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Abstract. We characterize equilibrium states of quantum systems by a condition
of passivity suggested by the second principle of thermodynamics. Ground
states and β-KMS states for all inverse temperatures β^O are completely
passive. We prove that these states are the only completely passive ones. For the
special case of states describing pure phases, assuming the passivity we
reproduce the results of Haag et al.

Introduction

The main aim of the equilibrium statistical physics is a description and investigation
of equilibrium states for large physical systems. To this end we use infinite systems
as good mathematical models.

The physical motivation for this paper is a question; how to describe the
equilibrium states for a given infinite quantum system?

As it is well known, in the traditional approach we consider the finite systems for
which the equilibrium states are better known and then we take the thermodynami-
cal limit. If the limit exists, one assumes that it describes the equilibrium state of the
infinite system.

Starting with the Gibbs canonical ensemble characterized by inverse tempera-
ture β for finite systems and keeping β constant, one can easily prove that the limit
state is β-KMS state for the evolution group of the infinite system. In other words, if
H is a generator of this group then the modular automorphism group associated
with this state is given by — βH.

The KMS states are formal generalizations of the canonical Gibbs states for
infinite systems and it is not obvious whether they possess properties attributing to
equilibrium states.

Some number of papers are devoted to answer this question. For quantum
lattice systems Araki proved that every KMS state is a limit of Gibbs states [1],
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moreover for translationally invariant states he showed that the KMS condition is
equivalent to the known variational principle saying that for a given energy and
density, the maximum entropy is achieved on the equilibrium state [2]. Quite
recently it was proved to be equivalent with local thermodynamical stability [4].

In this paper we give another description without any reference to Gibbs states
and the limiting procedure. We characterize the equilibrium states of general
quantum systems by a condition saying that the systems are unable to perform
mechanical work in cyclic processes. This condition called "passivity" is suggested
by the second principle of thermodynamics.

For states describing pure phases (weakly clustering) we prove that passive
states are either KMS-states with some non-negative inverse temperature β or
ground states. In the general case, assuming a little stronger condition of the
complete passivity we get the same results. On the other hand KMS-states (with
positive inverse temperature) and ground states are completely passive.

In the special case, for passive states which are weakly clustering with respect to
the time evolution group and not central we have some additional results.

To our knowledge the paper of Haag et al. [8] is the first paper devoted to this
problem in the general setting. The other versions of this type are [6, 10]. They
proved that "pure phase" states (some technical assumptions which are related to
the clustering property with respect to the time evolution) stable under local
perturbation of the dynamics are either KMS-states (with βeR) or ground states.
This result corresponds to our last special case.

For finite systems it can be shown that the stability under local perturbation of
dynamics means the functional dependence between the state and the hamiltonian,
our condition of passivity gives a decreasing (not necessarily functional) de-
pendence, both these conditions are weaker than KMS-condition asserting the
functional dependence of the form

o~e-βH.

1. Passive States: Main Definitions and Results

We investigate a quantum system S (finite or not). To describe such a system we use
C*-algebra language. Let (21, α) be the C*-dynamical system assigned to S. More
precisely 21 is the C*-algebra of observables and α = {αJί6lR is the strongly-
continuous one-parameter group of automorphisms of 21 describing the time
evolution of the system. Assume the system is in a state ω at time ί = 0. Then the state
ωt of the system at time t is given by

AέΆ. (1.1)

The family of states (1.1) satisfies the following evolution equation

AeD(δ), (1.2)
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where δ denotes the generator of the group α;

and D(δ) is the set of all Ae^Ά for which the above limit exists.
All the formulae obtained so far are based on the assumption that the dynamics

of the system is described by a one-parameter group of automorphisms of 91. In the
physical language this assumption means that our system is closed i.e. : thermally
isolated and placed in the immutable external conditions.

The main idea of the present paper relies on the investigation, how the system
reacts to a change of the external conditions. Such a change can be achieved for
instance by switching on some external fields or by moving the walls confining the
space region admissible for the system.

