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Abstract. Ignoring the problem of sources and singularities, explicit ex-
pressions are constructed for the ansatze of Atiyah and Ward. These take an
especially simple form in the R gauge of Yang. Some non-linear transformation
properties of the self-duality equations in this gauge provide an inductive proof
of the ansatze. There is a six-parameter family of these Backlund transfor-
mations. They take real SU(2) gauge fields into real SU(1,1) gauge fields and
vice versa.

1. Introduction

During the past year a great deal of progress has been made towards an
understanding of classical gauge field theory, particularly for an SU(2) gauge
group in a four dimensional Euclidean space. If it is assumed that the field
strengths are self-dual (or anti-self-dual) the analysis can be taken much further,
though this assumption has, as yet, no particular physical motivation. Indeed
Ward [1] has shown how all the information contained in a self-dual gauge field
can be "coded" into the structure of certain analytic complex vector bundles, the
isomorphism class of the bundle being determined by the gauge fields. More
importantly, the isomorphism class of the bundle determines the gauge fields up to
a gauge transformation and Ward showed how, in principle, the fields may be
extracted from the bundles.

Taking this approach further, Atiyah and Ward [2] used basic theorems in
geometry to argue that these bundles are necessarily algebraic and to restrict
further the bundle structures to be considered to obtain all self-dual SU(2) gauge
fields. Thus the problem of finding the (8/c — 3)-parameter family [3] of solutions
was reduced to one in algebraic geometry. (Here k denotes the instanton number.)
Their construction leads to a hierarchy of ansatze, ^4/(/=l,2,...), the /-th one of
which can be expressed in a form which has as input the components of a "spin
(/—I)"massless anti-self-dual linear field. The first ansatz, Aί9 had been known for
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some time [4]. Apart from this, Atiyah and Ward gave an explicit form only for
A2. In a recent letter [5] we reported simple explicit forms for Al for larger values
of /. In the present paper we will discuss more fully the derivation of those results
and report further developments.

Our simple explicit form depended on performing the construction of Atiyah
and Ward in a suitable gauge. Independently of the work of Atiyah and Ward,
though exploiting basically related ideas, Yang [6] had shown the existence of a
particularly convenient gauge, the R gauge. In this gauge, the potentials Aa

κ take
the form,

2f\η^β

+i2dβg -^/

where Aa=^A"σa (the σ's denote the Pauli matrices), η"β is the tensor introduced by
't Hooft [7] and η1±ί2 = ηί ±ίη2. Explicitly η"β (a = 1,2,3) is a suitably oriented and
normalized basis for anti-self-dual tensors which may be taken to be

The conditions that the field strengths computed from the potentials (1.1),

F^d^Aβ-dβA^ilA^Aβl (1.3)

be self dual, i.e.

Faβ = ~2εaβγδFyδ = * Λβ > U 4)

are

f(eyy + ezs) - 2eyf-y - 2ezf-z = 0 ,

f(9yy + fe) ~ 2gyfy ~ ̂ Jz = 0 ,

where

x0-w σ = x, (1.6)
y

say, so that

detx-xαxα. (1.7)

(As usual fy = df/dy, etc.). Here y, z denote variables independent of the complex
conjugates, y*, z*, of y and z, so that real Euclidean space is specified by y = y*>
z = z*. We are following Ward [1] and Yang [6] in considering the field equations
over complexified space. Equations (1.5) are just like those found by Yang [6],
becoming precisely his if we set e = ρ, f= φ and g = — ρ we shall discuss further the
relationship of the formalism used in this paper to his in Section 4.

The simplest form R^ we have found for Al may be specified by the following
procedure for calculating the functions e, f and g from the (21— 1) components
Ar(x), |r|^ί— 1, of a spin (/—I) massless anti-self-dual linear field. The linear
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equations satisfied by the Ar are

dΔr_ 34+1 8Ar_dAr+1 ; ι 1 ^^ 7 2 (18)

dy dz dz dy

For l = 2 these equations imply d2Ar = 0 for each r, and for 1=1 we replace
Equation (1.8) by the single requirement that d2A0 = Q.

