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The Boltzmann Equation
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Abstract. An abstract form of the spatially non-homogeneous Boltzmann
equation is derived which includes the usual, more concrete form for any kind of
potential, hard or soft, with finite cutoff. It is assumed that the corresponding
"gas" is confined to a bounded domain by some sort of reflection law. The
problem then considered is the corresponding initial-boundary value problem,
locally in time.

Two proofs of existence are given. Both are constructive, and the first, at
least, provides two sequences, one converging to the solution from above, the
other from below, thus producing, at the same time as existence, approximations
to the solution and error bounds for the approximation.

The solution is found within a space of functions bounded by a multiple of a
Maxwellian, and, in this space, uniqueness is also proved.

1. Introduction

This is the first in a projected sequence of papers on solutions of the Boltzmann
equation in a domain V. Here, we restrict our attention to the local matters of
uniqueness and local existence, needed in our later papers. In these subsequent
papers, we hope to address questions of global existence, approximate solutions,
numerical computation of solutions, and other matters.

The existence theorem we prove here is of interest for a number of reasons. First,
with a single exception, it is the only such result we know of that applies to the
spatially inhomogeneous Boltzmann equation. The exception is the theorem of
Grad [1, §20] which, first of all, is limited to what we call soft interactions, and, more
important, does not treat a physical domain with a boundary. Our result, on the
other hand, applies to a non-homogeneous gas that is confined to a domain Fby
means of a reflection law and in which either soft or hard interactions may take
place.

Second, we find the solution by strictly constructive means. We show that it is a
limit of a sequence of functions that are themselves solutions of easily solved, first

* Research supported, in part, by the National Research Council of Canada (NRC A8560)

0010-3616/78/0058/0084/S04.00



66 S. Kaniel and M. Shinbrot

order, linear differential equations. At no point do we even use a compactness
theorem to derive the main result.

Third, the method we use provides approximations, both upper and lower, that
squeeze down on the solution and produce error bounds as part of the computation.
This fact manifests itself in a feature of the method. It automatically assures us that
the solution is non-negative. This has been a stumbling block for a number of
proposed methods of solution, one of the major difficulties of which is that the
purported approximations to the solution may be negative. (See, e.g., [1,§28].)

We also prove quite a general uniqueness theorem that says that the solution is
unique within the class in which existence is proved. We believe this result includes
all previous ones.

The plan of the paper is this. We begin with a section on the Boltzmann equation
itself, in which we abstract certain properties of this equation which are precisely
what we need later on. Any equation with these properties is then called an abstract
Boltzmann equation. Then, in §3, we discuss the boundary conditions that must be
imposed on a solution. After this, we solve a linear problem which is needed in later
sections since we find the solution of the nonlinear abstract Boltzmann equation as
a limit of solutions of linear problems.

This introductory material disposed of, we turn, in §5, to a method for solving
the complete problem. We show that a solution exists and that it is a limit of two
monotone sequences, one converging to the solution from above, the other from
below.

The method of §5, while elegant and very suitable for computation, is unlikely to
produce a solution in the large. Indeed, the iterates may not even be defined for all ί.
In §6, therefore, we present a second method of solution which, although it is
restricted to what we call soft interactions and has the unfortunate feature that it
requires the solution of a nonlinear problem at each step, nevertheless has the
property that certain iterates are defined for all t ̂ 0. If t is small enough, we show
that these iterates are the repeated images of a contraction mapping and so
converge to a solution. We do not know at present whether they converge to a
solution for all ί^O, but they may do so.

Finally, in §7, we show the solution of §5 to be unique.
In all that follows, the letter c is reserved for a constant, independent of all the

relevant variables. If the letter c, with or without subscripts, appears in a formula, it
means that the formula is valid for some constant c.

2. The Abstract Boltzmann Equation

The Boltzmann equation has the form

ft + ξft=J(f,f). (2.1)

Here, f:(t,q.,ξ)-*f(t,q,ξ) is a non-negative, real valued function defined on
/ x Vx R3, where / is an interval and V is a domain in jR3. t is the time, while qe V
and ξeR3 are the position and velocity of a molecule in a gas confined to the
domain V. ft is the derivative of/ with respect to ί, fq the gradient of / with respect
to the spatial variables q. ξfq is the scalar product of the 3-vectors ξ and fq. J(f, g) is
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called the collision operator and is a certain bilinear map from two copies of some
function space into another.

The physical interpretation of (2.1) is this. First, we imagine a collection of
identical point masses, called molecules, interacting according to some law.
Averages (which are everything in a molecular theory) are to be taken by
multiplying by a certain probability density / and then integrating. (2.1) expresses a
hypothesis about the development of this density in time. The left side of (2.1) is the

rate of change of / along the characteristics — = ξ, while the right side is supposed

to be the rate of change of / due to interactions between molecules. (2.1) then says
that / changes in the interior of VxR3 only because of molecular interactions.

Our purpose in this section is to abstract certain properties of the collision
operator, properties that are always available in the physically interesting cases. For
this, we look at collisions more closely. An interaction between molecules is
supposed to be an instantaneous event involving only two molecules at a point q
and a time ί. Let the velocities of the molecules before the interaction be ξ and η,
and, after it, let them be ξ' and η'. If the collision conserves momentum and energy,
then (ξ,η) and (ξ',η') are related by the equations1

= \ξ\2 + \η\2 (2-2)

It is easy to verify from (2.2) that ξ' and η' have the form

υ),η' = η-ζ(ζ.υ), where v = η-ξ, (2.3)

and where ζ is a unit vector that determines the geometry of the collision. Notice
that it follows from (2.3) that the inverse of the map (ξ,η)ι-*(ξ'9η') is obtained by
replacing ζ by — ζ. Therefore, since the map is linear, its Jacobian (for fixed ζ) is
unity [1].

With the notation just introduced, we can write down the collision operator J. It
acts on functions keeping t and q fixed, transforming them only in the velocity
variables. Thus, any dependence on ί and q can be suppressed in displaying the
formula for J, and, with this understanding, we have2

J ( f , 9 ) = \ \ fc(C P.IC-n
S R*

Here, S is the unit sphere {ζ : \ζ\ = 1}. The kernel k is determined by the details of the
collision.