In the case of changing external conditions, the system is no longer closed
(although it is still thermally isolated) and the evolution Equation (1.2) should be
replaced by the following one :

AeD(δt), (1.3)

where {δt}te]SL is a family of derivations of9ϊ. Following the philosophy of [8] we
assume that D(δt) = D(δ) and

δt(A) = δ(A) + i[ht9A] AeD(δ), (1.4)

where {ht}te^ is a family of self-adjoint elements of 91.
Clearly the family {ΛJίelR describes the way, the external conditions are

changing. We shall always assume that ht = 0 for t ̂  0 (up to this moment the system
is closed), ht is continuous on [0, T] and differentiate (in the norm topology) inside
this interval (smooth changes) and ht = const for ί^ 7" (the system is closed again
although the external conditions may differ from the original ones),

From the physical point of view the assumption (1.4) restricts the class of
external conditions. We are allowed to make only local changes, for instance
switched on external fields should be of finite extent.

According to (1.3) and (1.4) the evolution of our system in the case of changing
external conditions is governed by the equation

J(ίht,A]) AeD(δ). (1.5)

The general solution of this equation can be written in the following form similar to
(1.1):

ω,(Λ) = ω(αίU)) Ae% (1.6)

where ω = ω0 is the state of the system at time ί=0 and {α?}(SIR is a family of
automorphisms of 21 satisfying the following evolution equation;

dα.h

]) AeD(δ) (1.7a)
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and the initial condition

och

0(A) = A AeM. (Lib)

It can be shown that {α?}ίeR exists and is uniquely determined by (1.7).
The physical meaning of the operators ht follows easily from (1.4). This equation

shows that ht is the additional energy operator related to the considered change of
the external conditions. It means that by changing external conditions we can
transmitte the energy to the system (there is a work done by external forces!). The
energy transmitted to the system S during the time interval [0, T] is given by the
formula

- (L8)

To justify this formula we divide [0, T] into small intervals
N

[0, T] = (J [ίfc_ 1? ί J (where 0 = ί0 < ίx < ... <tN_ί<tN = T) such that ωt is almost
fc=l

constant on each small interval. Then

which is the correct expression (see also [11], pp. 20 and 21).
If Lft(ω)^0 then the positive work is done by external forces and the energy of

the system increases. In the other case Lh(ω)<0, the positive work is done by the
system and its energy decreases.

Both cases are possible for real systems in equilibrium. Consider for example a
gas in a thermally isolated cylinder. Then LΛ(ω)<0 (resp. LΛ(ω)>0) if the gas is
decompressed (resp. compressed).

There is however one important property of the equilibrium states which is
related to the concept of the work. Namely for such states LΛ(ω)^0 provided the
final external conditions coincide with the original ones :hτ = Q. This fact is strongly
related to the second principle of thermodynamics saying that systems in the
equilibrium are unable to perform mechanical work in cyclic processes. We describe
this property saying that the equilibrium states are passive.

Definition 1.1. Let ω be a state of C*-dynamical system (21, α). We say that ω is
passive iff

L"(ω)^0 (1.9)

for any differential family {feJίeIR of self-adjoint elements of 21 such that ht = 0 for
ί^O and t^T.

In our example if we decompress the gas and next compress it to the previous
volume then the total work we have done is positive (it is zero if the process is done
in the quasi-static way).

Now we are able to state the main results of the paper :

Theorem 1.1. Let ω be a passive state of a C* -dynamical system (2ί,α). Then ω is α-
ίnvariant i.e. ω(oct(A)) = ω(A) for all ίelR and
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This result is not surprising. Equilibrium states should be stationary.

Theorem 1.2. Let (9ί,α) be a C*-dynamical system. Assume that a state ω is either a
ground state or a KMS-sίαίβ with some positive inverse temperature β^Qfor (2I,α).
Then ω is passive.

The converse statement, although very desired is not true in general. The very
reason for this is the linear nature of the passivity condition: it is obvious that any
mixture of passive states is passive. On the other hand a nontrivial mixture of KMS-
states with different temperatures is neither KMS nor ground state.

The simplest way to exclude such mixtures is to assume that our state describes a
pure thermodynamical phase. As the mathematical expression of this fact we adopt
the weak clustering property.

Definition 1.2. Let G be a locally compact amenable group of automorphisms of 2Ϊ.
The action of G on 91 will be denoted by κ. We always assume that the mappings
G3XH>x;c(^4)e2Iare continuous. An invariant mean on G will be denoted by η. A state
ω of 91 is called G-weakly clustering iff

ηx(ω(Aκx(B))) = ω(A)ω(B) A, B e2I.

In the physical applications G is the group of space translations or just the time
evolution group.

For states describing pure thermodynamical phases we have the converse of
Theorem 1.2.