The ansatz A1 is then given by [4]

e = f = g = l/A (1.9)

For /^2 to specify the form, R^ of the ansatz Ab it is convenient to define the / x /
matrix D(l} by

If δ(l} = \_D(Ϊ}']~^, the inverse matrix, e, f and g are provided by

e = δ(l) f = δ(l^ = δ^ a = δ(l) (Ί 11)11 ' J 1 / /1 ' ί/ // ' V * /

In other words, Equations (1.8) and the construction of e, / and g through
Equations (1.10) and (1.11) guarantee that Equations (1.5) are satisfied, and hence
that the vector potential of Equation (1.1) leads to self-dual field strengths.

To establish this it is possible to proceed in one of two ways. We first obtained
the form Rl of the ansatz by explicitly implementing the construction described by
Atiyah and Ward [2], seeking to write it in Yang's R gauge. To follow this path we
begin in Section 2 by reviewing their constructions, as outlined in [1] and [2],
making them sufficiently explicit for our purposes. This enables us to construct Rt

in Section 3. Some of the algebraic details of this construction are relegated to
Appendix A. It will be seen that there is a second and less economical form, Rt, for
the ansatz Al in an R gauge.

The other way to establish the validity of Rt we gave in bare outline before [5].
It relies on some astonishing features of Yang's equations, which we originally
stumbled on by chance, but are in essence elementary. What we have found are
first order non-linear partial differential equations which relate solutions of Yang's
equations and, in particular, relate Rl to Rl±ί. This makes possible an inductive
proof of Rl depending only on the manipulation of partial derivatives and simple
algebraic properties of matrices. These partial differential equations are rem-
miniscent of the Backlund transformations associated with non-linear two
dimensional field theories such as the Sine-Gordon theory [8]. In Section 4 we
shall give severeal sets of these transformations, which we shall call Backlund
transformations by analogy, and describe their roles in relation to the ansatze Rt

and Rt. Some calculational details are given in Appendix B.
In Section 5 we shall discuss the reality conditions to be satisfied by the

functions appearing in the ansatze Rt in order for the vector potentials to be real,
so that we are indeed discussing an SU(2) rather than an SL(2, C) gauge theory
(although the physical significance of requiring that the potentials, Aa

Λ, rather than
the field strengths, F"β, be real is not entirely clear to us). The reality conditions
have the curious property with respect to the Backlund transformations that they
are not preserved but reversed in the sense that the reality condition for SU(2)
converts into that for SU(1,1) and vice versa.
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An important insolved problem is that of the singularity structure [2]
permitted in the functions, Ar9 occurring in the ansatze; this corresponds to
inclusion of sources in the Equations (1.8). However we feel that the Backlund
transformations, which can certainly introduce singularities, may indeed provide a
natural method for generating singularities in the vector potentials which are not
reflected in the field strengths.

2. The Procedure of Atiyah and Ward

The basic observation which was exploited by both Ward [1] and Yang [6] was
that if FΛβ is self-dual its components in any anti-self-dual plane vanish.
Consequently restricted to such plane, the tangential components of the potentials
are a gauge transformation from the vacuum. We shall consider this statement in
greater detail. We will be working in C4, the complexification of four-dimensional
Euclidean space.

