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Existence of Three Phases for a P(¢), Model
of Quantum Field
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Abstract. In the two-dimensional model of the quantum field theory with
lagrangean density :3(0,¢)> — (3 —v)@>+42@* — JA¢®: there exist (at least)
three different phases for small A and some v(1).

1. Introduction

In recent years much of the work in constructive two-dimensional quantum field
theory was devoted to the study of phase transitions [6, 7, 2, 3]. In most models
considered so far phase transitions were accompanied by spontaneous symmetry
breakdown. The exception is the Frohlich’s proof of existence of two phases for a
(MQ(@) +&P(p))— ve? — up), model [3, Theorem 7.6].

We consider a model with the 6th order polynomial interaction :3Ap% —1/2¢p*
—vp?—pugp: and show that for small 4, some v(4) (v(4)—0 when A—0) and =0
there are at least three different states corresponding in the Euclidean framework
to the formal expression

1
o~ 1306 = Al/204 ~vo2 — ng):
€ * d:ul ’

Z

where du, denotes the free, mass 1 measure. Appearance of only two of them is
connected with spontaneous breakdown of the ¢+ — ¢ symmetry.

Conventional wisdom based on the mean field approximation predicts
existence of three phases for the considered model (see [7, 14]). Our result shows
that the quantum corrections do not distroy the qualitative character of the
picture based on the classical approximation to the effective potential. This does
not seem to be obvious as the Wick ordering tends to fill up the middle minimum
of $Ax8 — A12x* 4 (4 — v)x? relative to the two others. The problem of multiplicity
of phases for P(¢), models was also studied in [13], where existence of only two
phases was predicted for a class of polynomials however not embracing the case
studied here.

The author is grateful to Professor A. Jaffe for clarifying remarks concerning the mean field picture.
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Fig. 1

Our result indicates that the phase diagram in the p, v plane should look
somewhat as on Figure 1. However we are far from proving this even locally. Our
method, which is patterned after the Frohlich-Simon-Spencer’s proof of existence
of phase transition in a statistical-mechanical model with no single-spin symmetry
[3,5] and after the Frohlich’s proof of existence of phase transition for (A(Q(¢)
+&P(p))—vp? — up), [3], seems not very well suited for deeper analysis of the
phase diagram even in the statistical-mechanical lattice case with discrete spin
where a powerful method of Pirogov and Sinai [11] is available. Giving limited
information it works however for continuous spin and, as we demonstrate here,
also in the continuum case.

2. The Strategy and the Main Result

Our strategy for proving existence of at least three phases in a P(¢), model can be
illustrated best in the simpler case of a Z? lattice spin 1 system (d=2). As we
mentioned before it follows closely the Frohlich-Simon-Spencer’s proof [5,
Theorem 3.5] of existence of phase transition in the lattice model with no
symmetry single-spin distribution for some value of external magnetic field
(compare also [3, Section 8.2c]).

Denote a spin configuration by o =(0,),_,4 o,€R'. We consider a model with
the measure on configurations formally given by

1 J
du; ,=—exp|—= Y (6,—a)*|[[ 6o, +1)+5(c,)
Tz 2 & T
+ (o, — 1)) exp(vo?), (1)
where Z denotes the sum over pairs of nearest neighbor lattice sites, J =0, v is
{x,y}

real. Take the infinite volume pressure o’;* connected with this model. This is a
convex function of v (and J). Jlim a2V is easily computable and equals 0 for v<0
— 00

and v for v=0.
Now by the Gaussian domination bound of Frohlich et al. [5] it can be easily
shown that for each ¢>0 there exists J, such that for J>J (in periodic states)

(o(1=0})); S5 —¢ @
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for any v,x,y. But whenever exists (o2(1—0})),, clusters (argument of

Guerra [8]). Thus

<O-:>25>J,v(1 - <0-326>J,v)§ i_ —¢

and there is a forbidden interval for (¢}, , around 3.
Take now v,>0.

0
3 2 — : J,v —

"11_,1{.10 <ax>J,—vo_ ov ’\v=—v0 }Ln; %o 0, (3)

0
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When J = J (e, v,) we conclude that in the plot of the right-hand derivative 2
v

(versus v) there is a jump over the forbidden interval at some v(J), [v(J)| S v,,.

Three phases can be constructed as follows. We obtain the 1st state by taking
limit of periodic ones < >, , when v1v(J). Then we construct < >fv states by
turning off external magnetic field in periodic states and take their limit when
v]v(J) in turn. This way we arrive at the 2nd and the 3rd state. Expectations of ¢2
in the Ist state and the two others differ since they lie below and above the
forbidden interval, respectively. Then, using the Peierls argument, one shows that
the 2nd and the 3rd states develope non-vanishing expectations of ¢, differing by
sign.

Alternatively one can construct three different states using appropriate +, —,
or 0 boundary conditions.

We choose

P, [(x)=3Ax0—A12x* —vx?,  1>0. %)

v will be always restricted to the interval [ — 55,551 Let
U;lnv:=:£:Pl,v((p):' (6)

Throughout the paper : : will denote the Wick ordering with respect to the free,
mass 1 measure (Gaussian with covariance — 4+ 1).
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Fig. 3
We deal with the infinite volume half-Dirichlet states du, , [12]. Thus
.1 .
dﬂl",:/}% Ee UA’Vdu?,A= /}1_1:130 d.u'ii,vs (7)

where du?", is Gaussian with Dirichlet boundary condition covariance — 45 +1
and the limit of measures is understood in terms of moments or characteristic
functionals [12].