Theorem 1.3. Let (91, α) ba a C*-dynamical system and G be a locally compact
amenable group of automorphisms of 91 commuting with α. Assume that ω is a G-
weakly clustering and passive state of (91, α). Then either

1) ω is α KMS-sίαίe of (91, α) with some non-negative inverse temperature β ̂  0 or
2) ω is a ground state of (91, a).

In the general case, to get the conclusion of Theorem 1.3, we have to assume a
stronger version of the passivity condition. It is called the complete passivity and
seems to be as natural as the previous one. To introduce it we consider the system SN

consisting of N-copies of the system S. The complete passivity means, that if all
these copies are in the same state ω and are uncorrelated then the resulting state of
SN is passive and this fact should hold for all N= 1,2,....

To make this definition precise, for a given C*-dynamical system (91, α) we
/ N N \

consider the system (91, α)*= (̂ (X) 9ί, (X) α j .

Definition i.3. Let ω be a state of a C*-dynamical system (91, α). ω is called
N

completely passive iff for all natural N, (X)ω is a passive state of (21, α)̂ .

We have

Theorem 1.4. Assume that ω is a completely passive state of a C*-dynamical system
(91, α). Then either

1) ωisa KMS-state of (91, α) with some non-negative inverse temperature β^Q,or
2) ω is a ground state of (9ί, α).
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Remark. It follows immediately from Theorem 1.2 that KMS-states (with β ̂ 0) and
ground states are completely passive.

All the results mentioned above will be proved in the next sections. In the last
section we also prove some deeper statements concerning the spectrum of the
hamiltonian operator and the type of the factors generated by GNS-representations
related to passive states weakly clustering with respect to the time translation group.

2. The Mathematical Sense of the Passivity

The main result of this section is contained in the following theorem.

Theorem 2.1. Let (21, α) be a C*-dynamical system, δ be the generator of α and ωbea
state of 21. Then ω is passive iff

O (2.1)

for any Ue^0(2I)nD(<5), where ^0(2I) denotes the connected component of the unity
of the group (̂21) of all unitary elements of 21 with the uniform topology.

To prove this result we need a formula giving a deeper insight into the structure
of the perturbed dynamics α*. To get this formula we consider the following
differential equation:

(2.2a)

with the initial condition:

E70 = /. (2.2b)

One can easily prove that there exists one and only one solution {Uf}feR of the
problem (2.2). Moreover the selfadjointness of ht implies that all operators Ut are
unitary.

The relation between {Ut}teR and the perturbed dynamics {α[7}ίe]R is given by

oζ(A)=U*oίt(Λ)Ut -4 e 31. (2.3)

To prove this formula one has to check that o% introduced by it is the solution of
(1.7). This verification can be done by the direct computation and will be omitted.

Assume now that hteD(δ) and that the mapping t\-*δ(ht) is continuous. Then

UtεD(δ), δ(Ut) is differentiable with respect to t and — <5(t7f) = 5ί —lu. Since
\dt

I
/s \

[7$τ(l/0)]=0. Therefore
i
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Now, using (2.2a) and remembering that δ is a derivation commuting with α we get

o

= - f ω(U*at(δ(ht))Ut)dt = - f ω(α?(δ(Λ,)))Λ .
o o

On the other hand, remembering that h0 = 0 = hτ and using (1.7a) we have

Z»= f ω(αf ft))Λ = ω(α?(Λt))|J- J ωΆh.
o \ \ a t / / o \aτ

= - f ω(^(δ(h,)))dt - i J ω(α?([/j(, ftJ))A
0 0

= -J
0

Therefore

(2.4)

Now the proof of Theorem 2.1 is very simple. Assume that (2.1) holds and that
h = {ht}te1SL satisfies the conditions formulated in Definition 1.1. If hteD(δ) and
£h-»<5(/zt) is continuous then (1.9) follows immediately from (2.1) and (2.4) (Note that
Uτ belongs to ^0(2l)). If {ht}te^, is not contained in D(δ) then we put

h"t= J nφ(ns)as(ht)ds ,
— oo

where n is integer and φ is a positive C1 -class function with compact support on the
+ 00

real line such that J φ(s)ds = 1. One can easily check that hn = {h"}teR satisfies all
— oo

the conditions used in the derivation of (2.4). Therefore Lhn(ω) ^0 for every n. On the
dhn dh

other hand, it is rather obvious that /I?->/L and —r-+—r uniformly for ίeIR as
at at

n->co. Then, using the simple continuity property of Lh(ω) we have Lh"(ω)->Lh(ω)
and (1.9) follows. This way we proved that (2.1) implies passivity.

