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Causal Logic of Minkowski Space
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Abstract. It is shown that double-orthogonal sets (diamonds) in Minkowski
space form an orthomodular complete lattice. Connection with empirical logic
of Randall and Foulis is discussed.

1. Introduction

Relations of a causal type have been studied by various authors (see e.g. [1], and
references there). In particular, Zeeman [2] has shown that every automorphism of
the causal order structure of the Minkowski space is either Poincare transformation
or dilation. This result has been generalized in [3-5], and finally Borchers and
Hegerfeldt [6] have been able to show that preservation of light cones is sufficient
to deduce the Zeeman's result (plus time inversion). On the other hand, the present
authors [7], motivated by quantum mechanics and algebraic quantum field theory,
started investigations of a causal-logic struture of space-time. In the Galilean case
the most general covariant representation of the causal logic has been found to
correspond to the quantum mechanics of an extended body. This was possible
owing to the extremely simple structure of the Galilean logic, which happens to be
nothing but a disjoint sum of Boolean logics. The causal structure of the Minkowski
space is much less trivial. The present paper shows that the family of all double-
orthogonal sets is a complete orthomodular lattice (in fact, not a modular one). The
full group of automorphisms of this logic consists of dilations and Poincare
transformations. In relativistic quantum mechanics one should have a covariant
representation of this logic in the logic of projections of a Hubert space. In quantum
field theory projections are to be replaced by more general non-Abelian von
Neumann algebras.

The methods and language we have found most appropriate are those of
empirical logic of Randall and Foulis [8]. On the other hand, our example
illustrates neatly all of the main concepts of Randall and Foulis approach.
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2. Main Concepts of Empirical Logic

The fundamental concept of Randall and Foulis approach is that of an operation.
The set of all operations one is going to deal with is called a manual If si is a manual,
each operation EES$ is identified with the set of its possible outcomes xeE. After
appropriate identifications of outcomes of different operations one can assume that
each Ee s$ is a subset of a set M of all possible outcomes in the theory. Two different
outcomes x,yeM are said to reject operationally each other if and only if there
exists an operation E such that both x and y are possible outcomes of E. In this case
one writes x_Ly, and x,y are said to be orthogonal. A subset D of M is called an
orthogonal set provided every two different elements of D are orthogonal. It is
assumed that each Ee jtf is a maximal orthogonal set and conversely, every maximal
orthogonal set corresponds to some (possibly idealized) operation. Under these
assumptions the whole structure is completely specified by a symmetric, non-
reflexive relation "_L" in M. An event is an J_-set, and to each event D there
corresponds a proposition (D11,!)1) (where A-L = {xεM :xλy, ye A}) confirmed
when an operation E gives an outcome xeD11, and refuted if xeD1. It follows from
the very defition that there always exists an operation (namely EDD) whose every
outcome either confirms or refutes the proposition p(D) = (D±-L,D L). The set of all
such propositions can be identified with the family L(M, 1) = {D11 :D — _L-set}.
Equipped with the natural partial order "^" (inclusion) L(M, 1) is said to be the
logic of (M, JL).' If and only if (M, 1) satisfies the following Dacey condition (D),
L(M, 1) is closed under orthocomplementation A h>^1, and is an orthomodular
orthoposet ([9], see also [10]):

(D) EGJ/, x,yeM, Ec{x}λv{y}L^xA.y.

In general, however, L(M, 1) need not be a lattice. A necessary and sufficient
condition for L(M, _l_) to be a complete orthomodular lattice is that the following
condition (CD) holds [11] :

(CD) A = ALL CM and D-maximal 1-set in A^DLL = A.

Given this first order structure one can consider compound operations consisting of
finite, ordered sequences of primitive outcomes. In the present paper we restrict
ourselves to L(M, 1) only.

