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Abstract. The infinite system of Newton's equations of motion is considered for
two-dimensional classical particles interacting by conservative two-body forces
of finite range. Existence and uniqueness of solutions is proved for initial
configurations with a logarithmic order of energy fluctuation at infinity. The
semigroup of motion is also constructed and its continuity properties are
discussed. The repulsive nature of interparticle forces is essentially exploited;
the main condition on the interaction potential is that it is either positive or has a
singularity at zero interparticle distance, which is as strong as that of an
inverse fourth power.

1. Introduction

In this paper we extend some of our earlier results [3] on the existence of non-
equilibrium dynamics of one-dimensional infinite particle systems to infinite
systems of two-dimensional particles interacting by conservative repulsive forces of
finite range. For a detailed motivation of this problem see [1-3], where further
references are given on equilibrium dynamics as well.

Consider a finite or infinite system co of two-dimensional particles. We assume
that particles are numbered by a nonempty subset J of the set / of integers, the
position and the velocity of the z-th particle, ieJ, will be denoted by xt and vi9

respectively. Conservative two-body forces are given by the negative gradient
F= —grad(7 of a symmetric real function U= U(x) of two variables (x(1),x(2)) = x,
U is the interaction potential. For equal particles of unit mass indexed by
Newton's equations of motion read formally as

^ -xJ.), %=vt; ieJ (NJ)
at jeJi at

with initial conditions specifying the position and the velocity of each particle at
time zero. The full system, when J = J, will be denoted as (NI),
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Such a set Qo of configurations will be defined in an explicit way that for each
initial condition cooeQo the corresponding sequence of solutions to finite
subsystems (NJ) converges in the weak sense to a solution to the infinite system
(NI); i.e. for oooeQo there exists a limiting solution with initial configuration co0.
The set Qo is characterized by a logarithmic order of energy fluctuation at infinity, it
is of full measure with respect to a wide class of Gibbsian fields with superstable
interactions. Limiting solutions form a reversible semigroup of motion in Qo.
Uniqueness and continuous dependence of solutions on initial data also hold in a
restricted sense. For the proof of existence of limiting solutions the method of [3]
has been developed further.

Regularity conditions on the interaction potential U = U(x) are somewhat
stronger than in the one-dimensional case [3]. Hard-core interactions are not
allowed, and for not necessarily nonnegative potentials we need such an assumption
that the singularity of U at x = 0 is of type \x\~b with b ̂  4. It is not very difficult to
understand on a physical level that why are such conditions necessary to avoid a
breakdown of solutions with good initial conditions. If the interaction is very
singular (e.g. as in the presence of hard cores) then the velocity of the propagation of
shock waves along linear chains of particles can be arbitrarily large, so that large
energy can be transferred to the center in a short time along a radial system of
chains. On the other hand, if the repulsive nature of the interaction is not strong
enough, then too many particles can be accumulated in a small region, and one of
them may win almost the total energy of two or more others. These phenomena are
typical in two or more dimensions, and as shown by J. Ginibre in the case of hard
cores (unpublished result, personal communication by D. Ruelle) they can result in
a breakdown of solutions even if the initial velocities are uniformly bounded.

As indicated in Section 4 of [3], our methods do not work in the three-
dimensional case. Let us present a heuristic example suggesting that breakdown of
solutions may be typical in three dimensions even for potentials without a hard
core. At time zero, particles are sitting in the points of the integer lattice with
approximately equal magnitude of velocities, each second cubic cell of the lattice is
red. Imagine now that particles from the vertices of each red cube are directed
towards the center of the cube, and after the collision seven of them remains at rest
while the eighth one flies away in such a direction that the initial situation will be
repeated on the new lattice formed by the centers of red cubes, and so on. Let vn

denote the approximate magnitude of velocities of flying particles after the rc-th
collision; the conservation laws for energy and inpulse allow that vn+1^vng with
Q > 2. Since the n + 1-thlattice is only twice as large as the n-ih one, infinite velocities
appear in a finite time. Unfortunatelly we are not able to carry out this construction
in a rigorous way.

2. Notation

R2 denotes the two-dimensional Euclidean space with the usual norm |x| and scalar
product (x, y). The set of locally finite labelled configurations is Q, a configuration
coeQ is a finite or countable sequence of pairs of positions xteR2 and velocities
vteR2; i.e. configurations are represented as co = {{x(, vt}; ieJ}, where the index set
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j = j(co) is a nonempty subset of the set of integers /, xt + x} if i 4=j, and the sequence
{xj, fe J has no limit points. The position and the velocity of the f-th particle in co
will be denoted as xt = x^co), vt = v^co), respectively. Configurations differing only in
the way of enumeration of particles are usually identified, but the equations of
motion and the statements are formulated in terms of labelled configurations.