Assume conversely that ω is a passive state and that l/e^0(2ί)nD(<5), Since U
belongs to the connected component of the unity of the group of all unitary
elements of 21, one can find a finite sequence {Ak}k=ίi2 > > N of self-adjoint elements
of 91 such that \\Ak\\ ^π and

Remembering that D(δ) is dense in 91 in the norm topology, one may assume that
AkeD(δ) for fc=l,2, ... , JV-1. Then ANeD(δ) because UeD(δ).

Let / be a smooth function on 1R such that f(s) = 0 for s ̂  0 and f(s) = 1 for s ̂  1.
We set

I for
* eίf(t-k)Ak+1 for ίe[fc,fc+l] fc = 0,.. .,JV-l (2.5)
U for
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and

(2.6)

One can easily check that {ΛJίeIR satisfies all the assumptions used in the derivation
of (2.4) and (2.1) follows immediately from (1.9) (note that UN=U). This ends the
proof of Theorem 2.1.

To understand better the content of the condition (2.1) we have to rewrite it in
the Hubert space language.

Let (2ί, α) be a C*-dynamical system and ω be a α-in variant state. By using the
GNS-method we construct (ffl , π, Ω, T\ where 2tf is a Hubert space, π is a cyclic
representation of 9ί acting on Jf , Ωe 2tf is the cyclic vector and T= {7^}ίe]R is a one-
parameter, strongly continuous group of unitary operators acting on 2tf such that

(Ω\π(A)Ω) = ω(A), (2.7)

TtΩ = Ω, (2.8)

π(o^(A)) = Ttπ(A)T* (2.9)

for all ίeIR and AeW. In particular

(2.10)

Let H denotes the self-adjoint generator of T : Tt = eitH. Operator H is closely
related to the derivation δ. One can easily check [using (2. 10)] that π(A)Ωe D(H) and

π(-(A)\Ω = Hπ(A)Ω

for all AeD(δ). To present the simple application of the above formulae we
transform the LHS of (2.1):

ωίt/*y(t/)j = (θ|π(l7*y(t7))fl

= lπ(U)Ω\πl-(U)\Ω} =(π(U)Ω\Hπ(U)Ω). (2.11)
V V I I

Now we are able to prove Theorem 1.2. If ω is a ground state, then H ̂ 0 and the
passivity follows immediately from (2.11) and Theorem 2.1. If ω is a KMS-state with
the inverse temperature β > 0, then Ω is a cyclic and separating vector for the von
Neumann algebra sf generated by π(9ϊ) and e~βH coincides with the modular
operator constructed for (sέ, Ω). Using the well known properties of the modular
operator we have:

(e-β/2Hπ(U)Ω\e-β/2Hπ(U)Ω) = (π(U*)Ω\π(U*)Ω) = 1.

Now, the passivity of ω follows from the obvious inequality: H^—(I — e~βH).
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Indeed

/*γ(l/)j =(π(l7)Ω|Hπ(C7)Ω)

^ ^l(π(U)Ω\π(U}Ω)-(e-βl2Hπ(U)Ω\e-βl2Hπ(U)Ω)~] =0.

If ω is a trace state (a KMS state with β = 0) the previous argument does not apply
but the passivity can be proven directly. For the proof in this case we are indebted to
Professor Araki.

By the α invariance of ω for A = A*eD(δ) we have

ω(Amδ(A)A") = - - — - ω(δ(Am+n+ 1)) = 0

and hence ω(U*δ(U)) = Q for U = eiεA. If unitary operators U1 and U2 satisfy
ω(UJδ(Uj)) = 0 then U=U1U2 also satisfy the same equation:

- ω( [/*($(£/!)) + ω(U$δ(U2)) = 0

due to the trace property of ω.
These two arguments are sufficient to prove

for UeD(δ) in the connected component of the identity.
This ends the proof of Theorem 1.2.