In tree approximation phases are determined by minima of P, ,(x)+ 7 x>. The
latter is a polynomial with three local minima: one at zero (value zero) and two
others at +¢&_,

Eo=th =B+ G+ 3y
(value
Eo=E§"=35[1—18v—(1+6v)*2]1" 12,

E,<0 when v>0, E,=0 when v=0, E,>0 when v<0). Thus from naive
considerations it follows that three phases should occur for small 1 at some v(4)
close to zero.

However the Wick ordering tends to change this picture: it deepens the
external wells with respect to the middle one. Nevertheless the behavior of
pressures and expectations in 4 is determined for small A in the leading term by the
naive classical picture. This makes possible application of the strategy described
above.

Introduce in R? a lattice {4,} of squares of volume |4]=10"2 Our basic
technical result is

Proposition 1. a) For each ¢>0 there exists 0<A(e) such that for each A, 0<A
< o(e), each v and each o,

<|A| ¢ “’(“ e ))>
b) For 0<v,< 55

tin 27 (o) =0, 0

A, —vo

Se. )

1
: 1/2 cn2 - =2 (L 2,12
i <|A|“” .(A)>m +G+Fvo" (10)
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c) There exists C>0 such that for 0<A=<A, and all v

KMI¢ (» < P¢Aykw

Let o*»* denote the pressure connected with our model. Thus

<C. (11)

ak= lim —In e~Vivg (12)
mnf #

akY is a convex function of v. We shall also need the following

A
Proposition 2. If %o gxists then <| ik 1p?:(4 )I ) (pZ:(Aﬁ)> clusters in mean.
A,y

From Propositions 2 and 1.a with ¢<§ it follows that for 0 <A<, whenever
A,V

oy’ . 1 . L
exists A1/2 <l a 1?2 (A)>/l v cannot fall into 14 — 8,  + [. Taking, if necessary,

ov
smaller 1, we can assume that

1
(i) st

1
/1”2< :p? :(A)> =1
"A| A,vo

(Proposition 1.b). Define

A1:={ve[—%,%]1/1”2<|;| @*:(4) é%"‘s}- (14)

sV

(13)

A, is not empty since —v,e4,. Because <:(p2 :(4)>,,, is non-decreasing in v (2nd
GKS), A4, is convex. It is also bounded above by v,. Let

v(A):=sup4,. (15)

1 1
/11/2< 4 > =22 Jim < (A)>
@) @ D)
1
1/2 1/2 15 :
= i i (o @), =4t pm (@)

1
= lim A2 <i_s.
vltlv(l)l <|A| @? (A)>h__2 é (16)

(We could interchange the limits because of monotonicity of {:¢?:(4)}, both in
A and v.)
Hence, by Proposition 1.c,

ﬂ”< zmm§ <1(1-3) a7
]Al A, v(R)
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for 0<A=<4, and all v {as we can take A, such that 1}/?C< g)

Now introduce external field and define dy, , , as

1
lim — e—U,x vtue(d) g, D
A>w 7 M1,

and limit states ¢ »f, and { >7 ., by

(TTot0)z,: =lim (1ot 520 (18)
<H cp(f)> seot=lim <H <p(f)>“ . fzo0. (19)

(We use monotonocity of <]_[ o( fi)> 2v.u in both v and ,u.)

A, vn

Choose a sequence v, | v(1) of points such that exist.

1 » 1
11/2< A 2> > lim 11/2<— A 2> = lim A!/? <—— A 2> .
|Al2 (P( ) v+ 0 =) IAIZ ¢( ) - now |A|2 Q’( ) -
But

(o) 2ied
A, Vn

41"
since it cannot lie in 14 —6,% +6[ and v,¢A4,. Thus (Proposition 1.c)
1 glap)  zh(+0) (20)
|4] v
and hence

() 249> H1-0)22 ([ olar)
47 D), e a7 "),

States < )7, +o differ from >, ;.
We are left with showing that { >}, 4 0%< D1y +o-

,V(4)

Proposition 3. There exists D>0 such that for each A, 0<A=A4,, each v, v>v(4),
each o, 8

1 1
,11/2<— 4,)— o4 > >D. 21
From Proposition 3 it follows that

n/ 1 RS ’
<| o) ¢(A,;)>M >D.

But, again in virtue of the argument of Guerra [8,4], {¢(4,)¢(4 ﬂ)>+ clusters.
Hence

)'1/4<|A| (p(A)> _D1/2
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and consequently

"
i”“<i (p(A)> =>D?, (22)
IAI A,v(A)+0
Thus
O] v+ 0= =P yzy+0>0. (23)

We summarize the result in

Theorem. Let 0<v,<45. Let 0 <Ay =A,(v,) be small enough. For each 2,0<1 <A,

there exists v(A), [V(A)| S v, such that the states Y, 0, < Y vm+o @d < D ya+o
constructed above are different.

The following sections are devoted to proofs of Propositions 1-3.

3. Proofs

The main tools in proving Propositions 1-3 are the chessboard estimate and the
Gaussian domination bound.

1. Chessboard Estimate [4]

We shall need the chessboard estimate in the following form (it is not difficult to
obtain it from the original one of [4]).

Let F,=0 be a function depending on field ¢ at points of a lattice square 4,.
We shall consider functions of the following type

1

Fa=1Co? (4, o4 )1 (m ¢<Aa)), 24)

where f is either a polynomial or f(x, y)=exp(ax+by) and y, is the characteristic
function of an interval I.

