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D. B. Pearson

Department of Applied Mathematics, University of Hull, Hull HU6 7RX, England

Abstract. Time-dependent scattering theory for a Dirac particle with highly
singular potential is developed. Criteria for asymptotic completeness of wave
operators are obtained, and an example is given of a potential which violates
asymptotic completeness and the unitarity of the scattering operator.
(Completeness breaks down for a regular sequence of values of the coupling
constant.)

1. Introduction

This paper sets out to develop the scattering theory of a relativistic Dirac particle
with potentials which may be highly singular. (For related work and references on
the Dirac operator see [1—4].) The aim is to bring aspects of the theory relating to
asymptotic completeness of wave operators and spectral properties of the
Hamiltonian into line with results for the corresponding non-relativistic
Schrδdinger problem, and in particular with the results of [9—11]. (The existence of
wave operators for highly singular potentials of short range is a consequence of the
argument of Kupsch and Sandhas [5], cf. [1] for the necessary estimates.)

Section 2 deals briefly with the general theory of scattering by a potential which
is singular on some closed, bounded set Σ of measure zero. As in the Schrδdinger
case, the Hubert space decomposes into two orthogonal subspaces, consisting
respectively of states in which, for large times, the particle with probability 1
approaches Σ, its kinetic energy becoming unbounded, and states in which the
particle escapes to infinity. Apart from technical details (for example only a local
condition need be imposed on the potential away from its singularities) this
treatment follows closely that of [10]. For short range potentials, (strong)
asymptotic completeness corresponds to the absence of states of the first kind.

We consider that the setting up of criteria for completeness logically precedes
further consideration of the more unusual situation where completeness is violated.
Section 3 proves completeness for a wide range of spherically symmetric short range
potentials, singular or non-singular, and establishes for these potentials the absence
of singular continuous spectrum. The main results, in Theorem 3, apply in
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particular to V(r) = g/rκ near r = 0, where g and K are arbitrary. This work parallels
that of [9] in the Schrδdinger case, though apart from their common feature of
depending on estimates near the origin of solutions of the time independent
eigenvalue equation the two methods are different.

It would also be possible to deal with non-singular short range potentials which
are not necessarily spherically symmetric (see [2]). For example, the results of
Nenciu [7] allow one to conclude the completeness of wave operators for potentials
satisfying | V(r)\^μ/r(μ < 1) near r = 0, and have been extended by the same author to
include potentials dominated by a multicentre Coulomb potential ([8]). But it
seems that such results will not in general be possible for highly singular potentials,
the likelihood being that for cases in which the deficiency indices are infinite
completeness will depend on which extension of the Hamiltonian is taken.

Section 4 provides an example of a short range spherical potential for which
completeness breaks down, due to the presence of states in which the particle is
asymptotically absorbed into the origin. In contrast to [11], an explicit formula for
V(r) is obtained, and a spectral analysis carried out for all values of the coupling
constant. The situation differes from the non-relativistic case in the following
respects:

i) We can have V(r) ̂  0 for all r (which would imply completeness in the non-
relativistic case).

ii) Breakdown of completeness occurs for discrete values of the coupling
constant, which recur at regular intervals.

iii) V(r) is "less singular" than in the non-relativistic case, and may be found such
that

const
\rΎ(r)dr< oo and F ( r ) < - τ τ ^ , ε > 0 .
o r

A reasonable conjecture would appear to be that, for arbitrary singular
potentials, completeness holds for "almost all" values of the coupling constant.

2. Scattering with Absorption at Local Singularities

Let Ho denote the free Dirac Hamiltonian, the unique self-adjoint extension, in
[L 2 (R 3 )] 4 , of the differential operator a p + mβ. We assume that the potential
Vtj(r) is L(

3

loc) in the complement of some closed, bounded set Σ of measure zero.

Let H denote the differential operator x p + mβ + V, defined on C$(Bί3\Σ)9 the
C00 functions with compact support contained in the complement of Σ and let H
denote a self-adjoint extension, in (L2(IR3)]4, of H. We first note a number of results
which we shall need in this section.

i) D(H)QDiloc\H0)nDiloc\V).
(Here, D(loc)(T) = {F Fe [L 2 (R 3 )] 4 and ρFe D(T)Vρe C^RV). } )

Proof. Essentially contained in [3] cf. [10], Section II.

ii) ρeC^i^Σ^ρiH + ί)-2 is Hilbert-Schmidt.