Of course, k is measurable, and, in all applications we know of [1], it satisfies

(2.5)

1 It is interesting to note, and apparently not widely understood, that (2.2) need be the only place
where the science of mechanics enters into the Boltzmann equation. Schnute [4] has given an axiomatic
derivation of the Boltzmann theory in which, among other things, he displays clearly the precise place of
the conservation laws (2.2) in the theory

2 The object that appears in the Boltzmann equation is not (2.4), but the corresponding quadratic
form J (/,/). It is usual to introduce the corresponding symmetric bilinear form, rather than (2.4). We
have not done this here, since we need the asymmetric form given
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where c>0, λ± and λ2 are constants. Either of the λs may be negative and, in most
cases of physical interest, they do not exceed unity. What we need here is the
hypothesis

-3<λl9λ2<2, (2.6)

the left hand inequality being needed in order for k to be locally integrable.
The right side of (2.4) is, apparently, the difference between two integrals.

However, both these integrals diverge for all non-zero / and g unless one assumes
there is no interaction between molecules that are far enough apart [1, p. 237]. Since
this assumption of a finite cutoff is the only one consistent with the earlier
hypotheses that molecular interactions are instantaneous and take place at a point,
we make it freely in all that follows. The details of this hypothesis are not important
to us. What matters is that it allows us to write J as a difference.

J(f,g)=Q(f,g)-P(f,g),
where

P(f,g)=f(Qί lk(ζ v,\ξ-η\)g(η)dηdζ, (2.7)
S R3

and

Q(f,β)-l I k(Wt-rtm°M+™<M^
S R* 2

Notice that P is a product :

P(f,g)=f R(g), (2.9)

where R is the linear operator defined by

R(9)(ξ) = ί g(η)$k(ζ.v,\ξ-η\)dζdη. (2.10)
R3 S

Inequalities play a large role in our argument. I f / and g are two measurable
functions, we always write /<* g to mean f(q, ξ) ̂ g(q, ξ) for almost all (q, ξ)e Vx R3.

Now, if k satisfies (2.5) and (2.6), then, if g decreases rapidly enough at infinity,
(2.10) shows that

where A = max(0,A l 9A2), and c depends on g. In particular, if g is the (non-
normalized) Maxwellian distribution mα, defined by

mβ(£) = <Γ K' 2, (2.11)

then, because of (2.5) and (2.6)

9 (2.12)

where 05U<2 and c depends only on α.
We need a number of function spaces. Let L\oc be the set of all measurable,

locally integrable functions defined on Fx R3, L°° the essentially bounded functions
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in Lfoc9 L1 the integrable functions there. We denote the norm in L1 by || || :

11/11= f ϊ \ f ( q , ξ ) \ d ξ d q .
v κ3

The Maxwellians (2.11) have a special role to play, for we always work in the
space of functions bounded by a Maxwellian. We call these spaces Mα. Precisely :

Mα = {/eL°° :|/| ̂ cmα for some constant c] (2.13)

the constant may depend on / We define a convenient notion of convergence on Mα

and a corresponding idea of continuity. We say that a sequence {/„} converges in Mα

if {fn(q,ζ)} converges for almost all (q, ξ)eVxR3, and if |/J^cmα, where the
constant c is independent of n. We say that a map L :Mα x Mα-+L1 is sequentially
continuous if, whenever {/„}, {gn} converge in Mα to / and g, respectively, then
L(Lβn) converges to L(f,g) in ZA

We show that P is a sequentially continuous map of Mα x Mα into L1. Let {/„}
and {gn} be two sequences, converging in Mα to / and g, respectively. Consider

\\P(f,β)-P(f*gJ\\

= ί J

The integrand of the outer triple integral goes to zero almost everywhere in
VxR3xR3. Also, this integrand is bounded by a multiple of mα(ξ)mα(^/) J / c

s
(ζ v,\ξ—η\)dζ9 which is integrable over VxR^xR3 if V has finite volume. The
Lebesgue convergence theorem then shows that {P(fn,gn)} converges to P(f,g) in
L1. Thus, P:MαxMα-^L1 is sequentially continuous.

When /, ge Mα, then, since k^Q,P(f,g)^ cP(m^ mα)e L1, if V has finite volume.
Thus, it makes sense to define

σ,flf),= ί $P(f,9)dξdq
S R3

for /,0eMα. Notice that (f,g)P = (gJ)P, since fc(f ι>, |ί-ι/|) = Λ(C (-ι;), |ί-ι/|).
We need the positive cones in L1 and Mα. We denote these by L\ and M+ :

L\ = {/eL1 :/^0}, Mα

+ = {/eMα :/^0} .

Q(f,g) is defined, and in L1, whenever f,geM*. For, (2.2) implies that |£ — f/|
= \ξ' - η'\, that C (ηf - ζ'} = - ζ - v, and, finally, that the transformation (ξ, η)t-+(ξ', η)
(for fixed ζ) has unit Jacobian. Therefore, making the transformation (ξ, η)t-»(ξ'9 η'\
we find, since /c^O and since, by hypothesis, k(-θ,\ξ\) = k(θ,\ξ\\ \\Q(f,g)\\

^ IIQdΛ \g\)\\ ^{\\P(\f\, \g\)\\ + \\P(\g\> 1/1)11 } = ll^dΛ 1^1)11 . In the rest of our argu-
ment, we need a little less than this, namely,

|iδ(/^)||^c||P(/^)|| for /,0eMα

+. (2.14)

Notice that (2.14) and the bilinearity of Q imply that, as a map from Mα x Mα into
L1, Q is sequentially continuous.

It is also symmetric, by its definition, (2.8).
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One fact about the mapping R of (2.10) that we need is that, since /c^O, R is
monotone on M\. That is, if /,#eMα

+ and f<*g, then Q^R(f)^R(g).
Because of (2.2), it is also easy to show from (2.8) and (2.7) that

g (mα, raα) = P(mα, mα), where mα is defined by (2. 11). Again, we don't need this much.
In agreement with (2.14), we assume only

0 ̂  Q (mα, roα) ̂  cP(mα, mα) .

Finally, notice that, since fc^O, Q, like R, is monotone on M+ : if /,0eMα

+ and
/^flf, then 0£βtf/)£β(/;0)£βfo,0).