An anti-self-dual (two-dimensional) plane [1] is one for which the tensor

is anti-self-dual (Ω = — *Ω) for any displacements, V, W, in the plane. It is easy to
see that every displacement in such a plane is null. Conversely every null
displacement is contained in two totally null two-dimensional planes, through any
given point, one self-dual and the other anti-self-dual. Let us use α and β to refer to
the families of self-dual and anti-self-dual planes, respectively. A convenient way of
labelling β planes is by equations of the form

ω = xπ (2.1)

where ω and π are 2-spinors and x is the matrix of Equation (1.6). For given ω and
π, Equation (2.1) defines a β plane. It is easy to see that displacements in the plane
it defines are always null. For, if in addition to Equation (2.1), ω = yπ,

(x-y)π = 0 (2.2)

and

det(x-3>) = 0

which, by Equation (1.7) implies that (xα — yΛ) is null. Anti-self-duality is not
difficult to check by explicit calculation. Let θ stand for the 4-spinor formed from π
and ω,

/ _ \
(2.3)

It is clear that λθ and θ both define the same β plane for every AeC. In fact the β
planes in C4 are in one-one correspondence with the points of complex projective
three-dimensional space CP3. [To make this statement accurate we have to
consider (complexified) compactified Euclidean space. If we consider only C4 the
complex projective line given by π^O is missing from CP3.] This is the dual
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projective twistor space [9,1]. Let us denote the point of CP3 corresponding to θ,
e<C4, by [θ], so that

(2.4)

and denote the corresponding β plane by

β ={x:ω = xπ}. (2.5)

For any given β plane, β{θ]9 we may integrate the equation

between any two points, x and y, of the plane to obtain a group element
gf[θ](x,3;)6SL(2,C), the complexification of SU(2), provided that the field strength,
Faβ, obtained from A^ is self-dual. This is because the integrability conditions for
Equation (2.5) over the plane β^θ] amount to the vanishing of the components of
Faβ in that plane. Formally,

ί ? }9m(x, y) = 3T exp \ i J Aadxa \ (2.7)
I X }

where the integral is path ordered and the path of integration lies entirely within
β[θ]. Given g[θ](x9 y), we may reconstruct the components of AΛ in the plane β[θ]

using Equation (2.6).
What Equation (2.7) principally enables us to do is to define the parallel

transport of 2-spinors over the plane β[θ]. We may introduce the vector space, F[θ],
of 2-spinor fields, ψ[θ](x) defined over β[6)], whose values at different points are
related by the SL(2, C) element defined by Equation (2.7):

V[θ} is a two-dimensional vector space since the value of ψ[θ] at any point xeβ[θ]

determines its value throughout β[θγ The family of spaces Vm forms a two-
dimensional analytic vector bundle over <CP3 [1].

To set up coordinates on this analytic vector bundle we need to pick an
x[θ]eβ[θ] for each [θ] and specify the value of ψ[θ](x[θ]). This then determines φ[θ](x)
everywhere, given g[θ](x,y). But it is not possible to choose x[θ]eβ[θ] smoothly
throughout CP3 or even the space (CP3 ~<CPι we obtain by omitting those [0] for
which π = 0. In the latter case we may conveniently cover the space by two
coordinate patches

0\
J, π.φO, (2.9a)
O/

2 /O oιjπ2

The coordinates in these two patches are related by
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The isomorphism class of the bundle is specified by the transition function

g(ω, π) = g[θ](x{θ], xfθ]) (2. 10)

which is manifestly homogeneous: g(ω, π) = g(λω, λπ), Ae(C. This class will be
unchanged if g is multiplied by elements of SL(2, <C) on the left and right, analytic
in π1 Φθ and π 2 Φθ respectively.

Ward [1] pointed out that the potentials Aa may be regained from g(ω, π) by
exploiting the fact that

g(ω, π) = gm(x^ x)gm(x, xfθ]) for each xεβ[θ] .

Thus, writing

h(x, ζ) = g[θ](xϊΘ], x) and fc(x, ζ) = g[θ](xfθ], x) ,

where ζ = π1/π2,

C)" 1, (2.11)

where, for fixed ζ, h(x, ζ) is analytic away from ζ = 0 and fc(x, 0 is analytic away
from ζ = co. With these analyticity requirements, it follows from Liouville's
theorem that Equation (2.11) uniquely determines h and k up to a gauge
transformation:

. (2.12)

Now, from Equation (2.6),

All(x)-ζAt2(x)=-ih(x, ζΓ

-- C - f c f e 0 (2.13b)
a feί2/

since (dx)π = 0 is satisfied if dxi2= —ζdxn. [The components of A in Equations
(2.13) are defined by Aijdxij = Aadxa.'] Thus the isomorphism class of the bundle
determines the gauge potentials, Aa, up to gauge equivalence.