Proof. Certainly ρ(H0 + i)~2 is Hilbert-Schmidt. Applying the commutation

relation lρ,{H0 + i)~12=(HQ + i)~1ρr{H0 + i)~1 where ρf=-i(χk-^-, we see that
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(H0 + ή~1ρ(H0 + ί)-1 is Hilbert-Schmidt. Now choose ρ±eC^(R3\Σ)9 real, with
ρ ^ Ξ l on the support of ρ.

Then (i)=>(H0±i)ρ1(H±i)~1 is bounded, by the closed graph theorem.

Hence (H + 0" ' ρ(H + 0 " ' = ί(H0 - i)Ql(H- i)~ * ] * (Ho + 0" V(#o + 0 " ' [ (# o
+ O0i(# + O~1], and is Hilbert-Schmidt. Similarly, (H + i)~ 1ρ'(H + ΐ)~1 is Hilbert-
Schmidt. The result now follows on writing ρ(H + ί)~2 = [ρ, (H + i)'1'] (H + i)'1

+ (H + ί)~1ρ(H + i)~1 and using the commutation relation

(iii) ρeC£(]R3\Σ)=>ρ(iί + z Γ 4 is of trace class.

Proof. With ρ1 as above,

and is of trace class. Similarly, (H + ί)~ 1ρ'(H + ΐ)~3 is of trace class. The result now
follows on writing

(iv) ρeC^(ΊR3\Σ)=>ρE^<c is of trace class.

Proof. The result follows directly from (iii), since ( i f+ Ϊ ) 4 £ | H J < C is bounded.
We now define subspaces M}9 M^, JVj, iV^ of M a c ( H ) as follows, where

ί-» ± oo

ί->±oo

Γ̂  (respectively Nj) iff, given any ε > 0 ,

3j8,T>0 such that \\ElHol>be-iHtg\\ < ε ,

Mb>β,t>T (respectively ί < - T ) .

These subspaces are independent of the value of R.

Theorem 1. (a) M+ ±M+ M " 1 M ~ .

(c) Denoting by P} and P j ί/iβ orthogonal projections onto M} and M ^
respectively, we have

Pi = s-lim eiH'EM<ae-iHΨaJH), (1)
±ί-*±oo

± = s-lim eiH%Λ>ae-™PΆJH), (2)
ί-^±oo

a>R and Pac(H)is the projection onto MΆC(H).
(d) MΆC(H) = MΣ@M^ and the subspaces reduce H.
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Proof. See [10], Theorem 2. The proof of (1) and (2) depends on the existence of

s-lim eiHtρe~ίHtElHl< P (H), where now ρ(r) = 1 for \r\ sufficiently large and supp
ί->±oo

•ρ C JR3\Σ. This result follows from a trace theorem ([12]), since (iv) above =>ρ'E\H\ <c

is of trace class. The remainder of the proof follows [10] precisely.
We also have

Theorem 2. Suppose that, for \r\>a>R and for some ε>0,

|F(r) | ^ const | r Γ ( 2 + ε ) .

Then if Ω±(H,H0) = s-lim e

iHte-ίHot we have range (Ω±(H,H0)) = Ml.
ί-> + oo

Proof See [10], Theorem 3. With ρ as in the proof of Theorem 1, we have to prove
the existence of

5-lim eιHtρe~ιHtE\H\<cPac(H), where H is a self-adjoint extension corresponding
ί->± oo

to a potential

V(r)=V(r), \r\>α

= 0, otherwise.

(Note that ρ{V— V) vanishes for suitable ρ.)
The asymptotic completeness of Ω±(H,H0) follows from [2].

Corollary. If V(r) = F(|r|)<5ίi7 is spherically symmetric, and the self-adjoint extension H
is taken to commute with total angular momentum, |F(r)|^const r " ( 1 + ε) is sufficient
for the conclusion of Theorem 2.

Remark. Theorem 2 shows that (strong) asymptotic completeness is equivalent to
M^={0}. This forms the basis for the proofs of completeness for singular
potentials given in the following section.