In the space of subsets of / we consider the discrete topology, i.e. \imJn = J
means that for each finite Vcl there exists an nv such that n>nv implies that
VnJn = VnJ. The configuration space Q is equipped with the weak topology, i.e.
limcoM = co in Q means that J(co) = lim J(coh) and xt(co) = limx.(con), vt(co) = lim y.(cow)

for each ieJ(co) without any uniformity condition in i. It is easy to check that this
convergence relation corresponds to a metrizable topology. Trajectories in Q are
parametrized by the time t^O, the set of weakly continuous trajectories cot = q>(t)9

coteQ for t^O will be denoted by £2[0, oo). Observe that J(cot) does not depend on t
if cote£2[0, oo) and particles along a continuous trajectory preserve their initial
numbering. Convergence limco" = cot in Q[0, oo) means that limco" = cot for each

t ̂  0 and this weak convergence is uniform in finite intervals of time. The underlying
topology of Q[0, oo) is metrizable, too.

A family cot = cp(t, co), coe Q' is a reversible semigroup in Q! C Q ifcoteQf for t ̂ 0 ,
further cp(O, co) = co, q>(t + s,co) = cp(t, q>(s, co)) and cp(t, [(p(t, coj] + ) = co+ are identities;
in the last one co+ is defined by xi(co + ) = xi(co), vi(co+)= —v^co), ieJ(co) = J(co+).

Consider now a translation invariant pair potential U of range R >0. To avoid
such situations when two or more particles can be found at the same point ofR2, we
assume that U is singular and repulsive. Then U is given by a continuously
differentiable real function U = U{x\ xeR2,x*§ such that U(x) =U(-x), U(x) = 0
if | x | ^ # and lim U(x)= -f oo. For convenience we assume that the interparticle

force F = — grad U(x) satisfies a local Lipschitz condition at each x 4= 0, then the best
constant L = L(u), u^O such that

|grad U(x) - grad U(y)\ g L(u) \x-y\ (1)

if U(x) S w, U(y) ̂  M, is finite for each u.
The number of particles and the total energy are set functions for each

configuration coeQ. Let /0(x, <J) = 1 if |x| ̂  crand / 0 = 0 otherwise, further J = J{co\
xt = x.(co), vt = vt(co), then

N(CO,II,(T) =
ieJ

and

ieJ [ jeJt J

are the number and the total energy of particles of co in the ^-neighborhood of
fieR2.

A weakly continuous trajectory cofe£2[0, oo) is called a (global) solution to the
equations of motion with initial condition coeQ if coo = co, the individual
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trajectories xt = xt((D^ vt = vt((ot) are differentiable and satisfy (NJ) with J = J(co0) for
t^tO. If J is finite then the law of energy conservation and L(u)< oo imply the
existence of a unique solution to (NJ). Set

for each coeQ, and let cot = (pn(t,a)) denote the unique solution to (NJ"(co)) with
initial condition xi(a)o) = xi(co\ vi(co0) = vi(co) for ieJn{co). A solution cot is called a
limiting solution to the equations of motion if we can select a subsequence nk such
that cot = \im(pnk(t,co0) in the topology of Q[0, oo).

3. Main Result

The allowed set of initial configurations and the boundary condition needed for
uniqueness of solutions are defined in terms of the order of energy fluctuation at
infinity that is given by an Si-function g.

Definition 1. An increasing concave function g = g(u\ u ̂  0 is called an SI-function if
00

0(0) = 1, g(u)^ 1 + 2 |/u, g'(0 + 0) = 1 and j [ug{u)\~1du=oo; g\u + 0) denotes the
I

right derivative of g at w.We say that energy fluctuation of coe Q is only of order # if

Ha(co)= sup sup a~2H((D,fi,(j) (4)

is finite, the set of such configurations will be denoted by Qg.
The particular case gQ(u) = 1 + log(l + u) is of special interest, the corresponding

set of configurations will be denoted by Qo; logu denotes logarithm to base e, and
Q = uQg, where the union is over all SI-functions. Limiting solutions will be
constructed for initial configurations belonging to Q, but even Qo carries a wide
class of probability measures.

Let V=V(xl9x2,...,xn), xteR2, n = 2,3,... denote a translation invariant
multibody interaction (see Section 1 in [4]). A probability measure P on the Borel
subsets of Q is called a Gibbsian field (of activity z and inverse temperature /?) with
interaction V if the conditional distribution of the positions of particles in each
bounded domain is given by the corresponding conditional grand canonic Gibbs
distribution, further the velocity co-ordinates are independent Gaussian variables
of mean 0 and variance jS~1.