The properties just derived are all we need to solve the Boltzmann equation. For
easy reference later, we list them here. Recall that we define the Maxwellian mα by
(2.1 1) and the corresponding space Mα by (2.13) with the notions of convergence and
sequential continuity defined there. It is also convenient to write pλ for the function
defined by

(2.15)

Then, we assume :
(Px) P:MαxMα^L1 is a sequentially continuous, bilinear map, having the

foτmP(f,g)=f R(g)',
(P2) R:M*^>Lloc is monotone on M\ : if /,#eMα

+ and f^g, then

(P3) (/>0)p = ί ί
V R3

(P4) R (mα) ̂  cpλ for some constants c> 0 and A, 0 ̂  A < 2 (c may depend on α)
(Qj) Q-.M^xM^-^L1 is a symmetric, sequentially continuous, bilinear map;
(Q2) if f,geM«+ and /gff, then 0 £ Q ( f , f ) £ Q ( f , g ) £ Q ( g , g ) ;

(QJ βK

We refer to the hypotheses (Pt)-(P4) collectively as (P) and the hypotheses (Qt)-
(Q4)as(Q).

The structure inherent in the formulas (2.7-10) is irrelevant to us, except insofar
as it is manifested in the hypotheses (P) and (Q). We focus attention on what we
actually need by calling an equation of the form

ft + ξfq+P(f,f)=Q(f,f>
an abstract Boltzmann equation if (P) and (Q) are satisfied. To distinguish it from
the abstract equation, we call (2.1) with J = Q — P, and P and Q defined by (2.7) and
(2.8), the concrete Boltzmann equation. Our efforts in this section can then be
summarized as follows; the concrete Boltzmann equation is an abstract Boltzmann
equation when k satisfies (2.5) and (2.6) and the volume of V is finite.

In all that follows, we assume V has finite volume, although we do not always
mention this. See, however, the remark on domains with infinite volume in §5.

3. Boundary Conditions and Trajectories

We want to solve the abstract Boltzmann equation with an initial condition, but
first we must say a word about boundary conditions. We suppose that a molecule,
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upon coming in contact with the boundary of V, has its velocity instantaneously
changed according to a definite law so that it returns to V. Such a law is called a
reflection law. More precisely, let dV be a C^manifold, and let n = n(q) be the inner
normal to dV at q. A map A: dVx R3 -*R3 is called a reflection /αw [3] if, for every
qEdV,n(q)-ξ<Q implies n(q)Ά(q, ξ)>0. This condition says only that a molecule
trying to escape from V has its velocity changed to drive it back into V.

If / is a solution of the Boltzmann equation and A the reflection law that
determines the motion of the molecules when they encounter the boundary, there is
an associated boundary condition that / must satisfy. It is this:

n(q)-ξ ., v -,-!,*/ βϊ\
n(q) A(q,ξ) \A'(q,ξ)\

whenever ge<3Fand n(q)- ξ <0. Here, A'(q, ξ) denotes the Jacobian of A with respect
to ξ, with q fixed. (3.1) was first derived in [3, Lemma 3.3], using considerations of
conservation of probability. It was first proposed and justified directly as a
boundary condition for the Boltzmann equation in [4]. ^

Having stated (3.1), we can now also define the complete problem we want to
solve. We are given an abstract Boltzmann equation

and a reflection law A for a domain V. We want to solve (3.2) subject to the boundary
condition (3.1) and an initial condition

We refer to this problem as the initial-boundary value problem for the abstract
Boltzmann equation.

Of course, this problem is one of the development of / in time, so it is
appropriate to speak of spaces of functions of ί. We need the spaces C°(0, T; L1) and
Z/(0, T; L1) of functions, defined on [0, T], taking values in L1, that are continuous
and in Lp, respectively, as functions of t. We also need the space L°°(0, T;Mα) of
functions /:[0, T]-»Mα such that f/mΛ is a bounded function of all its variables.
Finally, we write feAC(Q, T L1) if /eC°(0, T L1), if the limit

exists (in L1) for almost all ί,0^f g jξ and if /eL^O, T L1).
The problem (3.1-3) can be posed in a different way, using the idea of a

trajectory. We think of a trajectory as a union of characteristics of the equation (3.2),
two characteristics being identified as belonging to the same trajectory if one is
obtained from the other by means of reflection. That is, let (qQ9 ξ0)eVx R3. A
trajectory is defined as the straight line

q = q0 + ξt9ξ = ξt (3.4)

when t is so small that q0 + ξ0te V. If ί0 is the first value of t for which q0 + ξ0t0edV,
the trajectory continues for t>t0 as the line

ξ0), (3.5)
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where q1 =q0 + ξ0t0. If this line intersects the boundary when t = tl9 then, for t>tl9

where q2 = q1+A(q1,ξ0)(t1 — tQ\ and so on These equations also define a family
{t//} of maps, the value of ιpt at (g0, £0) being the point (q, ξ) on the trajectory at
which (g0, £0) has arrived by time t. Thus, ι// (g0, ξ0) = (g, ξ)9 where (g, ξ) is defined by
(3.4) for 0^ί<ί0, by (3.5) for ί0<ί<ί1, etc. ψt can be defined at ί = ί0,ί1,... by
continuity from either the right or the left. Following [3,4], we define ψ* to be
continuous from the right, and we call it the trajectory map. Notice that ψ* depends
only on V and the reflection law A9 and not on P or Q. We always assume that V and
A are such that the trajectories intersect the boundary only finitely often in finite
time. This is the case, for example, for reverse reflection [see (3.8)] no matter what V
may be, and it is the case for specular reflection whenever V has bounded curvature.

A certain class of reflection laws occurs frequently and is of particular
importance. We say that a reflection law A is regular if energy is conserved at each
reflection, if the associated trajectory map ψt takes Vx R3 onto itself for every ί, and
if the Jacobian of ψ* is always unity. This last condition can be written directly in
terms of A as follows [3, Theorem 2.2] :

\n(q) A(q,ς)\.\Ar(q,ξ)\ = \n(q).ξ\. (3.6)

Most of the usual reflection laws are regular. For example, the traditional specular
reflection :

A(q9ξ) = ξ-2(n(q) ξ)n(q) (3.7)

is regular, as is the far more realistic reverse reflection3.