Conversely, we may also argue, again following Ward [1], that any homo-
geneous function, g(ω, π), with a suitable domain of analyticity, will yield an anti-
self-dual field strength, provided that g may be split as in Equation (2.11). For then
the equality of the right hand sides of Equations (2.13) follows from

0,0 = 0, where Dt=^ -- ζ^- (2.14)
Vχil Vχi2

and g is considered as a function of x and ζ. That these expression have the form of
Ail(x) — ζAi2(x) and that this potential does indeed yield a self-dual field strength
follows from Liouville's theorem.



Self Dual Solutions to SU(2) Gauge Theory 229

Atiyah and Ward [2] argue that it is sufficient to take

/C' β(χ,C)\
0 r , (2.15)

where ρ depends on x and ζ only through the variables.x1]Lζ + x12, x2ίζ + x22 and
ζ. Consequently,

D,ρ = 0. (2.16)

We shall explicitly extract the gauge potentials from Equation (2.15) in the next
section.

3. Explicit Construction of the Atiyah-Ward Ansatze

Let us write the matrices occuring in Equation (2.11) as

H: 3
where uδ — βγ = ad — bc = l and α, β, y, δ are regular as functions of ζ, except at ζ = 0
whilst α, b,c,d are regular except at ζ= oo. Then from Equations (2.11) and (2.15),

c = γζl, d = δζl, (3.2a)

aζl + ρc = u, bζl + ρd = β. (3.2b)

It follows from Equations (3.2a) that c and d are polynomials of degree at most / :

c(x,0= Σ cr(x)Cr, <*(*,0= Σ drMCr. (3-3)
r = 0 r=0

Further the coefficient of ζr in the Laurent series of α — aζl vanishes for 0 < r < I.
Thus

Γ -' (3.4)

where the integration contours encircle the origin. These equations may be
written,

Σ Ά-r= Σ dΛ-r = 0, 0<r</, (3.5)
s=0 s=0

where
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(This is the Penrose transform.) As a consequence of Equation (2.16) the functions
Δr satisfy,

8AL = _ 5Δr+l dΔr dAr+ί

dy dz ' dz dy ' { }

We may express the functions a and b in terms of c and d,

ξ) (3'8a)

(3'8b)

where the integration contours positively encircle the origin in |£|>|£|. The
Equation (3.5) leaves four of the 2/ + 2 functions cr, dr, O^r^/ arbitrary and the
constraint ad — be = 1 further reduces this by one. The remaining freedom is
exactly that reflecting gauge invariance. From functions α, b, c, d satisfying these
constraints we may construct the potentials using Equation (2.13a):

dD,b-bDJ\
_dDfl + bDf).

Making use of calculations performed in Appendix A we obtain

(3.10)

_
=α -- -czτ-- -^- +cl_ίl-Ό L υ l Idxί2

where αs, jβs, αs, and bs stand for the coefficient of ζs in the Laurent series of α, jβ, a,
and fc, respectively, and may be expressed in terms of AS9 cs, and ds using Equations
(3.2b). The constraint that ad-bc=l yields

U0dl-β0cl = a0d0-b0c0 = l. (3.13)

It is now clear that the way of removing the remaining gauge freedom, which
yields the simplest results, is to take

d0 = Cl = 0, (3.14)

and

c2o = df = f, (3.15)
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say. Then

(3.16a)

aDiC-cDta = - j -jjL (3.16b)

C de
dDib-bDid=^- -— (3.16c)

J vχn
where

e = c0di and g = cl_idl. (3.17)

Equations (3.9) and (3.16) are exactly of the form of Equation (1.1) and so we
have succeeded in writing the ansatz Al in Yang's R gauge. The Equation (3.14)
reduces Equation (3.5) to two sets of (/— 1) homogeneous equations in / variables
making the calculation of the ratios cr/c0 and dr/dl in terms of determinants of the
zfs a simple exercise in linear algebra. Then, using Equations (3.13) and (3.15), we
obtain the expressions for e, /, and g given in Equations (1.11) which constitute the
form Rl of the ansatz At. These expressions involve only Ar(x) for |r |^/— 1, on
which the only restrictions are Equations (3.7).

