=0 and g(t, x) >0, it
follows from (4.15) [ie., Q(F(t, x,v), Fy(t,x,v))=0] that Fy(t,x,0)>0 and so

Fo(t, x,v) is locally Maxwellian. When F(t, x, v) is locally Maxwellian, we conclude
that p;;=q;=0. Therefore (4.16) with ¢=0 simplifies to

ds

oltx)—0x)= - 3 | 2

J

5(au +p5 )

ou,(t, x)— u,(0, x) = Z j 4.17)

Q(e+%u2>(t x)— Q(e+1u>(0 x)=— ;i%(euj(e+%”z>+”jp)ds'

Now the bounds (4.11) on f,(t) carry over to F(t). Hence the terms on the right
hand side of (4.17) are differentiable in ¢t for 0=t<a(p,—0) (0=<0<9,). Thus
differentiating (4.17) in ¢ gives the desired nonlinear hyperbolic conservation laws
(1.13), where the initial data are given by (1.5), (1.6), and (1.9) with F(0, x,v)
= F(x,v). It follows from the uniqueness of the solution of the initial value problem
for (1.13) that all sequences of F, as e—0 give rise to the same system (1.13) in the
limit.

This completes the proof of the theorem.

Finally we note that the hyperbolic system (1.13), supplemented by (1.11), has
two genuine nonlinear characteristic fields in the sense of Lax. Hence in general




144 T. Nishida

shocks will form in finite time even for the analytic initial data. Thus another
detailed considerations are necessary to get the fluid dynamical limit globally in
time at the level of the compressible Euler equation or at the level of the
compressible Navier-Stokes equation.

Appendix. Non-Negativity of the Solution of Boltzmann Equation

The unknown function F(t,x,v) of the Boltzmann equation denotes the mass
density distribution function of the gas and for physical reasons should be non-
negative whenever the initial data is non-negative. But it seems that the non-
negativity is not proved explicitly either for Grad’s local solution [7] in a
neighborhood of the absolute Maxwellian state or for the global solution [18, 19,
14]. Here we prove it in the following form:

6F(t) _ v 5F(t)

F(0)=F(x, v)go. (A2)

(O,F(t) in =0, (A1)

Theorem A.1. Let F(x,v)=M(v)+M(@©)"? f(x,v)20, and f(x,v)eB,,, for some
m23,122. Then there exist two constants E,>0 and t,>0 such that if | {1, , <E,,
then there exists a unique non-negative solution to (A.1), (A.2) in 0=t <Zet,,.

The solution is obtained by an iteration which preserves the non-negativity.

FO(t)=F(x,U)gO’ (A3)
aFa"t“ +v- a};"“ = f(F;F;* F,.F,.)dQ n=0,12, .., (A.4)

where dQ=Vrdrd¢dv,, F,=F (t,x,v") and so on. If we substitute F,(t, x, v) = M(v)
+M(v)'? £,(t, x,v) into (A.4), we get

5fn+1(t) A an(t)-f— ’r 1 (£0), f14(0)

= {Kf,.(t) +vI,(£,(0), £ (1)}, (A.5)

foi10=f, n=0,1,2,...,
fol)=f,
where v(v), K is the same as (2.18) and (2.19) and

vIy(g, )= [g,M(v,)"?dQ-f

vIy(g, /)= —§(f gIM(v,)!?dQ.

(A.6)

The latter may be estimated as in Lemma 2.2 (cf.,, [7]). Thus our aim is to prove the
convergence of this iteration scheme. It is based on the following proposition.
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Proposition A.1. Consider the initial value problem

of(®)

TO | 4,10+ T 1g0.1,0)

= {Kglt)+vT3(0(0, h0)}, (A7

fO)=f(x,v)eB,, ,m=2,122.

Let g(t) and h(t) be continuous functions in te[0, T] with values in B,, , (m,1=2), and
set

G =max (Os<1t11<)T lg@)l,.., ,sup_ [ Al m,,) : (A.8)

Then there exists a constant 0<C < oo such that if CG<1, (A7) has a unique
solution f(t) which is continuous for te[0, T] with values in B, , and satisfies the
estimates :

(Ifllm,+G< t+CG)

lr@l,, < e (A9)
Proof. The solution of (A.7) is given by the iteration
af"gtl(t) + A, fir (0= —{Kg(t)+vF 5(9(0), h(2)) (A.10)

—vIy(g(2), £,0)}
fos10)=fy(t)=f€B,,,, n=0,1,2,....