3. Criteria for Asymptotic Completeness,
and Spectral Properties

A state having quantum numbers J, M of total angular momentum, and parity
(— l ) J + ( 1 / 2 ) ω (ω = +1) may be represented (with a suitable choice of the matrix β) by
the 4-spinor

where I =
\iG(r)YVJ

and Yff, Y™ are appropriate functions of polar angles and of z-component of spin,
combining a spherical harmonic of order L with spin angular momentum \h (see e.g.
[6], Chapter XX).

If the potential V(r) [i.e. Vij{r)=V(\r\)δij] is spherically symmetric, we may
consider self-adjoint extensions of X'p + mβ + V(r) which leave each J, M, ω
subspace invariant. In each subspace the Hamiltonian will then be some self-adjoint
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extension, acting now in [L2(0, oo)]2, of the differential operator τ defined on Cα

functions of compact support in (0, oo), where

F(r)
dG (J + i)

- — +ω
dr r

dr
F + {V(r)-m)G

(3)

To investigate spectral properties and the related question of asymptotic complete-
ness, we first consider self-adjoint extensions Hφ acting in L2(0, a) of τ defined on
C00 functions of compact support in (0, a). In constructing the corresponding

resolvent (H — A)"1, we shall estimate near r = 0 solutions of the equations

τ(Φ)=λ(Φ\ (λ real).

If solutions ( 1 , 2 may be found with

and

(4)

(5)

we may formally define a resolvent by

(6)

with

u{r) = - φ,{r) ] (φ2(t)F(t) + Ψ2(t)G(t))dt
r

r

- φ2{r) j (φ^ήFiή + ψ^ήGifydt
o

v(r) = - Ψl(r) ] (φ2(t)F(t) + ψ2(t)G(t))dt
(7)

This corresponds to the boundary condition

( φ ) = 0, at r = a.

In (7), I may be verified to be a solution of (τ — X) I = ( . Moreover, if
\G

)eC%((0,a)) and ί^j =(τ-λ) W then (7) is satisfied.
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If on the other hand no solution to (4) exists in [L2(0, α)]2, apart from the trivial
solution, then λ lies in the essential spectrum of Ha, and the resolvent is unbounded.
A potential for which this happens is given in Section 4. We shall obtain conditions
on V(r) which will guarantee that the mapping defined by (7) is Hilbert-Schmidt, in
which case the resolvent of Ha is compact.

Given a non-trivial solution I of (4), we define θ(r\ up to a multiple of 2π, by

φ(r) = R(r)cosΘ(r)]

I (8)

ψ(r) = R(r)smθ(r)}

More exactly, θ(r) is defined to satisfy

dψ dφ
dθ φ ^ ~ ψ ^
dr (φ

Equation (8) defines the Prϋfer transformation for the Dirac equation.
From (3), (4) we have

d^_ # 2co(J+l/2)
dr dr r

which on substituting (8) on the r.h.s. becomes

fr=?V±^Sin2θ + mcoS2θ-(λ-V). (9)

We also have

ί ί n 2 . . # ^ dψ 2ω(J+l/2)/ 2 ^ Λ .

which becomes

^(\ogR)= ~ ω ( ^ + 1 / 2 ) c o s 2 g + msin2θ. (10)

Equations (9) and (10) may be used to estimate R and θ near r = 0. From (10) we have

|logjR| < const + \ω(J +1/2) log r\,

so that

R = 0(r-{J+ί/2)) (r->0) (11)

independently of the potential.
We can obtain more precise estimates in two cases, which include examples both

of singular and non-singular potentials.

Case I. \rV(r)\<g 0<g<J+l/2.

First choose gx with g<gί<J+l/2.
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Then from (9) we see that, for r sufficiently small,

— — - < 0 whenever ωsin2θ^gi(J-\-l/2)~\

whereas

dθ
——r>0 w h e n e v e r ω s m 2 # ^ — gΛJ+ 12) .
d(-r)

This enables us to deduce that, for r sufficiently small,

sin 2 20<0 2 (J+l/2)~ 2 , so that either

ω cos 20 > (1 — g\{J +1/2) ~ 2 ) 1 / 2 (12)

or

ω c o s 2 0 < - ( l - 0 2 ( J + l / 2 Γ 2 ) 1 / 2 , (12')

either the first inequality always holding, for small r, or the second.
Suppose first that (12) holds. Then on integrating (10) we find R>constr~βl as

r-^0, where βx =((J+1/2)2 -g\f12. Take first the case ω= + 1 . Then (12) ^>|cos0|
> const > 0, so that, using (8), we can take a sufficiently small that

^ ( r ^ c o n s t r ^ 1 (0<r<α) (13)

Let I , be a second solution of (4), satisfying φxp' — ψφ' = 1.