Another way of simplifying Equations (3.10H3.12) is to take

α0 = ί>0 = 0 (3.18)

instead of Equation (3.14). Then we obtain again expressions of the form of
Equation (3.16) but with

c? = <*§ = !// (3.19)

and

flf = α_ 1 /c l , e = bjd0. (3.20)

Again we may explicitly evaluate e, /, and g in terms of the zΓs. This time Equation
(3.18) supplements Equation (3.5), so that there r runs from 0 to / inclusive,
providing two sets of I + 1 homogeneous equations in / + 2 unknowns. Proceeding
as before we obtain a second form, R[ of the ansatz Al :

(3.21a)

(3.21b)

(3.21c)

where adjD(/) denotes the adjugate matrix of D(l\
Note that the elegant forms Rt and R[ of the ansatz are artefacts of the choice of

gauge; the general expressions given in Equations (3.10)-(3.12) are much less
concise. As we remarked in the introduction, this gauge is special because of the
rather magical properties of the self-duality equations in it, Yang's equations.
These properties, which take the form of transformations on e, /, and g, are
discussed in the next section.
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4. Backlund Transformations

It is well known [8] that for certain non-linear partial differential equations there
exist transformations, called Backlund transformations, (which take the form of
non-linear first order partial differential equations) yielding solutions of the
equation from solutions of the same equation. For example, for the Sine-Gordon
equation

d2φ d2φ

the Backlund transformation takes the form

dφ dip 1

where ξ = t + x, η = t — x. The consistency of Equations (4.2) requires both that φ
and that ψ satisfy the Sine-Gordon Equation (4.1). In practice it enables a solution
φ to be calculated from a given solution ψ of Equation (4.1). The parameter k is a
reflection of the Lorentz invariance of Equation (4.1): ξ-+ξ/k; η-^kη. This
parameter may be varied each time the transformation is applied, so that the
solutions generated by N applications of the transformation depend on at least N
parameters, /c l s/c 2, ...,fcN, as well as constants of integration.

The Backlund transformations we have found for Yang's Equations (1.5) have
a dependence on a large number of parameters corresponding to the large group of
algebraic transformations that can be performed on (e,f,g) whilst preserving
Equations (1.5). Here we can only point out how these parameters arise and we do
not understand if they are related in any systematic way to the (8/c — 3) parameters of
a k instanton solution to the self-dual Yang-Mills equations. The problem of
understanding these (8/c —3) parameters is clearly intimately related to the
problem of singularities in Equations (1.8) which remains open.

These transformations share with Equations (4.2) the property of taking one
solution of a set of non-linear differential equations into another. They do not
possess the stronger property that the mere consistency of the transformation
implies that both the input functions and the outpout functions satisfy the
equations in question. It is not clear that this is a serious disadvantage in practice.
We shall present our emperical findings in the form of three lemmas. Suppose that
(e,f,g) provide a solution of Yang's Equations (1.5).