Then
<II Fo>1,v§ exp Z(aﬁs”(Fa)—ais”)lAI] , (25)
where
o (F,)= lim N § T (Fope~V=vdy, . (26)
A= IAI 4pgCcA

Here, as throughout this paper, A runs through the set of squares built up from
lattice squares. (F,), denotes the function “living” in the lattice square 4, obtained
from F, by subsequent reflections in lines separating lattice squares.

2. Gaussian Domination Bound [2,3,5]

<exp[ ¥ “’("""’i)DA,V éexp[gllg"lliz] . 27

i=0,1

This weak form of the Gaussian domination bound follows from the Glimm-Jaffe
Vo bounds.



124 K. Gawedzki

We start with the easiest (as standard).

Proof of Proposition 2. We use the argument of Guerra [8,4]. By 2nd GKS

1 1
(oo otiay) 2(got@) . o8
Put
6(A4):= ) (:p?:+B)(4,) with BeR'. (29)
4,CA

From the Holder inequality and the chessboard estimate we get
exp[x<6(4)*>;/7]
< 2cosh [x<60(4)*>3/71 = 2{cosh (x0(A) 5,
Sexp[(ag" "+ xB—o05")| A1 +exp[(og* ~* — xB - Al]
<2expl(eg ¥+ B —og")A[]

for each 0 <y =y, and each A if B is big enough. Hence

AVt _ AV

——(0(A)2>1/2 n2 4% 7% . p

1] by = l/ll X
and
a +al, v
hm 1SUp W <6(A)2>,1/3 < 6—v +B.
On the other hand, as free and half-Dirichlet pressures coincide [12]
T stimn “4ie

= limsup <L :p? :(A)>A <<L 12 :(A)>
A—=© |AI }.,v= IAI A, v

by monotonicity of the half-Dirichlet Schwinger functions in A. Hence if
exists then

imsup (0, (f0%0) +8) 30
Consequently by (28) and (30)

(e @), w5, 002,

AaCA

1
and 2.4 )— 2:(4 > clusters in mean. O
(et digie™9)
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Proof of Proposition 1. We shall proceed in a series of lemmas. First five lemmas
give bounds on various pressures. In proving them we follow the way paved by
Glimm et al. in [7].

Denote
ag:=53A"14*, api=L4714,
ay =@V, gy =AY (31)

O<ay<a,<a,<a;.

Lemma 1. Let ¢= 5.

- £ 4 1
je A+aUsy A]_—CIA X[—az,az] (m @(Aa)) dﬂl éeO(l)lAI ’ (32)

where O(1) does not depend on 1, 0<A=A,, v and A.
Proof of Lemma 1.
je—unwﬁv I X[-az,h]( o4 )) du,
duc 4|

Slexp[—(1+e)Uf,—G —n):9*:(A)

—{:6eP ] [T x[_az,az,( ol4 ))
A,CA |AI

lexp[L:(69)* (D +G —m):@> (MM, (33)

1
| —@(4,) if xe 4,. For the rest of the paper we choose 1= 3,

where d¢(x): = p(x)— — ¥
(=300, p—1=75.

Estimation of both terms is more or less standard [7]. The second term, by
conditioning with respect to Neumann boundary condition Gaussian measure
[7,91, is dominated by

(j"ep[C :00)2:(4) + (3 — )02 (A)]d#N |
which is easily computable and finite

__ 4]
(equal (det2 [1—pQLP+1-2n)(—A%+ 1) 1]) 2plAl>

under the condition that in L%(4) the operator
1—p2lP+1-2n)(—4A%+ 1)~ is strictly positive. (34)

Here P denotes the projection in L?(4) onto the subspace of functions with
vanishing integral and AY is the Laplace operator in L?*(4) with Neumann
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2
boundary condition on d4. Since the lowest eigenvalue of — ANP is IZI_I’ (34) holds
if

n? -1
p(2C+1—2n)(m +1) <1
and
p(1-2n)<1.

This is the case for the chosen values of #, {, |4], and p. Thus the second term in the
right hand side of (33) is bounded by exp(0(1)|A4]).
In order to bound the first term it is sufficient to show that for each g < oo

exp[—(1+e)U%,— G —n):9*:(4)—{:(69)*:(4)]

=0(1) (35)

q

1
*Xi-az,a2] (m ¢(A))

since then we can use the checkerboard estimate of Guerra et al. [9].

To prove (35) we introduce the special cut-off field ¢,, the same Glimm et al.
use in [7] except for adoption to the length scale of our lattice {4,}. It has the nice
property that ¢(4)=¢,(4). (35) follows in a routine way [see e.g. 1, 12, 7] from two
estimates uniform in 4, 0<A=A4,, and v.

1. “(1+s)£:Pa,v(<p):+(%—n):<p2:(A)+c:(6<p>2:<A)

—(1+8)£ Py 0): =G —n)ieZ:(4)

— {00, :(A)“2§0(1)x“" (36)

for some 6 >0,

2. (1 +8)£ P @) +G —n):el:(d)+{:(69,) :(4)

—In¥ 4, 4o (& q)(A))g —0(1)(Inx)3 37

(both for s =x).
(36) is known (see [7], Lemma 11.3.2.4). We shall prove (37) which is analogical
to the “Wick ordering lower bound” of [7].