A(q,ξ)=-ξ. (3.8)

In the rest of this paper, we consider only regular reflection laws. For such laws, the
boundary condition (3.1) takes the simpler form

,q,A(q9ξ))=f(t-09q,ξ) for qedV and n(βK<0. (3.9)

We need a piece of notation associated with the trajectory map. If
f:(t9q9ξ)->f(t9q9ξ) is any function, we define a function /* as the function /
considered along trajectories. Precisely,

f*(t,q,ξ)=f(t,Ψ'(q,ξ)).

The boundary condition (3.9) for a regular reflection law takes a particularly
simple form when it is restated in terms of/*. To see this, notice that, if ψ*~ °(qQ9 ξ0)

= (q,ξ)edVxR\ then φί(«o^o) = Vί+0(βo^o) = fe^feί)). Thus, (3.9) reads

£)=/*(ί-0,«,£) (3.10)

i.e., /* is continuous in t.

3 We call (3.8) more realistic than (3.7), and it is, but, even more, (3.8) should be called the most realistic
reflection law. This is so because (3.8) implies the associated gas does not slip on dV[3]. Even more, it is
shown in [3] that a simple generalization of (3.8) is essentially the only reflection law that implies the no-
slip boundary condition the generalization is A(q, ξ) = — λ(q, ξ)ξ, where λ(q, ξ) >0. (3.8) is the only law of
this form that conserves energy
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(3.2) also takes a simpler form when written in terms of/*. Indeed, at least for
smooth functions, (3.2) is equivalent to

f*+P*(f,f)=Q*(f,f) (3.H)
(Notice here that P*(/ /) = [P(/, /)] *. P*(/ /) is not P(/*, /*), although again, it

is /*K*(/)=/*[R(/)]*, because of (PJ. Also notice that /* = -7- (/*)•)

We end this section with

Lemma 3.1. Let A be a regular reflection law. Then, if /e C°(0, T; L1), we ftαt e ||/(ί)||

= ll/*(ί)ll
Proof. Let/6 C°(0, T; L1). Since ,4 is regular, ψ* maps onto, and its Jacobian is unity.
Therefore,

11/011 = f ϊ \f(t,q,ξ)\dξdq
V R3

= ί l\f(t,ψ'(q,ξ)\dξdq
V Ri

=ιι/*wιι.
4. An Associated Linear Problem

In the next section, we find the solution of the initial-boundary value problem (3.2),
(3.3), (3.9) as a limit of solutions of a sequence of linear problems. In this section, we
show that these linear problems have solutions, derive some of their properties, and,
most important, display an explicit formula for them. The problem we want to solve
is this. Let Fbe a domain in R3, and let A be a regular reflection law. Then, we have
an equation

ft+ξfq+P(f,g) = h, (4.1)

where P satisfies (PJ and (P2), and g and h are given. We want to solve (4.1) with the
boundary condition

09q9A(q,ξ))=f(t-Q9q,ξ) for qεdV and n(q) ξ<Q (4.2)

[cf. (3.9)], and the initial condition

f(0,q,ξ) = φ(q,ξ). (4.3)

The solution of this problem is straightforward when φ, g, and h are smooth and
go to zero quickly enough at infinity we present an explicit formula for the solution
presently. But first, to cover the general situation, we define the concept of a mild
solution. We say a function /is a mild solution of (4.1)-(4.3) in an interval [0, T] if
/6L°°(0, T; Mα), /* e^C(0, T; L1), and if

and

0. (4.5)
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As we saw in § 3, if/is a mild solution, it satisfies (4.2) since/* is continuous, while
(4.4) is equivalent to (4.1) i f / i s smooth, and (4.5), of course, is the same as (4.3).

When φ9 g, and h are nice enough, the mild solution of (4.1)-(4.3) is immediate. It
is defined by

- ]R*(g)(σ)dσ] + }h*(τ)apt-}R*(g)(σ)dσ}dτ. (4.6)
0 / 0 \ τ /

In what follows, we write jeL^O, T; Mα

+) if jeL°°(0, T; Mα) and;(i)eMa

+ for almost
all t in (0, T). With this definition and (4.6) before us, we can simply read off most of

Lemma4.1. Let Psatisfy (PJ, (P2), and(P4). Let φeM\,g, ΛeL°°(0, T; M\}for some
T,0< T< oo. 77u?n, (4.1)-(4.3) /zαs α Mw#we mild solution feL^Q, T\M\) satisfying

II dτ. (4.7)
0

Also, ||/(•)!! is absolutely continuous, and

T II/(Oil +(/(0> 0(0)p = I I MO II - (4.8)αί

Proo/ Formally, we define the mild solution by (4.6). This definition makes sense
almost everywhere since (P4) and the hypothesis on g give that R(g) is an integrable
function of t for almost all (q, ξ). We prove /* e C°(0, T; L1). Let 0 ̂ s^ ί ̂  T; and
consider

τ

Since g(t) ̂  0 (a.e.), (P2) gives .R(̂ ) (t) ̂  0 (a.e.), and then we find, for some constants c,

since T< oo. It now follows easily that

Since Fhas finite volume, mj^eL1, and it follows that /*eC°(0, T L1).
Next, since φ, ft(ί)^0 (a.e.), (4.6) shows that/*(ί)^0. Since R(g)(i)^0 (a.e.), we

have

τ)dτ. (4.9)
o

Therefore, /*(ί)^craα so that /*eC°(0, Γ;Mα). Also, integrating (4.9) and using
Lemma 3.1, we obtain (4.7).

/* is differentiable, and we have, clearly,

(4.10)
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while, setting ί = 0 in (4.6) gives f(ty=f*(Q) = φ. Also, (4.10) implies easily that
/*e^C(0,Γ;L1), and /is a mild solution of (4.1)-(4.3).

Now, integrating (4.10) and using the positivity of /*(£), we find

(4.8) follows from this and Lemma 3.1.
To prove the uniqueness, we must show that, when φ and h are zero, then / is

zero. We cannot use (4.9) directly, since that depends on the representation (4.6).
However, because of (P4), we see that, when h = Q, (4.1) can be written in the form

dt
/*(ί)exp (SR*(g)(σ)dσ = 0. The uniqueness follows from this and the fact

that/(0) = 0.