We have

dΦ' = JJ+1/2)φ> i
dr r φ '

Λ , f ίλ^c (λ + m-V) . dφ' (λ+rn-V) φ'dφ
and substituting from (4) for w gives —— = h —- ——, so that

φ dr φ φ dr

Hence, corresponding to every solution I I of (4) satisfying (12) we can find a

solution (f) of (4), such that φ(r) = φ(r)} ^ + ? ~ 7 ( ^ dt.
\ψ) „ o Φ (t)

For this solution, (13) gives φ = 0(r2βlφ) as r->0. If φ satisfies (12) we can
construct a further solution which is 0(r4βlφ) as r->0, and ultimately [because of

(11)] we must, continuing in this way arrive at a solution I x for which (12) and (13)

lώ \
are not satisfied. I must then satisfy (12'). Using (10), we then have

\ψj

R = 0(rβι) as r->0, so that

and
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From (11) we also have 0 2 ( r )-O(r" ( J + 1 / 2 ) ) and y;2(r) = 0(r- ( J + 1 / 2 ) ) for any solution

, and the operator defined by (7) is Hilbert-Schmidt provided g2 < 2J. The case
VPil
ω= — 1 is similar, with φ replaced by ψ in (13).

In the case V(r) = g/r, \g\<(J+l/2\ eliminating ψ(r) from (4) and making the
change of variables z = $(λ + m—V)dr we find solutions φί(r) = 0(rβ), ψx =0(rβ) and

Φ2(r) = 0(r-(*l ψ2(r) = 0(r-η, with β = ((J +1/2)2 -gψ2. For \g\ = (J +1/2), ft2) has

a logarithmic singularity. In both cases the operator defined by (7) is Hilbert-
Schmidt.

Case II. \rV(r)\>g, g>(J+1/2), and (rF(r)) - 1 of bounded variation. In (9), let us
write

(14)

where

mωrcos2θ

and

(150

(16)

so that (9) becomes

dθ _ω(J + \/2)

dr r

From (10) we have

[logK]" = - ω(J +1/2) j dr + 0(1),

and since — ΦO we may make a change of variable to obtain

θ(

f

fl)cos2θ

β(r) ^

In (17) we substitute

1 1 1 6 , (-1Γ6" (~ir+1g"+1

A Z + Q Z Z2

and estimate each of the resulting terms.

τ-, t f cos 20
For example, J dθ =

2Z

1

2Z
- Jsin2θd - - -0(1) since | Z | > 1 and Z " 1

is of bounded variation.
Moreover, βmcos2θ is a linear combination of terms having the form

rfe(cos20)/c+1(sin20)m-/c with fc = 0, 1, 2, ...,m.
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For /c^l, we have
θif rk(cos2θ)k+1{sin2θ)m-k , Λ

J ^Γ+Ί d β

θ(r) ^

—rjA dr = 0(1), since A/Zm +1

is bounded. π

For k = 0 we have J (cos20)(sin20)md0 = O, so that we can write (cos 20) (sin20)m

dl °
= — where / is bounded, giving

aσ

since 1/Zm+1 is of bounded variation.
We have, finally, from (17),

θ(r)

Since \Q/Z\< const <1 (for r small), we can take n sufficiently large that

), or

jR = 0(r~ε), r->0, ε arbitrarily small.

In this case we have, for all solutions ( I of (4), φ = 0(r~% ψ = 0(r~ε\ and the

operator defined by (7) is Hilbert-Schmidt.