(1+6):P, (0,):+G—n):02:=(1+&)[3A0S — AY*(1+ 5 A12C Yo}
+(=v+6112C, + £ ACHp2 +vC,—3AV2CE - 2 )C3]
+G—ne2—E—nC, 21 +e)[5ips —A12(1+ 2 212C )os

1_
+ (ZTTZ —y4+6A12C, + i;/lcg) (pf] —0(1)(Inx)?, (38)

where C,= [ p2du, =0(Inx) for large x (see (I1.2.1.6) of [7]).
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Polynomial ax®—bx*+cx?* (a,b,c,(b*—3ac)>0) has two local maxima at
x2=(b—(b*—3ac)'’?)/3a, a local minimum at zero and two local minima at
x2=(b+(b*—3ac)'’?)/3a. In our case we take

1 _
a=12, b=AP(L+BAEC), o=l ovb6iC,+4UC,  (39)

1 3
b —3ac=[AT0F 2N | 3,074 6232C, + 4£12C2 > 0. (40)
1+e¢ * *

The value of the polynomial at the external minima is equal

27102 [ —2(b?—3ac)(b+(b>—3ac)'?)+3abc]
> 272a2 [(b —3ac)(b+(b* —3ac)!/)] = — A~ V2(1 + 82Y/2C, )%, @1)

as
b?—3ac<i(1+81Y2C)? and b=<AYV3(1+81Y2C).

In external minima
1/2 4 1191/2
A2+ 54

—4)-12> 2
£y) =3A =a;z.
2

x?=(b+(b?—3ac)'?)/3a=

Hence if ¢ e[ —aj3, a;] then

1_
2hg =M1+ P ANC )+ (21 - ~v+6/11/2C,,+%§/1C3) ?;

=min {0, value of the polynomial at a,}

—min (0, 4~ 2[(s — b — bv—Fe—bve)(1+0)"!

+8A12C, + 4 2C1}=0. 42)
Moreover
{:09,)*: 2(09,)” —0(1) Inx= —0(1)(Inx)*. (43)
From (38), (42), and (43) we conclude that if ¢,e[ —a;, a;] then
(14+8): P, (0,): +G—m):07: +:(69,)*: 2 —0(1)(In%)*. (44)
Now if ¢,¢[ —a;, a;] but & o(4)e[ —a,, a,] then by (38), (41), and (43)

(1+e): Py (@) +G—m): 03 +(:(09,):

= —(1+eA~2(1+8AY2C )3 + {(¢,)* —0(1)(Inx)?
—(1+e)A™ Y2(1+8AY2C )3 + {(a; — a,)* — 0(1)(Inx)?
—(1+e)A~12(1+8A2C, )3 + %47 12— 0(1)(Inx)® = —0(1)(In %)3 . (45)
Integrating out (42) and (43) over 4 we obtain (37). O

=
2
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Lemma 2.

A
-‘.e U;,,v l_] X[—az,‘al]u[al’aﬂ(A (p(A ))dﬂl
4uC A .

<exp[(0(1)— 1554~ ")4[]. (46)

Proof of Lemma 2. We proceed the same way as when proving Lemma 1 and are
left only with showing that for g < oo

expL=Uf, = (=110 () =160 (e 7 00 |

<0(1)exp( 1|g(') ”2) ,

and this follows in turn from the bound

I3P1,v(¢u)3+(%—’1)1‘l’,2¢ () +:09,)%:(4)

0, (000 2 15547 0000 @)

If ¢, ela,, ay] then
1Py + G =)0k +{: (00,01 2 320
— AL+ B AM2C )t + (G —n+v+64Y2C, + 5 ACH 2 —0(1)(Inx)?
= min {values of $Ax%—AY2(1+42412C )x*
+G—n—v+6A12C,+ S ACHX* at a, and az}—0(1)(nx)?

=A"12min {——32 -

@7y ~ 3N+ A+ 3AC fe 3t +)

+§/11/ZC,,+%103} —0(1)(In%)® = 115 A~ 12— 0(1)(In »)>. 48)

If ¢, ¢[a,, a;] but |411—|

Pi@):+G—n):02:+{:(00,)*: 2 — 27 V2(14+8A12C )
+{(min{a; —a,,a, —ao})*= —A"Y2(1+8AY2C, )3 + %A 1/2

¢(d)ela,, a,] then [compare (41)]

—0(1)(Inx)* = 1A~ 12-0(1)(Inx)* . (49)
Gathering (48) and (49) we get (47). O
Let
0:=—(1—=@YVHA~ Y4, bi=ATV4 p,i=2714 (50)
bo<b,<b,.
Let he C*(RY), 0Sh<1, h(x)= {(1) g ii(l) Let for [>0 f,(x):=h(|x|—-%).
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For A= [— é,é x[— é,%] put
g(x): =, O filxh) . (1)
geCg(R?).

Next lemma will be used to estimate the input of minima of the action at
¢ ==+{, to expectations (F), ,.

Lemma 3. Let &= 5.

fe

- +£)D1(:P/1,v(¢+y)=—Eo) +o((—4+1)g)+3(gl(—4+ 1)9)1_2]

1

’ AI—[ Albo, + ool (I‘ZI 90(41«)) du, =exp[0(1)|4]+ C}.,vlaAl] (52)
wC A

[where, as always, 0(1) does not depend on 4,0 <A=<4,, v, and A]. We remind that
Ey=3[1—18v+(1+6v)¥2]A~ 12,

Proof of Lemma 3. The left side of (52) equals

- +6)/{(=Pa,v(¢+é+):—Eo+§+lp+%§1)

e
1 - - L2 el + a2
. H X[b°’+°°[(]A|(p(A“))e A+9e (~4+1)9) ,~ "2 _4 dﬂl
doCA
= exp[—(l+z—:)f(:Pl,v(qo+£+):—Eo+f+<P+%fi)
a4

141
14|

1
—( —n):0? ()~ {:(69)’ :(A)} o w[(m qo(A))
expL— (148 9o a(— A+ D)+ G —n):0>:(H+LGe (A1,  (53)

for g large enough (we have used the checkerboard estimate).