Lemma α. A solution of Yang's equation is given by (ε, φ, y) provided that sy + φ2

and

f=-(εγ-φ2)/φ, (4.3a)

I j _ I I (A Ql-Λ

dy(εγ-φ2) f2 dz' dz\εγ-φ2) f2 dy' { '

dz\εγ — φ2 f2 dy' dy\εγ — φ
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Lemma β. A solution of Yang's equations is given by (ε, φ, y) provided that

φ = Vf, (4.4a)

^__±^ fc_l_dg_dz~~ f2 dy' dy~f2dr ( }

dy _ 1 de dy _ 1 de

dϊ = fτdi' ~dϊ = ~JI~d~z' (4 C)

Lemma γ. A solution of Yang's equations is given by (ε, φ, 7) where

1 (4.5a)

(e f\
if P=\ and α, b, c and d are diagonal 2 x 2 matrices such that

\f 91

ad-bc = ί . (4.5b)

The proofs of the lemmas are completely straightforward. Lemma α may be
obtained from β by using the particular case, y0 say, of y in which the right hand
side of Equation (4.5a) is just P~ 1. The symmetry of the left hand side of Equation
(4.5a) is guaranteed by Equation (4.5b). We have not been able to show that the
combination of β with y produces all possible Backlund transformations. The
transformation a is given a separate status because it plays an important role : it
provides an inductive proof of R^

To see how this inductive proof works consider the first step from Rί to jR2.
For R1 we have e = f = g = l/A0 with 52zl0 = 0. Lemma α yields a new solution
(ε, φ, y) defined by Equations (4.3), which become

φ/(sy-φ2)=-AQ (4.6a)

dή d ε dA 0

dy\£y — φ2] dz ' dz \εy — φ2] dy

(4.6c)
dz\εy — φ2] dy ' dy\εy — φ2/ dz

Thus we are led to introduce two new functions Δi9 A_{ such that

^o=Mi <^o__^ι ( ά l .dz dy' dy dz ( ' }

and

dAn dA ι dAr> dA Λo ~ i o __ ~ i M 7u\
δz dy ' dy dz ' ( '
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We may then integrate Equations (4.7) to obtain what is indeed the ansatz R2:

(4.8)
φ 1 = [ -1

<p y) Ur.Ό

fl -D®D® }/{detD(ί)}2

To prove the general inductive step that Lemma α takes us from Rt_ i to K? we
need to use a result due to Jacobi [10] on the sub-determinants of an adjugate
matrix and a differential equation (4.11) satisfied by elements of D(l) = adj
proved in Appendix B. If (ε, φ, γ) are given by Rb

(4.9)

-f (4.10)

if (e,f,g) are given by Rl-1. Now, further, it is proved in Appendix B that

l-^-D^_\^ (4.11)

using Jacobi's result (stated in Appendix B). Now, since

φ = (-1)1 +1 detD(ί"

~~όdy dz

which implies

12 a
D?)

From R, we see that

and so

(4.12)

whilst from Kj.!

and

(4.13)

(4.14)

(4.15)

From Equations (4.12)-{4.15) we see that the second of Equations (4.3b) is satisfied
with (e, φ, y) given by R, and (e, f, g) given by Rt_ r That the same is true of the rest
of Equations (4.3) follows by similar arguments. This completes the inductive
proof of R, using Backlund transformations.
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Applying the transformation of Lemma β to Rl +1 yields JRJ, the less economical
form of the ansatz Al in an R gauge, provided by Equations (3.21). The
transformation α applied to R't yields R f

l _ 1 rather than Rf

i + 1. The proofs of these
statements use exactly the same techniques as we have just used to show α takes us
from Rl_1 to R^ The transformation α followed by β may be integrated to give the
gauge transformation relating Rl and Rt. On the other hand, β followed by α may
be integrated to give the special case y0 of y.

We may summarise these relationships in the diagram:

1 + 2

•l+ί

The transformation β also plays another role. It relates the functions used by
Yang [6] to ours, if we set ε = ρ and 7 = — ρ. Since βγ0β may be integrated to give a
gauge transformation, we see that the application of the purely algebraic
transformation γQ on Yang's variables may be a gauge transformation. It has been
explicitly verified that all the transformations y effect gauge transformations on
Yang's variables.