The next result follows easily from (4.6) and (P2).

Lemma 4.2. Let φt, gi9 ht(i =1,2) satisfy the hypotheses imposed in Lemma 4.1 on φ, g,
and h, respectively. Letft (i = 1,2) denote the corresponding mild solutions. I f φ 1 ^ φ2,
while g^gM M0^2W (a e.), then Λ(ί)^/2(0 for all t, O^ί^ T.

Briefly, increasing φ or h, or decreasing g, has the effect of increasing /
In § 5, we need the solution for a wider class of functions φ and h. For this, let

0eL°°(0, T;Mα). Then, of course, R(g)(t) is defined (a.e.) and lies in L1^ [cf. (P2)]. It
may happen that, for a given function/ΈL°°(0, T; L1),/- R^eL^Q, T; L1). For such
functions /, we can define P(f,g) in the obvious way, as f-R(g\ Given a
0eL°°(0,T;Mα), we write Dg for the class of fs in L^T L1) for which /
-R(g)eL1(0, T L1). We denote the extension of P( ,g) to Dg by P( ,g) again. This
will cause no confusion. We extend the notion of a mild solution to this case by
calling a function/a weak solution of (4.1)-(4.3) iffeDg,f* eAC(0, T; L1), and (4.4)
and (4.5) are satisfied.

We can now prove

Lemma4.3. LetP satisfy (PJ and (P2). Lei φeL\, 0eL°°(0, T;Mα

+), fteL°°(0, T L1,)
for some T, 0<T< oo. Then, (4.1)-(4.3) has a unique, non-negative, weak solution f
satisfying (4.8).

Proof. Given anyjeLί,, we write

\j, whenever j rg nmΛ

nmΆ otherwise.

By Lemma 4.1, there is a sequence {/„} of mild solutions of (4.1)-(4.3) with φ
replaced by Tnφ and h by Tnh. Each fn satisfies

ή (4.11)

and

/«(0) = T>, (4.12)

as well as

μτ, (4.13)
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and

Jt l l / n W I I +(fn(t),g(t))P= \\(Tnh)(t)\\ . (4.14)

by (4.7) and (4.8).
The sequences {Tnφ} and (Tnh(t)} are non-decreasing. By Lemma 4.2, {fn(t)} is

non-decreasing also, and (4.13) shows that {/„(£)} is bounded in ZA Since L1 has the
Levi property [2, § 18], {/„(£)} converges to a function /(ί) in L1 for every ίe[0, Γ].

Integrate (4.14). A simple estimation gives

}(fn(t),g(t))PdtZ\\ Tnφ\\ + } ||(7yθ(t)|| Λ
0 0

£||φ|| + f | | Λ ( ί ) I I Λ . (4-15)
0

Since {/„(£)} is non-decreasing, the same is true of {P(fn,g)} = {fnR(g)}. Since g(i)
and fn(t) are non-negative (a.e.), (4.15) shows that (P(fn,g)} is bounded in
L^O, T L1). Thus, the Levi property of 1̂ (0, T L1) shows that {P(fn,g)} converges
there. Since P(/w, g) =f»R(g) and/, t / the limit of {P(/n, #)} must be P(/ 0). Now, we
can let n tend to infinity in (4.11) and (4.12) to show that / is the desired weak
solution.

Uniqueness follows as it did for Lemma 4.1.
We also have the following extension of Lemma 4.2.

Lemma 4.4. Let P satisfy (PJ, (P2), and (P4). For i = 1, 2, let φ^L^g^L^O, T; Mα

+),
/ZfGL00^, T;L+), and /eί/j be the corresponding weak solution of Lemma 4.3. If φί

^ φ29 while g,(t] ^ g2(t\ h^t) ̂  h2(t) (a.e.), then f,(ή £f2(t) farQ^t^T.

For, the representation (4.6) is still valid, even for weak solutions, when g(i) ^0.

5. Local Existence

Next, we want to solve the nonlinear initial-boundary value problem (3.1)-(3.3) for
the abstract Boltzmann equation. Naturally, we cannot expect the solution to be
any better than the solution of a similar linear problem, which means that we must
look for some sort of mild solution, a concept that we now define. Let A be a regular
reflection law. We say a function /is a mild solution of the initial-boundary value
problem for the abstract Boltzmann Equation (3.2) in the interval [0, T] if
/eL°°(0, T;Mα), /*64C(0, T L1), and if

while

φ. (5.2)

As before, (5.1) comes from (3.2), while the boundary condition (3.9) follows from
the continuity of/*. Notice that, since we require /(f)eM+, we have/(ί)^0 as part
of the definition of a mild solution.

In this section, we show a mild solution of (5.1)-(5.2) exists and is the limit of two
sequences, {/„} and {un}, the one monotone increasing, the other monotone
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decreasing, and both squeezing down on/ Moreover, we show that each function /„
and un for n^.1 is a solution of a simple linear problem of the sort we solved
explicitly in (4.6). Specifically, {/„} and {un} are defined recursively as follows. If
Ό» " Λ-ι> wo> ~'>un-ι are known, then /„ and un are the weak solutions of

l^^Q*^^), (5.3)
wB,/Λ-1) = β*(ttrt-1,ttII.1), (5.4)

Naturally, we must begin with a pair of functions (/0, MO). We say that such a pair
satisfies the beginning condition in [0, T] if w0eL°°(0, T M") and

W for O^ί^T. (5.6)

We discuss the beginning condition later, but, first, we prove

Lemma 5.1. Let the hypotheses (PJ, (P2), (P4), (Q2), and (Q3) be satisfied. Let φeM\.
Let (/0, UQ) satisfy thebeginning condition in [0, T]. Then, the sequences {/„} and {un},
defined by (5.3H5.5), exist for all n and belong to L°°(0, Γ;Af+). Moreover, these
sequences satisfy

ί) for O^ί^T. (5.7)

Consequently, {ln(t)} and (un(t)} converge in Mα for every t with O^t^T.