Conditioning with respect to the Neumann boundary condition measure we
bound the second norm by exp [0(1)|4]+ C, ,|04]]. As before we shall be finished if
we show that

L. H(1+8)£(2P1’v(q)+«f+):—EO+5+<p+ 1)+ G —n):0%:(4)

+0:09)*:(A)—(1+8) [P, (9t &) —Eo+ &0, + 5E3)

— ()92 4)~ L0, (4)

S0, (54)

2. (1+8)£(3P1,v(%+5+)i —Eo+&0,+380)+G —n):i95:(4)

1

+:000,)* ((A)—Inyg, 1o (l—A—l qo(A)) = —0(1)(In%)3. (55)
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To prove (54) we notice that

:P"V(¢”+é+):_E0+é+%+%fi
=17:05: 4328, 103 + (4222 —A1/2): 0%
+(10).f3 11/26+) q’x- (12—5151_6/11/251):(%%:‘ (56)

Since all coefficients at Wick powers are bounded uniformly in 4, 0 <A=1,, and v

(54) follows similarly as (36) before.
We pass to proof of (55) which constitutes the most involved part of the paper.

Denote ¢, +¢, =: x.

:Pl,v(q)x-i_é-(—): —EO'+£+¢;{+ %éi + 2
= Lix6— 2121 + 12—5/1”2c )x4+(—v+6/11’2Ck+ 45 7C2)x>

a-gr- (B2,

+E(x—E)+ 380+

—3212C2 — 13)C3
> LaxS — A1+ B A2C )x* + (5 —v+6A12C, + $ AC2X?

_E,— ’7+ g(x £, —0(1) (Inx)°. (57)

Consider the polynomial

Wu(x): = %/’{XG _11/2(1 + %Al/2cx)x4
+G -V 6212, + FAC)N?. (58)

w, takes its minimal value at x=£¢, ,, where

=2ATUAMA(L+ B AY2C,) + (AL + S AY2C,)?
— 304 —v+6AY2C, + 42 1C2)V2]
=ATWP3 4542 C,+ (5 + §AVPC,+10AC + 30)VA]
=AY G+ G+ 30 +AV2C [5+ G +10412C,)
(G +3v+5412C, +10ACH 2 +(5 + 39D 1]

=¢2 +0(1)C, (59)
Straightforward computation gives for the minimal value E, of w,
E,=E,—[(t +5v)C,+5A"2C2+ 2 1C]]
— 3= AT VP[(14+6v+24412C, +90 AC2)* 12 — (14 6v)*'%]
(60)

2 E,—0(1)(Inx)3.
If o, +¢&,€ela;, +of then
w ()2 75 (x =&, )7+ Eg—0(1) (Inx)* . (61)
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\
N N

Indeed, from a simple analysis based on Figure 4 it follows that (61)is a consequence
of three facts:

a) w¢, ) ZE,—0(1)(Inx)* which is (60),

b) wi(£, ,)= ¢ which holds as the direct inspection shows,

) wla)z t5(a;—¢&, )*+Eo—0(1)(Inx). (62)

Fig. 4

To show (62) we notice that
W, (a;)=A"12 (TS - g) + 8, +451C2. (63)

1—12—(5+ x al) +EO

3 ) & —a?+0(1)C, \?
_1_ +,% +E S—l— + 1 ® +E
2(€+ xay =12 $itay 0

62
(c ) +E, +0(1) (inx)*
2712 4 E, 40(1) (Inx)?

L — A" Y240(1)(Inx)? if v=0, 64
{1,1 124 0(1)(Inx)? if v20. ©4)

I\
Nl"‘

IA

IIA

From (63) and (64) we get (62).
Now for xe[a,, + oo[ (60) and (61) give

n+s
W)= Eo— 7 (x— £,)*—0(1)(Inx)*
1r(x— &, )2 — 1a(x—£,)? —0(1)(Inx)
12— &)= (€4 = &) — 7a(x—&,)? = 0(1)(Inx)?
=3¢, ,—¢&.)*—0(1)(nx)°,
where we have used
(a—b)*=%a*—6b%.

I| IIV

IIV
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Hence by (59)
s
W)= Eq— 1 (x—¢&.)*=0(1)(Inx)*
> 1(ﬂ)2 —0(1)(In3)® = —0(1)(Inx)>. (65)
PAVSRE T

Gathering (57), (65), and (43) we get
(1+e)(:P, (@, +E2): —Eg+ &0, +383) +G =m0} +{:(09,)*:
> —0(1)(Inx)® if @, ,+¢&, e[al, + oo . (66)

Now if ¢, + &, ¢[a,, + oo but m(p(A)e[bo, + oo[ then by (57) and (60)

A+e)(:P (@, + &) —Eo+ &0, +38)+ (G —n): 0} +(:(39,)*:

2(14(E, - B~ 1+ )02+~ 0Dy

&
- (1 2) o2 + Lo ~bor =000 7
Now
{(p,—bo)* _ Lla;—&, —by)*
> fo <a,—¢&,.
0l Z @-fr T ST
By direct computation
C((px - bO)2 > E
p =10—’7+2 (68)

Thus from (67) and (68)
(A+e)(:P, (@, +E4): —Eo+&0,+3E3)+G =m0l +(:(00,)%:
2 —-0(l)(nx)* if ¢,¢[a;—¢&,, +oo[ and
(66) and (69) give (55). [

Lemma 4. Let ¢ =55.