5. Further Developments

In this section we shall make some brief remarks about the reality conditions and
possible singularities of the zl's. In order to obtain real SU(2) gauge vector
potentials, Aa

Λ, we impose the condition Aa = A\ for real x on Equation (1.1). In
particular, this gives

which implies that / must be real apart from a constant phase factor. Since Aa is
unchanged if we scale £,/ and g by the same constant we may assume that/is real
for real SU(2) potentials, without loss of generality. The remaining condition is
that

(5.2)W _ if
Ίaβ °βe IJ — Ίaβ °βd/J

which yields e* = g assuming / to be real.
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However, the Backlund transformations α and β are not consistent with the
maintenance of the reality conditions for SU(2) :

f = f*,e* = g when y = y* and z = z*. (5.3)

Rather, they are consistent with the resulting solution satisfying the different
reality conditions :

φ = φ*,ε*=— y when y = y* and z = z*. (5.4)

Since, just as σ1? σ2, σ3 satisfy an SU(2) algebra, zσ1? iσ2, and σ3 satisfy an SU(1, 1)
algebra, (5.4) gives the reality conditions appropriate to real SU(1, 1) potentials. As
regards reality conditions these Backlund transformations alternate between
SU(2) and SU(1, 1).

Just as in the case of the Backlund transformation (4.2) for the Sine-Gordon
equation, there are parameters that can be adjusted each time the transformation
is performed. In the case of Yang's equations, these parameters result from the
combination of transformation β with the six dimensional group of algebraic
invariances of Yang's equations given in Lemma y. The parameter k in the Sine-
Gordon Backlund transformation may be regarded as a reflection of the Lorentz
in variance of Equation (4.1). We shall see that only one of the six parameters
present in the most general Backlund transformation we have found for Yang's
equation may be obtained in an analogous way.

Because we have chosen a gauge, Yang's equations lack the full SO(4)
invariance, let alone conformal invariance, of the original Euclidean Yang-Mills
field theory, or the self duality Equation (1.4). However they are invariant under
the subgroup of orthogonal transformations which preserve each two-dimensional
plane in the two families y, z constant and y, z constant, as well as being invariant
under dilations. To see this let us define

and d= (5.5)

_
so that the Laplacian d2 = d d and Yang's equations may be written

fd df-df df-δe dg = 09

fd de-2de'df = Q,

fd 8g-2dg df = Q. (5.6)

The condition that these equations be invariant under the transformation

/
where H, H are 2 x 2 matrices, is that HTH be a multiple, λ, of the identity. The
Backlund transformation, Equations (4.4), may be written

-^χde (5.8)
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where

/ 0 1\
χ=(-ι oj

Performing the change of variables (5.7) on Equations (5.8) we obtain

d'ε = -^HχH~1dfg, d'y = ——^HχH~ld'e. (5.9)

But since HχHτ = χdetH we may rewrite Equations (5.9) as

_k_ y & __J_ ff (510)

where k = detH/λ = λ/dQtίί. So, perhaps surprisingly, the spatial symmetries of
Yang's equations leads to only one parameter in the Backlund transformation. It
occurs in just the same way as for the Sine-Gordon equations. Further, it is
amongst those provided by Lemma γ. In addition to those six parameters there
will be constants of integration.

We do not yet know what happens to the action integral under a Backlund
transformation. For finite action solutions, e, /, and g are singular on specific
curves in the four-dimensional complexied Euclidean space we are considering. It
is not known how to classify these curves [2], but consideration of explicit
examples shows that the Backlund transformations change the nature of these
singularities. One may hope that they will provide a route for a better understand-
ing of this problem. The singularities generated by the Backlund transformation
are consistent with the linear Equations (1.8) satisfied by the zΓs provided sources
are added. Much further work needs to be done in this direction.