Proof. The proof is inductive. Suppose /1 5 . . . ,/ f e _ 1 , u1...9uk_1 all exist, belong to
L°°(0,T;Mα) and satisfy

0^/o(0^. ^fc-ι(0^%-ι(0^...^0(ί) for O^ίgΓ. (5.8)

Notice that the beginning condition is the case k = 2 of this hypothesis. /0, /x and w x

all lie in L°°(0, T;Mα

+) because of (5.6) and the fact that w0 lies there.
Because of (Q2) and (5.8), we have Q^Q(lk^(t\ lk-^^Q(uk^(t\ u^^ή)

£Q(uM w0(0)^β(mα,mα). Because of (Q3), (PJ, and (P4), then, the right sides of
(5.3) and (5.4) lie in /^(O, T; L+). Also, and again because of (5.8), lk_1 and uk_± lie in
L°°(0, T;Mα

+).
Therefore, we can apply Lemma 4.3 to (5.3)-(5.5) with n = k to find lk and uk as

weak solutions of these problems.
Next, (5.8) in (Q2) gives Q(lk_ 2(ί), ί fc_ 2(ί)) ̂  β(/t- ι(ί), ίf - iW) ̂  β(%- 1 (0, %- iW)

^β(wk_2(ί), tιfc_2(ί)). Therefore, comparing the Equations (5.3) when n = k and
n = k—l and using Lemma 4.4, we find /fc_ι(ί) ̂  /k(ί). Similarly, comparing Equations
(5.4) when n = k and n = k— 1 gives uk(t)^uk_ ^(t). Finally, comparing (5.3) and (5.4)
with n = k,wQ find lk(t)^uk(t\ Thus, we have

lk-,(t)^lk(t)^uk(t)^uh^(t). (5.9)

To complete the induction, it remains to prove lk and uk belong to L°°(0, T; Mα

+). But
this is immediate in view of (5.9) and (5.8).

Finally, we must prove the convergence of {/„(£)} and {un(t)} in Mα. But, once
again, this is immediate because of (5.7) and the hypothesis w0eL°°(0, T;Mα). This
completes the proof of Lemma 5.1.
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Next, we prove

Lemma 5.2. Let the hypotheses (P) and (Q) be satisfied. Let φ e M + . Let (/0, UQ) satisfy
the beginning condition in [0, T]. Denote the limits of {ln(t)} and (un(t)} by l(t) and u(t).
Then, l(t) = u(t) for all ί, 0 ̂  t ̂  T. This common limit is a mild solution of the abstract
Boltzmann problem.

Proof. We saw in Lemma 5.1 that {/„(*)} ΐ/(ί), K(ί)}WO in M* for a11 te[0,Γ]
Moreover,

£ln(t)£un(t)£cma9 n = 0, 1, ... , (5.10)

because of (5.7) and the hypothesis w0eL°°(0, T; Mα). Because of the Levi property, it
follows from (5.10) that {/„(£)} and (un(t)} also converge to l(t) and u(f) in ZA

By (4.8)

and

KWII + ί K(τ),/Λ-1(τ))Pdτ= l l φ H + } IIGK-iW^-iW)!! dτ.
o o

Because of (P1), (QJ, and the bound (5.10), we can let n tend to infinity in these
equations to find

||/(ί)|| + ί (/(τ), u(τ))Pdτ= \\φ\\ + f ||β(/(τ), /(τ))|| dτ (5.11)
o o

and

Mί)|| + } (u(τ\l(τ)}Pdτ= \\φ\\ + } ||β(tt(τ),ιι(τ))|| dτ. (5.12)
0 0

Notice that, because of (5.7), u(ί)^/(ί) Therefore, ||w(ί)|| - ||/(ί)|| = \\u(t)-l(t)\\.
Similarly, because of (5.7), (Q2) and (Q^ ||β(M(τ), φ))|| - ||β(/(τ), /(τ))|| = \\Q(u(τ\
u(τ)}-Q(l(τ\ l(τ)\\ = ||β(w(τ)-/(τ), w(τ) + /(τ))||. Therefore, subtracting (5.11) from
(5.12) and using (P3) as well as (Q3), we find

\\u(t)-l(t}\\ = J ||β(«(τ)-/(τ),«(τ) + /(τ))|| dτ
0

^c\\\P(u(τ)-l(τlu(τ) + l(τ))\\dτ. (5.13)
0

Now, 0 ̂  /(ί) ̂  u(t) ̂  cmα by (5.10). Because of this, (P2), and (P4), we have R(u(t)
+ l(t))^cpλ. Therefore,

||P(ιι(ί)-/(ίλfi(ί) + /(ί))ll ^c\\pλ(u(t)-l(t))\\ .

We evaluate the norm appearing here in two parts. First, we integrate over Sn

= Vx{ξeR3:\ξ\<n}, then we integrate over Sn = Vx {ξeR3 :\ξ\^n}. In the
integration over Sn9 we estimate pλ by

nλ) in S.



Boltzmann Equation 79

This estimate gives

\\pM)-l(W\L^c(l+nλ) \\u(ή-l(t)\\ .

In the integration over Sn, we use the fact that / and u lie in L°°(0, T; Mα). This entails
the fact that Q^u(i)-l(t)£cmΛ. Therefore,

sn^c j (ί + \ξ\λ)mΛ(ξ)dξ
\ξ\>n

Using these facts in (5.13), we obtain

~"2. (5.14)

Because of (5.5), ||u(0)- ί(0)|| =0. It follows from this and (5.14) that \\u(t)- l(t)\\
-—n2 + ct(l +«Λ)2 . But the hypothesis (P4) requires λ<2. Therefore, letting n->oo,

we find u(t) = l(t).
Let u(t) =/(£) = l(t). It remains to show that /is a mild solution of the Boltzmann

problem. /eL°°(0, T;Mα

+), by (5.10). Also, by (5.3)-(5.5),

/*(ί)+ίP*αB,«π-ι)(τ)iτ = φ+}ρ*(/ l l _ 1 ,/ l l _ 1 )(τ)dτ. (5.15)
o o

{/„} and {un} converge to /in L°°(0, T;Mα

+), by Lemma 5.1 and (5.10). Sending n to
infinity in (5.15), then, we obtain the integrated version of (5.1). It follows that
/*eAC(0, T L1), and the rest of Lemma 5.2 is easily proved.

Notice that it is the beginning condition that makes the solution local.
According to Lemma 5.2, in any interval in which the beginning condition can be
satisfied, a solution exists. If the beginning condition can be satisfied globally, then a
solution exists globally. It remains, then, to study the beginning condition.