Remark. The reader familiar with the Araki notion of the relative entropy (cf. [3])
certainly noticed that in the KMS-case considered above

Lk(ω) = S(ω/φ),

where φ is the final state of our process :

) = ω(uh

τ(A))

We would like to present one nice application of Theorem 1.2 and formula (2.4).
Let us consider a C*-dynamical system (21, α) consisting of two non-interacting
subsystems (2I1?α

1) and (2I2,α
2):

(2.12)
αt = αt(g)α;.

Assume that the state of our system is given by ω = ω1 ® ω2, where ω1 (resp. ω2) is a
KMS-state of (2I1,α

1) [resp. (2ί2,α
2)] with the inverse temperature βί (resp. β2).

Suppose that

Let {/ϊJίgiR satisfy all the assumptions used in the derivation of (2.4). In virtue of
(2.12) ^=(51®id2+id1(x)(52 (where δ1 and δ2 are generators of α1 and α2
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respectively) and

Lh(ω) = ωl U*-(UT)} = L\(ω] + L\(ω),

where

It turns out that the quantities introduced above have clear physical meaning:
L\(ω) and Lh

2(ω) are the amounts of the energy transmitted to the first and the
second subsystem respectively. One can check this statement, either by making a
little deeper analysis than that given in Section 1, or by considering con finite
systems which dynamics are described by hamiltonian operators.

Since βί<β2, our system is not in equilibrium and it may happen that

Z,*(ω)<0. (2.13)

However we always have

(2.14)

Indeed one can easily verify that ω is a KMS-state of the C*-dynamical system
(21, α), where ut = Xβlt®Kβ2t and that δ=βίδί®id2 -hjS2id1(x)^2 is the generator of α.

Therefore the LHS of (2.14) coincides with ω U$-(UT) and is positive in virtue of

Theorem 2.1 and Theorem 1.2.
if (2.13) holds then L\(ω)<Q (the energy is taken from the first subsystem and

(2.14) can be written in the following equivalent form

where 7j + γ-^- and T2 = — — . This way we got the famous Carnot formula saying
kp1 kβ2

T —T
that the efficiency of any heat motor is limited by — - - -, where Tt and T2 are

-*ι
temperatures of the heat source and the heat sink respectively.

3. Spectral Properties of Passive States

In this section (21, α) is a C*-dynamical system and ω is a passive state of (21, α).
According to Theorem 2.1 we have

0 (3.1)
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for all C/e^0(2I)nZ)(<5). This condition, although very powerful is not convenient in
applications, for the structure of <35r0(Sl)nD(<5) may be very complicated. It turns out
that (3.1) implies a much simpler relation which is sufficient for our purposes. To
derive this relation we take A = A*εD(δ). Then for any εeR, UB = ̂ e*0(2l)
and in virtue of (3.1) we have

Expanding this expression up to the second power of ε we get

ίp2

ω(δ(Λ)) ε + ω([δ(A\ A])— + ...^0.

Therefore

ω(δ(A)) = Q (3.2)

and

iω([δ(A)9A])^0 (3.3)

for any self-adjoint A e D(<5). Clearly (3.2) holds for any AeD(δ). Now, the statement
of Theorem 1.1 follows immediately. Indeed, for any AeD(δ) we have

and

ω(at(A)) = const = ω(A) .

Let us note that

[δ(A\ A] = δ(A)A - Aδ(A) = δ(A 2) - 2Aδ(A)

and in virtue of (3.2) and (3.3) we get

(3.4)

This relation, although very similar to (3.1) is much more manageable for the
structure of the set (AeD(δ) :A = A*} is essentially simpler then the structure of

Let now BeD(δ). Then -(B + B*) and —(B-B*) are self-adjoint elements of

D(δ) and in virtue of (3.4) we have

and, performing simple calculations, we get

θ BeD(δ). (3.5)
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We shall use the Hubert space language introduced in the previous section. Let
(j-f,π,£2, T) be the result of the GNS-construction and H be the self-adjoint
generator of T. Then (3.5) is equivalent to

(π(B)Ω\Hπ(B)Ω) + (π(B)*O|Hπ(B)*Ω) ̂  0 (3.6)

for any BeD(δ).
To procede the investigation of this relation we have to introduce a convenient

notation. Let / be a function which is the Fourier transform of a finite complex
measure :

f(ε)=+[eίadμf(t).
— oo

For any such functions we put

/V5\ +0°
f(- }= j atdμf(t).