The Backlund transformations further the analogy between the self-dual Yang-
Mills equations and the exactly soluble two dimensional theories. An analogue of
the inverse scattering method has been given by Belavin and Zakharov [11].
Further development of this analogy may lead to the uncovering of an infinity of
conservation laws for the self-duality equations.
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Appendix A. Calculation of h~1D h

We shall first discuss Equations (3.13). Using Equations (3.8),

aά — bc—— — I -—- ξ ~ lρ(x, ξ) (c(ξ)d(ζ) — d(ξ)c(ζ)}

d(ξ)-d(ζ)}
(Al)

where the integration, as throughout this Appendix, is as in Equations (3.8). Each
of the terms in square brackets in Equation (Al) is a polynomial in ξ of degree
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(/—I). By Equation (3.4) none of these terms will contribute except those
involving ξ1'1. Consequently using Equation (3.2b) to express these contribution
in terms of α0 and /?0,

To obtain the second expression in Equation (3.13) we follow a slightly different
procedure

ζd(ξ)~ξd(ζ)]
ξ-ζ \

(A3)

Again the terms in square brackets are polynomials of degree (/ — I) in ξ. This time
Equation (3.4) implies that only the constant terms in these polynomials can
contribute. Again using Equation (3.26),

ad — bc = ad — (A4)

We use similar manipulations to establish Equations (3.10)-(3.12). To avoid
ambiguities write

/--('
•il Sxi2 '

dDSa - bΰ = - -
1 A)-

ί "'ί«)βf[β(f WO] -

(A5)

-Q(ξ)d(ξ)

aD\c - cD\a =-~
2πί

~ζ J

DΊc(ξ)-D\c(ζ)λ c(ξ)d(ξ)

ξ-ζ \ ξ-ζ

1

l-ζ

-*ίWβP** l̂-££ι*B».
L ζ~s J ζ — ,

ξd(ζ}

l-ζ

-Q(ξ)d(ξ)
ζDld(ζ)-ξD\d(ζ)

ξ-ζ

ζd(ξ)2

ξ-ζ

(A6)

(A7)

(A8)

The integrals in Equations (A6)-(A8) are evaluated using the techniques applied to
(Al) and (A3) together with

}dρ(ξ) ^(ξ-ζ) dρ(ξ)
r\ Y ^* r\~ycxi2 ς oxn

(A9)
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Appendix B. Proof of a Differential Equation

In this appendix we will prove the differential Equation (4.11) which, together with
result of Jacobi stated below, forms the key step in establishing that the
transformation α yields Rl + 1 from R^ Let us define the / x / matrix B(l} by

Then

fc(l) = detfi(I) = Jδ(

1

I

1

+1>. (B2)

We also have that

d(I) = detD(I) = (-l)ID?+ί)

1. (B3)

To establish Equation (4.11) we need to prove that

db(l~l) dd(l} db(l} dd(l~l}

d(l}db -- ^ - 1 ) 0 * ^ - 1 ) ™ -- 6(I>^— . (B4)
oy oy oz oz

Now

dz dy r^γ dz r^1 dy

1 dB(l)

= Σ ~(d(l-^l-b(l-^l). (B5)
r,s=l VZ

Using Equation (1.8) for Δr But we may now use Equation (B2) together with

and

Dί'^ί-D'-^DW^ί-lΓ1^

to write the right hand side of (B5) in the form,

* fin®
Σ -~ {(5W - ̂ ^Λ + Φ%D® - D» ΰg)} . (B6)

r , s=l <7Z

The expression (B6) involves subdeterminants of the adjugate matrices B(l} and
D(l\ A result of Jacobi [10] states that if M(r) is an r x r submatrix of the adjugate
matrix M of the N x N matrix M, and M(N~r} denotes the (N — r ) x (N — r) matrix
obtained from M by striking out the rows and columns similarly placed to the
rows and columns of M which contain the elements of M(r\ then

detM(r)-(detM)r~1 detM(Λr"Γ). (B7)
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Applying this result to expression (B6) we obtain

+ 1,5+1

3z

r , s=l u* r , s=l uy

= b(l} + d(l} (B8)
dz dy v '

establishing Equation (B4).
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