But before this, we want to make a remark about the condition that the volume
of Fis finite. This hypothesis is needed mainly because mα, being independent of q, is
in L1 only if Fhas finite volume. However, this difficulty can be circumvented by
replacing mα by any strictly positive, //-function μ:(q,ξ)^>μ(q,ξ) defined on
VxR3. Given such a function, we can define a space

Λμ = {feLί :\f\£cμ for some constant c}, (5.16)

and a sense of convergence like that of Mα on it : {/„} converges in Λμ if {fn(q, ξ)}
converges almost everywhere and {fjμ} is bounded. If, now, one replaces mα by μ
and Mα by Λμ throughout the argument, Lemma 5.1 (with Mα replaced by Λμ) can
still be proved. Moreover, if μ is taken to have the form μ(q, ξ) = β(q)m(X(ξ\ where
jβeL1(F)nL°°(F), then Lemma 5.2 can be proved also. Thus, it is entirely because of
the beginning condition that the hypothesis on the volume of V is needed.

We now turn to the beginning condition. There are two cases, according to
whether the exponent λ appearing in (P4) is zero or not. If /l = 0, we call the
molecular interactions soft; otherwise, we call them hard. The case of soft
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interactions is easier. In that case, we take /0 = 0 and w0 = c0wα, where c0 is a
constant. Then, (5.3H5.5) give

β*(mβ,mβ). (5.17)

It is obvious that 0^/1(ί)^w1(ί). All that remains of the beginning condition,
therefore, is the requirement t^W^t/oW Let iff be the trajectory map, and write
ψt(q,ζ) = (qt(q,ζ)9ζ

t(q,ξ)). If the reflection law is regular, it conserves energy,
and this means |ξ'fo,£)| = | f l Therefore, mα(<f) = mα(£). Also, by (Q4),
ρ*(mα,mJ(0^cP*(mα,mJ(0 = cmα(ξ^*K)(ί)^cmα(ξ) for soft interactions. If
φeMa

+9 it now follows immediately from (5.17) that uf (ί)^^o (0 if co is large and t
is small enough. Thus, the beginning condition is satisfied. This completes the
proof of the following theorem in the case of soft interactions.

Theorem 5.3. Let VCR3 be a domain with C1 -boundary and finite volume. Let Abe a
regular reflection law. Let the hypotheses (P) and (Q) be satisfied with α = α i > 0. Then,
if 0 ̂  φ ̂  cmαo where 0 < oq < α0, the initial-boundary value problem for the abstract
Boltzmann equation has a mild solution in some interval Orgί^ T, with T>0.

Proof. The theorem follows from Lemma 5.2 once we can show the beginning
condition can be satisfied. For this, we take /0 and UQ to have the form

We just saw that, for soft interactions, this choice of /0 and u0 leads to the beginning
condition even when β and α are constant. In general, however, it is necessary to
allow β and α to vary.

Now, however we choose β and α, it is true that 0 ̂  /0(ί) ̂  l^ (t) ̂ uί (ί), as a trivial
computation shows. As before, then, it remains to prove u1(t)^u0(t). For this, it
suffices to have ^(O^w^O) and ύf (t)^ύ* (t). The first of these conditions is
satisfied by taking α(0) = α0 and /?(0) large enough, since φ ̂  cmαo. As for the second,
we have

by (Q4) On the other hand, P(u0,u0) = β2mΛ R(ma)^cβ2mΆ pλ, where pλ = 1 + \ξ\\
by (P4). The constant c depends on α, but it is bounded as long as α^α t >0.

Since energy is conserved at reflections, [cβ2(t) wα(ί)pj * = cβ2(t) ma(t}pλ. For the
same reason, ώ*(ί) = ώ0(ί). Consequently, ύ*(t)^ύ*(t) if

α(ί)]. (5.18)

Written out in full, (5.18) reads

(5.19)

Choose α and β to have the form
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We have the inequality

where ε >0 is arbitrary. Use this inequality on the left side of (5.19), and choose ε so
that the terms in \ξ\2 cancel from both sides of the result. Then, a simple
computation shows that (5.19) is satisfied if

2(l-b)^λa>0 (5.20)

and
i

2-λ
(5 21)

Moreover, β0 may be chosen freely, since, once β0 is fixed, and a and b chosen so that
(5.20) is satisfied, ί0 can still be chosen small enough that (5.21) holds. Finally, with
all the constants chosen, T can be restricted to be so small that α(ί) ̂  αx for 0 ̂  ί ̂  T,
oq being the value of α occurring in the statement of the theorem. The result follows
from this.

Note: The referee has pointed out that the proof of Theorem 5.3 implies an
inequality of the form

and posed the question : what are the best possible functions α and /?? We do not
know the answer, but it is at least possible that it might provide a condition for a
global solution.

6. Another Method

The method of proof of Theorem 5.3 is highly satisfactory, giving, as it does, two
explicitly constructible sequences, one pushing down on the solution from above,
the other up from below. Still, the beginning condition is awkward and, perhaps,
unnatural, since, on the one hand, it appears nowhere in the problem itself, while, on
the other, it is the beginning condition that gives Theorem 5.3 its local character.
Indeed, at least as long as we satisfy the beginning condition by requiring (as we did
in the proof of Theorem 5.3) that /0(ί) = 0 and ύf (ί) g ύ* (ί), it is impossible that uQ(t)
even exists globally.

In this section, we present another method in which the beginning condition
does not appear. This second method seems to be limited to soft interactions, but,
on the other hand, the successive approximations to the solution exist for all time.
Of course, we only show they converge for a finite time; the question of global
convergence remains open.

The method of §5 gives very easily the solution of the nonlinear problem

h*(t)9 (6.1)

(6.2)
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when φeM*+ and /zeL°°(0, T L1). Indeed, one only has to define

(/Λ,MII-1)(ί) = Λ*(ί), (6.3)

/ll(0) = fiB(0) = 0. (6.5)

The argument of Lemma 5.1 goes through very easily, and we don't need the
additional conditions of Lemma 5.2 to prove that (ln(t)} and {un(t)} converge to
the same limit since, in this case, the right sides of (5.1 1) and (5.12) do not depend on /
and u. Therefore, subtraction of (5.11) from (5.12) gives immediately that
\\u(t) — l(f)\\ = 0, instead of (5.13). Moreover, the beginning condition is easily seen to
be satisfied in [0, T] when /0=0, u0 = cma, if /zeL°°(0, Γ;M+). Therefore, we have

Lemma 6.1. Let the hypotheses (P) be satisfied. If φeM\ and heL™(0, T; Mα

+), then
the initial-boundary value problem (6.1)-(6.2) has a mild solution in [0, T].

