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Power Spectra of Nonlinearly Coupled Waves
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Abstract. Swinney et al. (1977) have found that turbulence in rotational Couette
flow results from a small number of instabilities. They have raised the question
of whether these instabilities conform with the ideas of Ruelle and Takens
(1971). We show that a simple model of the Couette flow yields power spectra
similar to those seen in the experiments. The model is consistent with the Ruelle
and Takens picture.

1. Introduction

Recent experiments on circular Couette flow by Gollub and Swinney [1] and
Swinney, Fenstermacher, and Gollub (SFG) [2] have revealed a series of transitions
in the power spectrum of the radial component of velocity at a point midway
between the two cylinders. At low Reynolds numbers, these investigators find
spectra consisting of spikes. The spectra correspond to periodic or quasiperiodic
motions of the fluid. At a well defined Reynolds number, the spikes disappear
leaving a series of broad humps in the power spectrum. (Only one hump was visible
in the earlier experiment.) It has been asked whether these broad power spectra
might be produced by a "strange-attractor" [3,4] solution of the governing
equation. We have constructed a simple model of nonlinearly coupled waves which
has stochastic solutions when three or more waves have sufficiently positive growth
rates. The power spectra of these systems is qualitatively similar to those observed
by SFG.

2. The Model

A realistic theoretical study of the Couette flow transitions observed by SFG would
require solution of the three-dimensional Navier Stokes equation. However, it is of
some interest to investigate whether nonlinear coupling between a small number of
waves could yield broad power spectra similar to those observed by SFG.
Photographs of the flows studied by SFG reveal phenomena similar to those
observed by Coles [5]. At low rotations speeds, the flow is azimuthal. As the
Reynolds number is increased, Taylor cells appear in the flow. The next instability
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Fig. 1. Power spectrum for α/2=0.4, α/3=0.3, ωί=0.5

leads to '"wavy" Taylor cells. The waves propagate in the azimuthal direction. The
waves show up as a spike (and its harmonics) in the power spectrum.

The humps in the broad spectrum are centered on fairly well defined
frequencies. This suggests that a finite number of coupled waves may be broadening
their spectra through the type of motion discussed by Ruelle and Takens [3]. To
investigate this possiblity, let us construct a two-dimensional (radial and azimuthal
variations) model of the Coles waves. The fluid motion can be calculated from a
stream function which obeys the nonlinear Orr-Sommerfeld equation [6].
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V>2). (2)
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Fig. 2. Power spectrum for ω'2=0.5, 0/3 =0.4, ω^=0.6
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In Equations (1) and (2), ψL is the stream function for a laminar flow between the
circles, ιp is the stream function for the time dependent flow, and 5f{ are linear
operators. Schensted [6] has shown that the eigenfunctions of the linearized Orr-
Sommerfeld equation for a given boundary value problem form a complete set.
Thus, one can make the following decomposition:

ψ(ϊφ)= (3)

A set of ODE's for the amplitudes AmιΛ can be projected out by taking inner
products of Equation (2) with the eigenfunctions of the adjoint linearized Orr-