\ V - oo

Using (2.10) one can easily check that

π f AΩ = f(H)π(A)Ω Ae<Ά. (3.7)

Let BeM. Then clearly e+δ2/2B = e~^ BεD(δ) and using (3.6) and (3.7) we get

(π(B)Ω\He-H2π(B)Ω) + (π(B)*Ω\He-H2π(B)*Ω) ^0 .

As in the previous section we denote by stf the von-Neumann algebra generated by
π(9I) : j/ = π(2I)". According to the Kaplanski density theorem, for any βej/ one
can find a net {Ba} of elements of 21 such that π(Ba)-+Q and π(β*)->β* strongly as
α->oo. Therefore (He~H2 is a bounded operator!)

(QΩ\He-H2QΩ) + (Q*Ω\He-H2Q*Ω)^Q (3.8)

for any Qej/.
There is no reason to expect that Ω is a separating vector for stf. In general, it is

separating only for EstfE, where Ee j/ is the orthogonal projection onto the closure
of jtf'Ω (as usual j/' denotes the commutant of j/). We denote by ΔE (resp. J£) the
modular operator (resp. the Tomita-Takesaki anti-unitary involution) related to the
algebra Es/E and vector Ω. Clearly ΔE and JE act on E3f . We extend ΔE onto 2tf by
setting

A=AEE. (3.9)

Then zl is a non-negative self-adjoint operator acting on ffl and j/Ω = {ylί2 : AE s$}
is a core of A112 (because E^/Ω = E^/EΩ is a core of zl^2). Moreover, using the
fundamental property of the modular operator in the Tomita-Takesaki theory and
remembering that EΩ = Ω we get

(A 1I2RΩ\A 1/2QΩ) = (A1

E

I2EREQ\A1

E

I2EQEO)

= (EQ*EΩ\ER*EΩ) = (EQ*Ω\R*Ω) (3.10)

for any
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We know that TttfT* = rf [cf. formula (2.9)] and TtΩ = Ω. Therefore TtAT* = A,
because A is canonically related to j/ and Ω. It means that A and H strongly
commute, so they have the common spectral decomposition. We write this
decomposition in the following way :

H = $εdP(ε,λ), (3.11)
Λ

A = $eλdP(ε,λ), (3.12)
Λ

where /I = R x ]R IR = IRu { - oo } with the obvious topology e ~ °° = 0 and dP(ε9 λ) is
the common spectral measure. Let Σω denotes the support of the spectral measure
dP. One may say that Σω is the joint spectrum of H and log A

Remark. The reader certainly noticed that the set Σω can be constructed for any
invariant state ω of any C*-dynamical system (21, α).

The main result of this section is contained in the following theorem.

Theorem 3.1. Assume that ω is a passive state of a C* -dynamical system (91, α). Then

£ωCΓpassive, (3.13)

where Σω is the set constructed above and

Γpassive-{(ε,/l)6/L:ε/ί^O}. (3.14)

Moreover the finite part ofΣω, i.e. the set Σ™iίliίe = {(ε,λ)eΣω:λ3= — 00} is invariant
under the mapping (ε, /l)κ>( — ε, —λ).

Proof. At first we note that (ε,A)eZpass iveiff εe~ε2(l-eλ)^Q. Therefore, to obtain
(3.13) it is sufficient to show that

He'H\I-A)^0. (3.15)

To this end we set QE (where β is any element of jtf) instead of Q in (3.8). Since
EΩ = Ω and E commutes with H, we get

(QΩ\He-H2QΩ) + (EQ*Ω\He-H2Q*Ω)^Q. (3.16)

We shall transform the second term in this expression. One can easily check that the
function εe~&2 is the Fourier transform of some purely imaginary measure σ:εe~ε2

+ 00

= J eltεdσ(t). Therefore introducing an operator Restf such that

R*= j TtQ*Tt*dσ(t)
— 00

we have

R=- f TtQT*dσ(t)
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and

R*Ω = He~H2Q*Ω

RΩ=-He~H2QΩ.