Remark 1. With further conditions on V(r\ one may obtain φ(r) = (α + 0(l))
a a Q

cosJK(ί)έ/ί + (6 + 0(l))sinj7(ί)dί, which applies in particular to 7(r)=~, n>l .
J r . r

A similar estimate holds for ψ(r).
IΦ\

Remark 2. A perturbation W(r) may be added to V(r), in which case a solution of

(4) with the perturbed potential is given in terms of the original solutions with
potential V(r) by the integral equations

-¥φ2(r)](φι(t)W(t)Φ1(t)+ψ1(t)W(t)Ψ1(t))dt
0

ψ(r) = Ψl(r) + Ψl(ή] (φ^tWiήΦS) + Ψ

+ψ2(r)](φι(t)W(t)Φι(t) + Ψl
0
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For a suitable class of perturbations these equations may be iterated to derive

estimates for f similar to those for 1). Extending in this way the class of

potentials with which we can deal, we state the following:

Theorem 3. Let V(r) satisfy either (i) V(r) = - +W(r), where 0 < ^ ^ ( J + l / 2 ) and

JIW(r)\dr < oo J |W(r) \ogr\dr < oo for \g\ = (J +1/2)
o \o

or (ii) V(r)= F0(r)+ W(r), where \rV0(r)\ <g< J/2J. and

0

or (iii) 7(r) = K0(r) + W(r), wfcere |rF0(r)| >#>(./+1/2), (rP^r))" 1 has bounded
variation, and

a

jr~ε\W(r)\dr< oo for some ε > 0 .
o

Then solutions of (4) exist, where τ is defined by (3), such that (6) and (7) define the
resolvent of a self-adjoint extension Ha ofτ, acting in L2(0, a). This resolvent is Hilbert-
Schmidt and the spectrum of Ha is purely discrete. If in addion V(r) is defined for 0 < r

00

< oo and satisfies J rε\V(r)|dr< oo for all c > 0 and some ε>0, the wave operators
c

Ω±(H,H0) corresponding to every self adjoint extension H of τ acting in L2(0, oo),
where Ho is the Free Dirac Hamiltonian, are asymptotically complete.

Proof. It is straightforward to verify that (Ha — λ)~1 is self-adjoint and that the
inverse of (Ha — λ)~1 is a self-adjoint extension of τ — λ acting in L2(0, a). The
Hubert-Schmidt property and discrete spectrum follow from previous arguments.

Now if ρ is C°° such that ρ(r)=l near r = 0 and ρ(r) = O for r>(l/2)α, we have

feD(H)^ρfeD(Ha) [cf. (i) of Section 2].

Hence (Ha — λ)ρ(H — i)~1 is bounded (by the closed graph theorem) and the
compactness of (Ha — λ)~x implies that ρ(H — i)'1 is compact. lϊgeMac(H) we then
have s-lim ρe~ίHt(H — ί)~1g = O, and since the domain of H is dense it follows that

ί->± oo

MΣ

±(H) is just the zero element, which suffices, by the results of Section (2), to prove
asymptotic completeness.

Remark. The above theorem applies in particular to V(r) = g/rκ near r = 0, where g

and K are arbitrary. Essential self-adjointness holds only with K < 1 or with K = ί9

\g\S 1/3/2 (see [4, 8]).

4. A Potential Violating Asymptotic Completeness

We have seen that the "normal" situation for self-adjoint extensions in [L2(0, aj]2 of
the differential operator τ defined by (3) is that the spectrum is purely discrete. We
now obtain a potential which gives rise to absolutely continuous spectrum.



The Dirac Operator with Highly Singular Potentials 127

The potential V(r) will be constructed from a series of (5-type singularities. We
first consider the behaviour near r = r0 of the solution of (4) for a potential which
"approximates" gδ(r — r0).

Let F(r) = 0, \r — ro\>ε(ε<a<l) and suppose
ro + ε

f V(r)dr = g.
ro-ε

Integrating (9) we find, as ε->0,

(18))
o/

Now fixing the value of θ(r0 + ε), θ is also a differentiable function of λ, satisfying the
integral equation

dθ ro+ε

L
dλ\ r )

from which by iteration we may deduce

dθ
— =0(ε) ( r o - ε ^ r < r o + ε).