9Tt ol (©9)

5 e 1 +£)U (:Pa,v(@+g):—Eo)to((—4+1)g)+3(g|(—4+ 1)9)1_2]

“IT s, + ot (l i o4 )) dp, <exp[(0(1) =94~ 12)|4]+C, JoAl]. (70)
4eC A

Proof of Lemma 4. Proceeding as in Proof of Lemma 3 one is left with showing an
analog of (55):

a +8)£(:Pa,v(<px+€+)r—Eo+§+¢x+%éi)+(%—n):<pf:(A)+C:(5<o,,)2:(A)

~ 10, 4 (ﬁ (p(A)) >9/413™ 12 ~0(1)(In)*. (71)
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We shall distinguish three cases.

st Case. ¢,€[b,, + o[ ie. xe[b; +&,, + oo and
by+&,. 258, .

Then (compare Fig. 4)
W () Z 15 (x =&, )? +Eq+947 12— 0(1)(Inx%)* .

Indeed, we must only check that

w by +&.)2 750, +&, =&, )2+ Eg+947 12— 0(1)(Inx)*.

But
Wby +E,)Zw (V2414
as
by +&, =DV zE, L.
But
w (B4~ 142104712 —0(1)(In%)> .
Furthermore by (59)
15l + &y =& P HEg+9A7 P S 558% L+ Eg+ 94712
< 15582 +Eo+947 12 +0(1) Inx <1047 Y2 +0(1) Inx.

Thus (73) is proven.

Proceeding further as when proving (66) we obtain from (57) and (73)

(1+e)(:P, (@, +&):—Eg+ &0, +3E3)
+G =00k +{:(09,)*: 292712 —0(1)(Inx)’ .
2nd Case.
(DHE[bl, +OO[’ bl +6+ é%é+,x~
By (59)
(by +&. P = RE+0(1)C,.
Hence
3712 <01, .
From (66) and (80) we get
(A+e)(:Py (@, + &) —Eg+ &0, +3E3)+ (G~ 0k:
+{:(0p,)%: 2 —0(1)(Inx)> 294~ 2 —0(1)(Inx)>.
3rd Case.

0, #[by, + o[, ﬁgom)e[bz, + oo

133

(72)

(73)

(74)

(73)

(76)

(77)

(78)

(79)

(80)

(81)
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An analog of (67) holds:
A+e)(:P, (0, +E,): —Eg+ 40, +38)+G—1):0):

+L00, P12 = (14 5) 02+ o= b 00 ®)
Minimal value of — (11 + %) ®2+{(p,—b,)?* is attained at ¢,=b,. Hence

~ (143 o2+ tlou b2z =1+ b1+, ~b 297, )

(71) follows from (79), (81) and (82) with (83).
Lemmas 1-4 provide upper bounds on pressures. We shall also need a lower
bound on o

Lemma 5.
ok’ 2max{0, —E,}. (84)

Proof of Lemma 5. 1. By the Jensen inequality

1
v viy §UZvdus
2'= lim W lnje vdpy 2 lim T Ine” 0.

2. We translate du, by the function g [see (51)] and use (compare 1.4.10 of [7])

IF((P—g)d:“l = j‘e~¢((_d+ 1)g) -3 (gl(—4+ l)g)LzF((p)dul . (85)

Hence

ol

= §GPa,v(0): —E = §GPa,v(o+g):—E
je JGPa o) O)d/h:'je S GPa,v(o+9):~Eo)

Lo~ =4+ Dy —1(gl(-4+ l)y)udﬂl

_ Ie-/{(:Pz,v(¢+é+):-’Eo+§+¢+%¢3)—¢(x-4(—4+l)g)

-1 24 1gl2
o F L el oty

> exp

*I(£(5P1,v(¢+5+) —Ey+E,0+3E)+o(ra(—4+1)g)

+3 I<||Vgn2+|g|2)) dus| =exp| =3 | (171> +1gl")
~A ~
zexp[—C, ,lo4]1, (86)
where we have used (56). From (86) we get
a2 —Ey,— lim C, Ia—A|=—Eo. a

Having proven inequalities for pressures we can now employ the chessboard
estimate in estimation process.
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Lemma 6. Let F, , be a positive polynomial in :¢*:(4) and ¢(4) such that for each
q<oo there exists C; <0 such that for each A, 0<A=A,, and each v

1F 3,0l =( (F5,,)dpy) " < C, - 87)

Then

1 0(1) for v=0
(Fotonaal o)), = {ipen e 220 9

Proof of Lemma 6. By the chessboard estimate (25)
1 Ay 1 A,V
By - azan| T @A) | ) Sexp| 0| Fy X a0 | T @A) || =0 111 (89)
4] v 4]

1
aﬁév F vA[—az,ad\T 11 A))
( PRy (. 2]<|A|<0( )

= 11m L lnje""’lv n Xi-azas] (|A| (p(Aﬂ))(F}. Wl

1
_— i —(L+8)Uhy
é 1+¢ /}lm |A| ln]e 1—[ Al~az,a2] (IAl QD(AI})> d:ul (90)

1
—1 F, )&t du, <0(1
(1+8) A—» |/1| nj.A!_c[A( lv H ()

where we have used Lemma 1 to bound the first term and the checkerboard estimate
[9] together with (87) to bound the 2nd one.
Inserting (90) and (84) to (89) we get (88). [

Lemma 7.