Now, using (3.10) we obtain:

(EQ*Ω\He ~ H2Q*Ω) = (EQ*Ω\R*Ω) = (A 1/2RΩ\A 1/2QΩ)

= -(A1/2He-H2QΩ\A1/2QΩ)

and combining with (3.16) we get

(QΩ\He~H2QΩ) - (A 1/2He~H2QΩ\A 1/2QΩ) ^ 0

for any Qej/. Now, by the continuity argument (jtfΩ is a core for A 1 / 2 ) we have

(ip\He~H2ip) - (A 1/2He~H2ψ\A 1/2φ) ̂ 0

for any ψeD(A1/2). In particular for any ψeD(A)

and (3.15) follows. The remaining part of the theorem follows from the fact that on
the subspace E2tf (which corresponds to Σ^inite)

 we ̂ ave

JEΔEJE = ΔE

l JEHJE=-H. (3.17)

The first relation is known in the Tomita-Takesaki theory, the second is implied by
the following calculus:

for all QεEstfE and by the antilinear nature of JE. Q.E.D.

4. The Main Proofs

This section is mainly devoted to the proofs of Theorems 1.3 and 1.4. We start with
the following simple operation: for any Σ' and Σ" contained in yl = lRχ]R we set

where λ' + λ" denotes the usual sum if both λ1 and λ" are finite and — oo otherwise. A
set Σ is called additive iϊfΣ + ΣcΣ.Itis called semi-additive iff Σfinite + Σ C Σ. Here
^finite denotes the finite part of Σ :

Lemma 4.1. Let ω be an invariant state of a C* -dynamical system (91, α). Assume that
there exists a semi-additive set Σ such that

ΣωCΣcΣpassive. (4.1)

Then either ω is α KMS-stαte with some non-negative inverse temperature β^Qorωis
a ground state.
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Proof. We shall consider two cases

j yω _ yω
1. Z, —^f inite

Let p, qεΣω. Then — p, — qeΣω (cf. Theorem 3.1) and np + mqeΣ for any integer n
and ra, because Σ is semi-additive. In virtue of (3.14) p and q belong to the same
straight line passing through (0,0) (otherwise {np + mq:n,meZ} would form a
lattice in IR2 which is never contained in £Passive). Since this fact holds for every pair
of points of Σω, Σω itself is contained in a straight line passing through (0,0). If this
line is vertical (this is a very degenerate case) then H = 0 and ω is a ground state (we
remind that ω is called a ground state if H ^0). If the line is not vertical then there
exists jS^O such that A- -βε for all (ε, λ)eΣω. Then [cf. (3.11) and (3.12)] Δ = e~βH

and ω is a KMS-state with the inverse temperature β.

7
Δ. Z,

Then there exists ε0e!R such that (ε0, — oo)eΣω. Assume that (ε,λ)eΣω for some
ε<0. Then [cf. (4.1) and (3.14)] >l>0 and (ε,Λ,)e27finite. Since Σ is semi-additive,
n(ε, λ) + (ε0, — oo) = (nε + ε0, — co)eΣ for any natural n and for n sufficiently large
(such that nε + ε0<0) we get contradiction with (3.14). Therefore ε^O for any
(ε,/l)e27ω. It means that H^O and ω is a ground state. Q.E.D.

The proof of Theorem 1.4 is now very simple. It is based on the following
obvious formula:

N-copies

TV

If ω is completely passive then (X)ω are passive and according to Theorem 3.1 :

. Let

~Σ= 0 Σ®ω.
J V = 1

It is clear that this set is additive and Σ03 C Σ C Γpassίve. Now, the statement of
Theorem 1.4 follows directly from Lemma 4.1.

According to the same lemma, in order to demonstrate Theorem 1.3 it is
sufficient to prove the following

Proposition 4.2. Let (21, α) be a C* -dynamical system and G be a locally compact
amenable group of automorphisms 0/2Ϊ commuting with α. Assume that ω is a G-
weakly clustering and passive state o/(9ί,α). Then Σω is semi-additive.

Proof. It is known that G-weakly clustering states are G-invariant. Therefore there
exists a strongly continuous unitary representation of G acting on ffl which
implements the action of G on 91 :

π(κx(A)) = Uxπ(A)U* xeG,Ae<& (4.2)
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and leaves Ω invariant: UXΩ = Ω. Clearly, Ux commutes with H and A and

Let ηx(f(x)) denotes the mean value of a continuous function /on G. It follows
immediately from Definition 1.2 that

ηx((ψ\Uxφ)) = (ψ\Ω)(Ω\φ) ψ,φeje. (4.3)

We shall use the method of Arveson [5]. Let Q E si and Θ be a region in A = IR x R
We say that the spectrum of Q is contained in & (and write SpgC 0) iff the
following three conditions are satisfied:

a) Q vanishes on (E 2tf Y lQE = Q.

b) f TtA*EQAEiτE1?φ(t9 τ)dtdτ = Q
IR2

for any function φe^(IR2) such that

J jtεeiτλφ(t,τ)dtdτ = Q
IR2

forallM)e 0finite.

c)
IR

for any function tpe^R1) such that

for all ε such that (ε, — oo)e (9.