Using (10) we may make similar estimates of R and — . For the matrix Mδ(ε9 r0, g)
defined respectively by

ro-

we have

Mδ(ε9ro,g) = Mδ(g) + 0(8/ro)9 (19)

where

/ cos, a n β \
\-smg cosg)

We suppress the dependence on λ, but note that

^M,(ε,ro,flf) = 0(e). (21)

We shall also require an estimate, in the case V(r) = 0 and in the limit α->0, for the
matrices M^λ.a) and M2{λ9a), defined respectively by

(Φ(c2a3) \
\ψ(c2a3) \ψ(ca2))

where c is a constant.
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We take the simplest case ω = — 1, J = 1/2. Solving Equation (4) and expanding
in powers of awe find

M1(λ,a) =
+ 0(a2);

(λ-m)
. +0(α 2 ) ; —
3c ca

and

ca + 0(α4) - c(λ + m)α2 + 0(α3)

M2(λ,a) = \ (λ-m) 1
. α + 0(α3); - + 0 ( α 3 )

3 ca

We now have

M(λ, a) = M2(λ, a)Mδ(πl2)M1{λ, a) = M(λ) + 0(α)

and

dM(λ, a) dM(λ)dλ dλ
•+0(α),

where

0 1

Λ 2(2λ + m)

(22)

(23)

(24)

M(λ, a) is the matrix relating at r = c2a3 and at r = a, for the potential — δ(r — ca2).
\ψj 2

Now let w(r) satisfy

w(r) = 0 for | r | > l , and

1

j w(r)dr = 1.
- 1

Then the estimates we have made for ^-approximating potentials show that (22) and

(23) are also satisfied for the potential — a~ 5w ( ^ — ) , where M(λ, a) is defined by
a

φ(d)

the condition

UcV)

Fora potential ^ a ~(4 + ε) w
jr iγ ca

- ( 4 + ε)ΛΛ, I 1? w i t h e > 0 ? (22) and (23) are satisfied to order a\

Now define the potential V by

Ί-5Λ
r — cai

where

cak+ί=(c2a)3k

(25)

(26)
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and

c2a<l.

With the potential defined by (25), we have

.,)Γ»H;WJ (27)

where

() ) (28)

and

dM(k){λ) _ dM(λ)

dλ ~ dλ
+0iak). (29)

(Note that α k + 1 = c2α|.)
V{r) is an "approximation" to the potential

y Σ δ{v-cal).

For _(w + 3 c ) < ; ι < ( m + 3c) ^ m a t d χ M^ d e f i n e d b y ( 2 4 ) h a s c o m p l e χ

eigenvalues e± i μ ( λ ), with cosμ(/l)=—-—. We may summarise as follows the
3c

conclusions which may be drawn from the estimates of M{k)(λ) (for the method of
proof see [11]), where now ψ(r) plays the role of φ'{r):

/:
m
2

3c
< y

( i ) W(λ)= l i ( ) ( ) ( )
n-+ oo

exists, is differentiable with respect to A, and has uniformly bounded inverse in any
closed subinterval.

(ii) Every solution of (4) satisfies

where E± are the (two dimensional) projection matrices corresponding to the
eigenvalues e±iμ.

There is no (non-trivial) solution in [L2(0,α1)]2.

1 αi

(iii) lim - J (φ2 + ψ2)dr
n-x» ft an+ί

p]7
3csin2/i[ \v(αi)/J \-cosμ
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(iv) The spectrum of Hγ (within this interval) is absolutely continuous.

m 3c

In this case, M(λ) has real eigenvalues. Again W{λ) exists and satisfies (i) above.
Moreover,

(ii) Every solution I I of (4) satisfies

where £ * are the projections corresponding to eigenvalues y and y ~1, with 0 <y < 1.
If Hί is defined by the boundary condition sin/? φ(a1) —cos β ψ(a1) = 0, the

(cos/Λ
. n = 0. For each value of λ there is

smβ)
exactly one linearly independent solution of (4) in [L 2(0,α 1)] 2.

(iii) For this range of values of λ, the spectrum of H1 is purely discrete.

Change of Coupling Constant

We consider the effect on the spectral properties of Hί of a change in coupling
constant, replacing π/2 by g in (25). In that case, instead of (28), the matrix M(k)(λ\
defined by (27), now satisfies

l(lβ)ak(λ -m) sing + 0(a2

k) sing + 0(αfc)

= (A-mjoosg ^
3 c <h c a

For simplicity, we take cosg >0, sing > 0, and choose positive constants du d2, such
that dt < cos g<d2. ,,-.

Using mathematical induction, we may show that a solution I of (4) exists
such that W

d\-ιsing

where α, αr > 1 and β, β' < 1.
α, α', j8, jβ' depend on fc in fact

Hence α, α', jβ, ̂ ' converge to 1 as k^> oo. The induction begins with an initial (large)
value of fc, with values of α, α', jβ, β' close to 1.