Since g(¢) and h(t) are continuous functions of t for te[0, T] with values in
B, (m,1=2), we see that Kg, I';(g,h) and I')(g,h) are continuous functions of
te[0,T] in B, ,. The latter satisfy the estimates

Ikgl,. <xlgl,,,
Iryg,ml,,, <Cligl,, IRl (A11)
Iryg,ml,,, <cligl,, Inl,,

Equations (A.10) are equivalent to

tts

frea0=er" 4 e L (Kg 0

—vI(g, f))ds, n=0,1,2,..
fo®)=r1.

(A.12)
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Thus we have for CG<1

sup HfO(S)“mléuf“ml

0<sst ’ ’

sup £, <lfl + §Gt+cc;2+c<;n 1l

0=<s=t ’ ’ ’

llfllm,,+G(—:«t+CG>
1-CG

A

For j=0,1,2,...,n, let

n f|lm’,+G(§t+CG)
<
Sup, lfl,, < e

Then by (A.12)
sup £, ), < film,,+§Gt+CGz +CG sup 149,
0<s=st <s=t ’

"f’lm,l+G<§t+CG> (A.13)

<
- 1-CG

n=0,1,2,...).
Also by (A.12)

9P N 41) = £8) s SCG sup 118 = o1

<(CG)y Sup I11(8)— fo9),.,
<(CGY {(2 +co)lfl, ,+G (g £+ CG)}.

Therefore the iteration (A.10) converges to the solution of (A.7) and the estimate
(A.9) is a consequence of (A.13). This completes the proof of Proposition A.1.
Now we return to the iteration (A.5) and the proof of the theorem. Let C

denote the constant in (A.11). Provided that sup Il f,(s)ll,,,<1/C, the equations in
0<s<t ’

(A.5) may be solved successively for f, , ; in terms of f, because of Proposition A.1.
In fact, we prove that if the initial data is so small that

Il <1/24C, (A.14)
then
G,= _max sup lf)l,,=4lfl,,<1/6C, n=0,12 ... (A.15),
- 0<s=<t ’ ’

Jj ,1,...,n
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By Proposition A.1 with g=f,(t)=f and by (A.14), we have

1l lf (§t+ cl fnm,,)

SRR T=ciyT,.
<2lfl,., (A.16)
provided that
%t§1/4. (A.17)
Then for t <¢/4k, we have
sup 1f,(s)= fo(o)ll, =30 11, (A.18)

Let (A.15) be true for j=0,1,...,n, as the hypothesis of induction. Then by
Proposition A.1 we have

IIfH,,,,+G,,<5t+CGn)
TG | —
omsg, nr1Sm S 1-CG,

< 1—56- s, s1/6C, (A.19)

where (A.15), is used. Thus f, , ,(¢) is well-defined for n=0, 1, ... and satisfies (A.15).
Also the difference h,(t)=f,, ,(t)— f,(t) satisfies the equation

ohH) 1 1
é-t(t) + — A0+ — 0T (£,(0),hy(6)

1
= E {Khn— 1(t) + Vrz(fn(t), hn— i(t)) (Azo)
+ v, — 1 (@), fu— ()= VI (b, (1), £,(0)}
h,(0)=0.
It follows from (A.15) and Proposition A.1 that the following estimate holds for

K
—t<1/4:
~i<1)

(Et+3ca) sup I, o), ,
sup lh(s)ll < € 0<sst ,
oxsxy M ml= i—cc

9\" 9\
= <=
< (lo)osgls%t Iho(s)l,,,, = (1()) 3011,

&
4x
solution of Boltzmann equation. This completes the proof of Theorem A.1.

Therefore as n— + o0of,(t) converges to f(t) in B, ,, 0=t=<-—, which gives the
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N.B. Since the uniqueness of the solution of the initial value problem for the
Boltzmann equation is known in a neighborhood of the absolute Maxwellian state
(cf. a remark of Shizuta [17]), the solution we obtain coincides with Grad’s
solution [7].
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