3. The Causal Logic of Minkowski Space

Before we go into details let us first give a brief motivation for the following
construction. Let us take the point of view that in quantum mechanics position
measurements are fundamental. In a non-relativistic case this is more or less
obvious. In [12] it has been shown that momentum measurements can be reduced
to those of position, and in [13,14] scattering experiments have been described in
terms of geometrical configurations of incoming and outgoing particles only. In a
relativistic case the situation is not much different if one is going to pay the price of
dealing with negative energy states. Once this viewpoint is accepted, it is natural to
take as a fundamental operation an operation E consisting of localization of a
particle on a space- or light-like hypersurface E (ί = 0 hyperplane in the Galilean
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case). (In field theory one measures the field strength, and E serves as a support for
Cauchy data.) Clearly, having exactly one massive particle, two different outcomes
x, yeE reject each other, and a proposition p(D) can be realized experimentally by
sensilizing a Geiger counter in D. Observe that a free particle trajectory intersects D
if and only if it intersects D11 (this is intuitively obvious and will be proved further).
Thus D1 and D2 with p(D1) = p(D2) can be really identified as experimental
propositions. This motivates investigations of the logic L(M, _L), M being
Minkowski space and "_L" meaning space- or light-like.1'2

We shall show now that equipped with such an orthogonality relation,
Minkowski space is a complete Dacey space. Since the number of space dimensions
plays no role in our argument (it can be infinite as well) we consider a general
Minkowski space as defined below.

Let Fbe a real vector space with a nondegenerate, bilinear symmetric form (u, v)9

and let C = {veV:(v,v)<Q}. Fis said to be a π^space if there exists veC such that

(ϋ,M)2^(ϋ,t;)(M,M), VueF. (πj

It is easy to see that veC satisfies (πj iff the scalar product restricted to {t;}1 is
positive definite. Moreover, in a πί-space, the (πj-condition is automatically
satisfied for all veC. A particular example of a T^-space is V = R", and (u,v)
= ημvu

μvv, η = diag( — 1, -f 1,..., +1). The set C is nothing but the interior of the light
cone.

Let us fix once for all a π^space V. Given υeC, let for each uLυ, \\u\\2 = (u,u).
Clearly, || || is a norm on {v}λ.

An affine space M over Fis called a Minkowski space over V. So, if x, ye M, then
x — yeK and each we F defines a translation XHOC + W of M. We define orthogo-
nality relation in M by

χj-yoχή=y and x — yφC, x,yeM.

The rest of this section is a study of "_L "-geometry of M in order to show that (M, 1)
is a complete D-space, i.e. to show that the condition (CD) of Section 2 holds in M.

Let us fix aeM and VE€, and let / be the straight line

l={a + tυ:teR}.

For each xeM, we have a unique decomposition

x = a + x°i; + jc, xLυ, x°<=R.

Let

1 It may also be noted that a track of the particle in a Willson chamber can be regarded as an event
for the second order logic. Here orthogonality means x1.. .xnA.y1.. .ym iSx1.. .xk = y1.. .yk and xk+1 _Lj; f c + 1.
Thus x1...xnl-y1...yn means that the two outcomes belong to two different branches of the Universe
split after k steps, according to Everett and Wheeler
2 One would also like to know if construction of L(M, _L) (modulo meager sets) is possible as a
second order logic of some finite structure (compare [15])
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so that ίe/(/ ;x) i f f

It follows, in particular, that /(/ x) is a non-empty, bounded closed interval.

Lemma 1. Ifx-yφC, then /(/;x)n/(/;y)Φ0.

Proof. lϊv' = sv, s Φ 0, then /(/' x) = s~ 1I(l x), and so, we can assume that (v,v)= — l.
Thereforeie/(/;x)iff|i-x0 |^| |jc| |,andx-37^Cisequivalentto|x°-3;0 |^| |jc-j| |.
We can thus assume that ||x — j | |φO. With £ = sx° + (l— s)y°, where
s = min{l, H J > | | / | | J C — y\\}9 one easy checks that |ί — x°|^ | | jc | | , and |ί — j;0!^ \\y\\, and
so the lemma holds.

In what follows we shall use the following property (p) of the real line:
(p) Let /. be a family of bounded, closed intervals. If the intervals It are pairwise
intersecting, then the intersection of the whole family is non-empty.