(It -atoea70(4)) Sexpli=sioldi= = +o0al, 1

acAd
where |A| denotes the number of elements of A.

Proof of Lemma 7. By the chessboard estimate (25)
—az, —aijvlay,az A
e L))

1
<exp [(aig”(x[-az,_mum,m (Wp(zl)))—a@“)unAl}
<expl(— tho 1412~ 2+ 0()IA]

in virtue of Lemmas 2 and 5. [
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Lemma 8. Let F, , be a positive polynomial in :¢?:(4) and ¢(4). Define F;, by

Fo(1):=F;, (T+¢£,). 92)
Suppose that for each A, 0<A=<A,, and each v
1F5,0,=C,. (93)
Then
1 0(1)e Foldl for y<0
il < =
(Frotoprsore o)) =50 1r 220 94
and
1 - -1/
<Fl,vx[bz+§+,+oo[<|71—| ‘P(A))>'l =0(1)e slaja=i/z 95)

Proof of Lemma 8. We estimate

1 .
agv<FA,vX[bi+§+,+oo[ (m(p(A)))’ l=0,2,

translating du, by g [see (51) and (85)].
1
al (FA,vX[b,+¢+,+ ol (ILTI (P(A)))

o1 _p4
— im0 T TT e 50040 B i

| dgc A

1 — [ Pa,v(@+g)—o((— A+ 1)g) — 2(gl(— 4+ 1)g)r2
= hm —Infe a7 :
o [A] I
-1 Abs, +oo[<|A|(p(AB)>(F D
dpgcA

(1+€)[I( Pa,v(@+g):—Eo)+o((—4+1)g)+5(gl(— A+1)g)L2]

1
<lm-——"_
= fm e

. HA X[bi,+oo[<,A|q’(Al3)) du1+ 11m (1+ )|/1| lnj H (lel,v)}gl“ydﬂl—Eo

4pC dpCc A

0()—E if =
g{—m-mﬁmn if =2 9

We have used Lemmas 3 and 4 and (93).
(94) and (95) follow from (96) and Lemma 5 by the chessboard estimate. []

Denote

X—-l::X]—oo,—az[’ X0:=X[—a2,az]9 X1:=X]a2,+oo['

1
We shall also use shorthand y for y, (I—A—I (p(Aa)), a=0, +1.
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Lemma9. Let a,b=0, +1, a+b.
laxbdiy =520 uniformlyin v, o, B. 97

Proof of Lemma 9 (Following the Frohlich’s proof [2,3] of existence of phase
transition in (AQ(¢) —ve?),).

By use of the Peierls argument in the form established in [6] and [3] (97) can be
derived from

< I1 Xﬁuﬁxfa,,> <exp[(—=doA~V2+0(W)h[], >0. (98)
AV

(4, 4p)€y

Here y is any set of |y| neighboring pairs of lattice squares and a,; +b,;. We can also
assume that all pairs in y are disjoint (using the Holder inequality to separate them if
this is not the case) and that b,; 0.

Write

Xo=TXo+Xos (99)
where

X0 =Xi-as.an (100)
and

')NZO : =X[—a2,—a1[u]a1,a2] . (101)

Put also ., :=x+1

< I1 xZuﬁxfa,3> §Z<( I1 Zi‘:aﬁié’uﬁ>”2 <( I 7?‘8>“2- (102)
AV

(4a, 4p)ey 7"\, 4p)eyy’ A Ay, 4p)ey’ A

In ) 9 runs through the subsets of y composed of pairs (4,, 4,) such that a,,=0.
&

< Il xx”>
(44, Ap)ey A, v
1
bap i (@(45) — 9(4e)) — (a2 —
§< T e o747 ((49) ~ 9(de) ~ (@2 a1>> . (103)
(4e, Ap)ey Ay

It is easy to choose functions g}, such that

1 L .
bus T (@(dp) = 0(4,))= 3. 9(0:g,)
|4] i0

(see [3, proof of Theorem 7.2]).
Using the Gaussian domination bound (27) we get

< 1l xx£> gexp[ Y Y llgilz—(ay—a)hl
(Ao, 4p)ey Av (

Ay, Apg)ey i

<exp[(—§4~ V2 +0(1)lyI]. (104)
Inserting (104) and (91) of Lemma 7 into (102) we obtain (98). [
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Lemma 10.

(@ (4)*™, , 20(1),
’ 105
A (@A), , =0(1). (105)
Proof of Lemma 10.

1
D, S (GO D 0]

+2/1"<(:(pz:(41))2")([,,()+,:+,+oo[(IAl (A))> as by+¢&, <a,.

Now using Lemma 6 with F, ,=(:¢?:(4))*" and Lemma 8 with F, , =1"(:¢*:(4))*"
(e Fy,=(A"2:0:(4)+2412¢  o(4)+ 212E2 | 4)) we obtain

/1"<(1<0 ()7, , <A0(1)+0(1) <0(1) .
Proof of the second inequality is identical. []

Now we are prepared to prove Proposition 1.