N o t e t h a t φ ± 4 < 2 M f ^ ( Λ ) ( ί - ^ ) 3 ^ o as /c->oo.
ψ(ak+1) d2 \dj
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For this solution, we have, for any ε > 0 and for k sufficiently large,

1 ., 1
( c 2 α ) ( l-ε)3-

1
2a)(1~ε)3k(c2a)

( c2 a )(l+e)3->

1
(31)

(c2a)(1+ε)3k

Writing now (φ{ak+ί)\ = (Xk\ so that (Xk+1) = M f t + 1 ) M , a second solution of

this recurrence relation is given by the following

Lemma. Let Xk=-l/yk

oo Λ / 2 1

yy

ί»+M, and
n = k

where Mj j + 1 ) stands for the ij element of M(n+ί)(λ). Then

V i V i(n+i)

n=k ynyn+i

(32)

Proof

12 Y -
(fe+l)1fc~

1 Yk + 1

,

Now detM|^ + 1 ) = l, so that

I.e. - M ^ υyfe +! + Mfk+ t)χk +1 + yk = 0, so that on dividing throughout by j;fc<yfc + ±

we find

1 2 Y—
)Ik—

The second component of (32) follows similarly.
We can define a solution of (4) by Φ(ak+ί)=Xk, Ψ(ak+1)=Yk, and using the

Lemma together with the estimates (31) of xk, yk, and the estimate (30) for Mfk\ 1)5 we
have

as k—>oo.
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Integrating (10) between ak + x and q, where ak +1 ^ q ^ ak we find that the elements of

/Φ(α*+i)\ (Φ(<l)\ ak ak

the matrix sending J t o

 ι r / /

 a r e of order — — at most. Since — —

= ( c 2 α ) 3 ^ , this gives

Φ ( ( 2 ) = o ( ( c 2 α ) ( 1 " ε ) 3 k " ' ) = o ( 4 1

+ 7 ) / 3 ) >

with a similar estimate for Ψ(q).

But always # ^ α f c + l J so that we now have

φ(r) = 0(r(1 ~ ε ) / 3 ) , <F(r) = 0(r 4 ( 1 " ε ) / 3 ) .

(These estimates are not the best possible.)

The results of Section (3) may now be used to define a resolvent for Ha, and
(φnoting that for every solution we have φ = 0i-\, ψ = 0i-L we deduce that the

resolvent is Hubert Schmidt.
Hence with a general value g oϊ the coupling constant the spectrum of Ha is

purely discrete; the only exceptional cases are # = f + nπ {n = 0, ± 1, + 2 , ...). Our
conclusions concerning asymptotic completeness may be summarised as follows:

Theorem 4. Let

V(r) = g £ ^ - s w _ * I r<aί,
k=l \ ak /

= 0, r>ax,

where cak+1 =(c 2 α) 3 k , c 2 α < l , and w(r) satisfies

w(r) = 0 , | r | > l ,

1

\w(r)dr=l.

Let H be the (unique) self-adjoint extension, in [L2(0, oo)]2 of τ [given by
Equation (3)] and let Ho be the free Dirac Hamiltonian.

Then the wave operators Ω±(H,H0) exist and
(i) 0 = f + mr> w<3c=>range (Ω±) + range (Ω_), S = ΩtΩ+ is non-unitary,

MΣ(H) are non-trivial,

u(m, oo).

(ii) gf = f + nπ, m>3c=>range (Ω+) = range (Ω_) + M a c (H), S is unitary, Mf (
are non-trivial, M^{H) = M^{H\

\ ((m + 3c) ( - m + 3c)\
. - m ) u , u(m,oo).

(iii) gf + f + nπ^range (Ω+) = range (Ω_) = Ma > c (H\ S is unitary, M*(JH) =
ΛH) = (- °°' ~ni)κj{m, GO).

In all cases there is an absence of singular continuous spectrum.
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Remarks, (i) Taking w(r)^0, we have

1

V(r)^0 and jrεV(r)dr <oo (e>0).

(ii) Replacing, in V(r), a^5 by a^(4 + ε\ the conclusions of the theorem hold with
= 0(l/r 2 + ε).
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