Lemma 6.1 allows us to define a map F :j^>F(j) as follows. TakejeL00 (0, T, Mα

+).
We define F(j)=f as the mild solution of

(6-6)

(6.7)

Notice that (P4), (Q2), and (Q4) (with λ = 0) give Q(j9j)eL°° (0, T; Mα), so that / exists.
We show first that F maps the convex set tfcl = {/eL°°(0, Γ;Mα

+):;(ί)^c1mα}
into itself, if Γis small enough. For, \εtjeKCί. Then, /(ί) ̂ 0 (since this is so for all the
functions /M). Therefore,

:lP*(mu,mJ(τ)dτ =
0

where (Q2), (Q4), (Pt), and (P4) have been used. If φeMα

+, it follows that feKcl if Tis
small enough.

Next, we show that F is a contraction on KC1. LetjiJ2εKcl, and let f ί = F ( j ί ) ,
f 2 = F ( j 2 ) . Write j^Ί-72, /=Λ-/2. Then, using (P^ and (QJ, we find

Since /(0) = 0, it follows that

Now, Λ(ί)^0. Therefore, ^(/^(^^O, and we have

I/* (01 ̂  f [|β * (/,Λ +;2) (τ)| + |P* (/2 J) (τ)|] dτ .
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Thus, integrating and using Lemma 3.1, we find

I I / W I I ύ

where the hypotheses (Q3), (P3), and (P4) have been used. It follows easily from this
that F is a contraction if T is small enough. Thus, we have proved

Theorem 6.2. Let VC R3 be α domain with a C1 -boundary and finite volume. Let A be a
regular reflection law. Let the hypotheses (P) and (Q) be satisfied with λ = 0. If
0^</>^cmα, then the initial-boundary value problem for the abstract Boltzmann
equation has a unique mild solution in an interval O^ί^ T, with T>0.

Notice that, starting with anyy0eL°°(0, oo;Mα

+) (say, even, y 0 = 0), the iterates
jn = Fn(j0) exist for all ί>0. They converge for small enough t. Whether they do so
for all t remains open.

7. Uniqueness

The solution for soft interactions is automatically unique since, as we saw in §6, the
map F is then a contraction. To study the uniqueness question for hard interactions,
we return to the method of §5. This allows us to emphasize a feature of that method,
which is that certain properties of the solution (in particular, uniqueness) follow
directly from the method of proving existence.

In §5, we constructed two sequences, {/„} and [un], satisfying the equations

(^uH.l) = Q^(ln.l9ln.l)9 (7.1)

/Λ(0) = tιΛ(Oj = φ, (7.3)

and converging to a mild solution / of the Boltzmann equation if / 0=0 and
u0 = j8mα, where β and α are two functions, the one increasing like a power of 1 — f/ί0,
the other decreasing like a power of (1 — ί/ί0)~ x.

Let /! be a mild solution of the Boltzmann problem

(/ιJι) = β*(ΛJι). (7-4)

. (7-5)

By Lemma 4.1, the linear problem

g*+P*(gJ1)=Q*(f1,fί), (7.6)

has a unique mild solution. Since, obviously, /i is a solution, it follows that Q—fv
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Now, Λ eL00 (0, Γ; M\] for some T>0. Therefore, there exist functions α l 5 β l5 of
the sort used in the proof of Theorem 5.3, such that /1(ί)^jS1(ί)mαι(ί) in a small
enough interval [0,ί0]. Write /0 = 0,w0 = j81mαι, and define the sequences {/„} and
{un} by (7.1H7.3). We have /0(ί)£/i(f)£u0(f). Suppose l^^f^u^^t).
Comparing (7.1) with (7.6) and using Lemma 4.2, we find ln(t)^g(t) =f± (ί). Similarly,
comparing (7.2) with (7.6), we find fl(t) = g(t)^un(t). Therefore,

Now, let /x and /2 be two mild solutions of the Boltzmann problem. If we choose
0^ and β1 such that 0 ̂ ft(t) ^β^t) mαι(ί), i = 1, 2, the above argument than shows that

But, according to the results of §5, the sequences {ln(t)} and {un(t)} have a common
limit. Therefore, each of the f^t) is equal to this limit, and, therefore, the functions ft

are equal to each other in an interval [0, ί0]. The argument can now be repeated to
conclude ΛίO-ΛW f°r O^ί^T Thus, we have

Theorem 7.1. Let the conditions of Theorem 5.3 be satisfied. Then, the mild solution
constructed there is unique.

Notice that Theorem 7.1 provides uniqueness in the space Mα of functions
bounded by Maxwellians. It would be desirable, of course, to provide a proof of
uniqueness assuming only that the solution has a certain number of moments that
are finite, as was done in [5] in the homogeneous case when / is independent of q. At
present, however, we are unable to do this. We believe it remains true, though, that
Theorem 7.1 is the best yet available when the solution is non-homogeneous and the
molecules are restricted to lie in a domain V.

References

1. Grad,H.: Principles of the kinetic theory of gases. Handb. Phys., Vol. 12 (ed. S. Flugge). Berlin-
Gottingen-Heidelberg: Springer 1958

2. Riesz,F., Sz-Nagy,B : Functional analysis. New York: Frederick Ungar Publishing Company 1955
3. Schnute,!., Shinbrot,M.: Kinetic theorey and boundary conditions for fluids. Can. J. Math. 25,

1183—1215 (1973)
4. Schnute,!.: Entropy and kinetic theory for a confined gas. Can. J. Math. 27, 1271—1315 (1975)
5. Arkeryd,L.: On the Boltzmann equation. Part II. The full initial value problem. Arch. Rat. Mech.

Anal. 45, 17—34 (1972)

Communicated by J. L. Lebowitz

Received March 16, 1977