It is to be noted that ifAcM, and In A = 0, then t E n {/(/ x): xe A} if and only if
a + tveA 1.

Proposition 1. Let AcM, and let D be a maximal λ-set in ALL. If lnA^ = 0, then
/ΠDΦ0.

Proof. First of all let us show that for every x, xΈAL, /(7;x)n/(7;x')Φ0. Consider
the two cases: l°/7π,4φ0, and 2°/lr\A = Q. In Case 1° there exists t such that
a + tυeA. Since a + tvλx, and a + tv±.x'9 it follows that tel(l x)n/(7 x'). In Case 2°,
since lnA = &, and /n^41 = 0, it follows by (p) that there exist xί,x2eA such that
I(l;x1)nl(l',x2= 0. Let /(/ x.) = [α , bi],bί< a2. Now, since x 1 xt, 1(1 x)n/(ί xt) φ 0
and so, [bί9 a2~] C /(/ x). In the same way [bl5 α2] C /(/ x') Therefore in either case

It follows now, by Lemma 1 and (p), that n{/(/;x):xe/)uy41}Φ0. Thus, there
exists t such that a + tv — xφC for xeD and xeA^. Since a + tvl.Aλ, it follows that
a + tveA^-1, and would lnD = 0, then α + ίt eD1, what would contradict to the
assumed maximality of D in v4xl. Therefore a + tveD. Q.E.D.

Corollary 1. If E is a maximal L-set in M, then /n£Φ0, and so, (M, _L) is a D-space.

Proof. Set A = M in Proposition 1. It follows that ίn£Φ0. Let xφy, x/y be two
points of M, and let £ be a maximal _L-set. Define l = {x + t(y — x):teR}. Since
/π£Φ0, there exists zeEr\l. But then z^x, and z^y, since {x,y,z}cl. So the
condition (D) of Section 2 holds. Q.E.D.

Theorem 1. (M, _L) is a complete Dacey space and so, L(M, _L) is a complete
orthomodular lattice.

Proof. Let A = ALL C M, and let D be a maximal 1-set in A. To show that D11 = Ait
is enough to show that D1C^1. Suppose, to the contrary, that xeD1 and xφAλ.
Since D is a maximal _L-set in A, xφA. Therefore there exists yeA,y + x such that
yjίx. Let l={x + t(y-x):teR}. Since /n^Φ0i t follows that lπAλ = Q and so, by
Proposition 1, /nDΦ0. This, however, contradicts to xe/nD1. Q.E.D.
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4. Final Remarks

A natural topology of M is given by a norm | |x | | f l v= x°\-\~ \\x\\. The topology is
independent of the choice of (a,v)eM x C, and so, it generates a natural Borel
structure. Observe that a maximal _L-set is automatically closed, and so is a Borel
set. Morever, if A C M is Borel, then AL is also a Borel set. It follows that the subset
Lβ(M, _L) of L(M, _L) consisting of all Borel sets in L(M, _L) is a σ-complete,
orthomodular lattice.

Lemma 1. // A — ALL is Borel, and D is a maximal .L-set in A, then D is also Borel.

Proof. Let D' be a maximal 1-set in AL, and let E = D^D'. Then £ is a maximal
1-set, and so E is Borel. But D = E-AL, therefore D is also Borel. Q.E.D.

It follows that AeLB(M, 1) if and only if A = DLL, D being a Borel 1-set.
Having in mind a possible need for description of "faster than light" particles, it

is interesting to consider the anticausal logic L(M, T), where "T" means "time- or
light-like". In this case one easily proves that (M, T) is a Z)-space but, if dim V> 2, is
not a (CD)-space. Therefore L(M, T) is an ortho-modular orthoposet but not even a
lattice.

Finally, observe that every automorphism of the causal logic L(M, _1_) is induced
by a transformation of M preserving interiors of light cones, and so, by the result of
Borchers and Hegerfeldt [6], is a Poincare transformation or dilation.
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