The following simple facts are very useful :
A) If pEΣω then for any neighbourhood (9 of p (in A) there exists QE^ such

that SpβC 0 and βΩΦO.
B) Ifβ,β'e j/andSpβC 0, Spβ'C 0' then Spββ'C 0+ 0'.
C) Ifβej^SpβC 0 and βΩΦO, then the intersection of 0 with the support of

dP(ε, λ) is not empty.
The proofs of these facts, although very simple are rather annoying and will be

omitted. We refer to [5, 7] where they are considered in a slightly simpler setting.
Now, let p' E Σω and p" e ££nite and p = p' + p". Then, for any neighbourhood Θ o f

p one can find neighbourhoods 0' of //and &' of p" such that & + (9" C 0. We
may assume that Θ" does not contain any point at infinity. According to (A) we can
find Q and QΈstf such that Spβ'C (9' and Spβ"C &" and

β'ΩΦOΦβ'Ό. (4.4)

Since 0" contains no points of the form (ε, - oo), then [cf. c)] (I-E)Q' = 0 and β"*
vanishes on (Ejf )1.

Since Ux commutes with H and A, we have Sp UXQ" U* C 0". Therefore [cf. (B)]

Sp(β'l/,β"l/ϊ)C 0'+ 0"C 0

and if for some xeG

(4.5)
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then [cf. (C)] the intersection Θr\Σω is not empty. To prove (4.5) assume that for all
xeG:Q'UxQ"U*Ω = Q. Let us notice that the operator Q'UXQ"U* belonging to j/
vanishes on (E^ )1. For such operators Ω is a separating vector and we have
QUXQ'U*=$. Therefore QUXQ" = $ and

(QΏ\Q'UXQ"Q"*Ω) = 0

for all xeG. Calculating the mean value on G and using (4.3) we obtain

\\QΏ\\2\\Q"*Ω\\2 = Q

According to (4.4) β'ΩφO. Therefore Q"Ω = Q and, since Q"* vanishes on (Etf )1,
Q"* = 0. Then Q' = 0, Q"Ω = 0 and we obtain the contradiction with (4.4). Therefore
(4.5) holds at least for one XE G. This way we proved that £ωn Q is not empty for
any neighbourhood 0 of p' + p". Therefore (Σω is closed) p' + p"eΣω and Σω is
semiadditive. Q.E.D.

We would like to end our considerations with the following interesting result :

Theorem 4.3. Let ωbea non-central passive state of a C* -dynamical system (21, α). We
assume that ω is weakly clustering with respect to the time translation group. Then
either

1) ω is a ground state and the GNS representation associated with it is irreducible,
or

2) ω is a KMS-state with the inverse temperature jβ > 0 and the von Neumann
algebra generated by the GNS representation associated with ω is a factor of type Ill1.

Proof. We use the notation introduced in the previous sections. Let 3Γ be the von
Neumann algebra generated by {7J}ίe]R. Since ω is weakly clustering, Ω is the only
vector invariant under TJ(ίelR) and therefore \Ω)(Ω\e^. Remembering that Ω is
cyclic for j/ we see that the von Neumann algebra generated by 3~ and j/ coincides
with J3(Jf):

^V^r = B(je). (4.6)

We have to consider two cases :
1. ω is a ground state. Then #>0 and using the Kadison result [9] we get

^Cja/. Now (4.6) shows that <stf = B(3tf') i.e., the representation π is irreducible.
2. ω is a KMS-state with the inverse temperature β ̂ 0. Since ω is not central, β

must be strictly positive. Then the modular automorphism group σr

ω is related to the
time translations in a very simple way σt

ω = oc_βt. Moreover, using (3.17) we see that
= ^~. Therefore, in virtue of (4.6)

= {λl} .

It shows that

{Aetf:σ?(A) = A for all ίeR} = {λ/}

and this property is characteristic for the type 11̂  factors ([7]). Q.E.D.

Remark. It is known, that if the fix-point algebra is a factor, then the invariant
coincides with the spectrum of log A. It implies that in the second case the spectrum
of H coincides with R
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