1
/1 2
(oaa(e =i ("”))>“
= |Al(p : ax[-az,azl |A|(P [AIGD g -
o, 1
+l<m(p ‘(Aa)x]-—oo,“az[k)]az.+°°[<m(p(A“))
2 2 1
(f —D—I ) 3(%))X]—oo,—bo—§+[u1bo+<:+,+m[(@‘/’(dﬂ)»m
1 2 1 . . ‘
+22 <m : 902 :(Aa)X]az,wLoo[(m ¢(Aa)) <§+ - [Zﬂ : (pZ (Aﬂ))

1
“Al-bo—&+bo+E4] (m </>(A,,))>l : (106)

sV

We bound the terms of the right hand side of (106).

/2

1 2 1 1
1st term §/11/2<(v: 2.(4 ) cura (_ A )>
| , ] @*:(4) Al-as,as] |Alqo( ) .

e (g, )z o

in virtue of Lemmas 6 and 10.

1 2 1/2
|2nd term| <2414 (/1 << 1?2 (A)) > )
lAl Ay V.

(2((6r - o) s alora)), |

<AVAO(1), (108)



Existence of Three Phases for a P(¢), Model of Quantum Field 139

where we have used Lemma 10 and Lemma 8 with

1 2
Fi,v=)'1/2 (éi_lz]_l'(pz:(A))
ie.
F, = )’1/4 1 . 2'A 2/'{1/2 1 A 2
A= m~<P (4)+ f+m¢( )

which is du,-integrable with any power uniformly in A small and v.

|3rd term| gz(lz <(§:¢2 :(A))4>A’V)1/4
fro (o) )

1 1
’ <X1a2, + ol (m ‘P(Aa)> X[ -az,a2] (m (/’(/—118)>>/1
<0 if 0<iZlo(e) (109)

in virtue of Lemmas 9 and 10.
(106) together with (107)~(109) give (8) and Proposition 1.a)is proven. We pass to

point b).
1 5 2 1 5 2 1 1/2
—:1p*:(4 =i <<— :A) —aa (— A)>

(0 ()>1,_w, T D) 2wl o))

2 1 1/2

1
+2<’1(m:¢2:(4')) X[bo+¢+,+w[(m¢(ﬁ))> (110)

A, — Vo

/11/2

SO0(1)(A2 +exp(— Eo|4) SO(1)(A'? +exp(— 3 v,/4|2 ™) —=>0.

2 12\
- _ - _ 12/~ . 2.
‘3*(9*3”0) 4 <|A|“” '("’>A,w,

2_l. 2'A>
<5+ Jea)

<211/4 )’1/2 éz_i. 2'(A)2 i (A) 12
= + IA'(p . X[bo+é+,+oo[ IAICP

A, vo
1 2 1 1/2
; <x (ci - e .(A>) . (W(Aa>)>

A,vo

— 12

< O(1)(AM* +exp(Eol4)) SO(1)(A"* +exp(—vol4|A™ %) 55~ 0. (111)
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We have used Lemmas 6 and 8. (110) and (111) prove Proposition 1.b).
Now

’<(14le O “’("))2>M
<<<|zlu 0O~ o ))2"f-“2'“ﬂ<|llT|“’("))>r
.

#2{ [0t @) (7 (A))>l <o) (1)
IA,‘(p . lA{2¢ X[b0+<+,+°0[ |A'q) =

Ay

in virtue of Lemmas 6 and 8 [estimating the second term from Lemma 8 we put

1 2
F,,= (m (2 i(d)— I—ZII—IT (p(A)Z) =F'M}. (112) proves (11) and completes the proof
of Proposition 1. [

Proof of Proposition 3. First notice that for v>v(1) and A small enough

L 1

[see (20)]. Using Lemma 6 and (95) of Lemma 8 we obtain

12/ 1 z> _ 172 <L 2 (i )>
A <|A|2 o(4) s A IAIZ o(4) XI-az,a2] ] o(4) »

1 1
1/2 2
2}‘ <|A|2 qD(A) X]az,b2+§+[(|Al (p(A)>>

A,V

1 1
IOV <|71F m(A)Zx[b2+¢+,+w[(m ¢(A))>

AV
1
é 2)'1/2(b2 + §+)2 <X]a2,b2+§+[ (m (p(A)>>

A, v

|

+(,11/2+exp(—8|AM—“2))0(1)§20<x[,,2,+w[(| Vkd% ))> + (114)

for A small enough.
(113) and (114) give

1
0= <x[az+w[(m|<p( ))> (115)

Now, with use of the notation of Lemma 9

12/ 1 > _ 1/2< 1 >
e (o) o) =20 (ol ) oty

1
+W<— (AL (4 )x“>
IRV TRV

+21 Y <|A|<p(A iV {A|¢(Ap)xb>A : (116)

a¥b v

,V
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By Lemma 6

1 1
jr2 <— (47 o4 )x”>
|4] Ola T

o2 ),

<AM20(1)£L-1072 (117)
for A small enough. Moreover

1 1
Ay <W ¢(Aa)xzm¢(dﬂ)x5>

a¥b A,v

ga;b(x«l \ (A))> )”2<xa B2 <4-10°2 (118)

for A small enough (and all v) by Lemmas 9 and 10. Using (117) and (118) we obtain
from (116)

Az < 4, A4 > >2/11/2< a4, Ap) >
_%10 222)"1/2 <X1X€>&v i —2=%<X1>l,v
=56+ LA D0y — 51072 2D, ~ 51072 (119)

vV

again for A small enough and all v (Lemma 9).
From (115) and (119)

o1 3
2 (o), w540

Taking D=2-10"2 we are done. [J
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