Proposition 1. Suppose that P is a Gibbsian field with interaction V=V1 + V2, where
V1 corresponds to a superstable and lower regular pair potential U1 = t/1(x), xeR2, V2

is a stable and lower regular multibody interaction (see Section 1 in [4]J. / /
U(x)Sa1+b1U1(x) with some constants ax and bl9 then P(flo) = l.

The proof of this statement is essentially the same as that of Proposition 1
in [3]. Using Ruelle's superstability estimate [4], a direct calculation results in

with some X > 0 and K < + oo, whence P(fl0) = 1 follows by the Markov inequality
and the Borel-Cantelli lemma.
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To prove existence of limiting solutions we need the following regularity
conditions on the interaction potential U: There exist such positive constants a, b, c,
and 8 that

, (E)

further J7(x)>0 if |x|g<5, and either

\gmdU(x)\2ScU(x) if \x\^5 , (P)

or

cU(x)^\x\~4 if \x\^S (R)

holds. Let us remark that (E) means that the singularity of U at 0 is not stronger than

that of \x\~b, and U(x)^i — - also follows from (E). If U is twice continuously
b

differentiable for x + 0 and 1/^0, then (P) always holds. Further, any of (P) and (R)
implies that U is a supers table potential. The validity of (E) and one of (P) and (R)
will be assumed throughout this paper. Our main result is

Theorem 1. For each coeQ there exists a limiting solution cot with initial condition
co0=co.

The study of not necessarily limiting solutions is based on the following
regularity property.

Definition 2. We say that a solution cot is tempered if it is g-tempered with some SI-
function g; g-temperedness of cot means that Hg(cot) is bounded in finite intervals
of time.

Theorem 2. Any limiting solution cot is tempered if co0ef2, and a tempered solution cbt

is g-tempered with an Sl-function g if and only if coteQg for at least one value of t ̂  0.

Uniqueness of tempered solutions can be proved under the following quasi-
Lipschitz condition.

Definition 3. We say that U satisfies a g-Lipschitz condition with an SI-function g if

lim ]/u\g- \v ]/u)~]~2L{u) = 0 for each v>0, (U)

where L is defined in (1), g'1 denotes the inverse function of g.

(U) means that the singularity of U is not very weak. Indeed, if U satisfies (R)
with an exponent X < 0 instead of — 4, further U is rotation invariant and |grad U(x)\
is a convex function of r = \x\ in a neighborhood of 0, then (U) holds with any SI-
function g.

Theorem 3. Suppose that U satisfies a g-Lipschitz condition with an Sl-function g.
Then for each coeQg there exists the limit Utco = lim(pn(t,co) of approximate
solutions. Ut is a reversible semigroup of g-tempered solutions, and cot=UtcDo is the
only tempered solution with initial configuration coo e Qg. Moreover, the restriction of
Ut:Qg\->Q[0, oo) to Qh

g = {co; coe Q, Hg(co) ^ h} is a continuous function ofcoeQh
g for

each h<oo.
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The theorems will be proven in Sections 4-6; now we outline the main steps of
the proofs. The basic result is the following compactness property of ^-tempered
solutions. For each SI-function g and positive number h<oo there exists a
continuous function q(t) = q(t,h\ t^O such that Hg(co^q(t,h) for each t^O
whenever cot is a ^-tempered solution with cooeQh

g. This a priori bound implies that
^-tempered solutions a>v cooeQh

g form a compact subset of Q[0, oo) including
solutions to the finite systems (NJ). The a priori bound Hg(cot) S Ht) can be actually
proved for such a nonnegative and smooth version W=W(OJ,H,G) of H that
H(a>, fi9 a) ^ W(a>, ft, a) and

sup G~2W((D,JI,G) (5)

is bounded by a linear function of Hg(co). This W will be introduced in the next
section where we show also that W satisfies the partial differential inequality

+ Kg(\ja\ + a) ]/wJ^t) ^ W(cot, fi, a) (6)

along any solution cot e Qg; K is a constant depending only on U, g is an Si-function.
For a heuristic motivation of the role played by W see Section 4 in [3]. In a similar
way as in [3], (6) reduces to the differential inequality

z ' (0^£exp $Kt)Wg(co0)ll + zg(z2)] (7)
t _ _

for z(t) = j (Wg(cos))
1/2ds; K is a new constant depending only on K. Since # is an SI-

o _
function, (7) has a continuous maximal solution defined for t^.0, therefore Wg(cot) is
bounded by the very same continuous function g(t) = g(t, w) for each g-tempered
solution cot satisfying Wg(cD0)^w. Hence existence of limiting solutions follows by
the standard compactness argument. Uniqueness of tempered solutions is implied
by a contraction property of the right hand side of (NJ) due to (U).

4. Proof of (6)

Let f = f(u) denote such a continuously differentiate nondecreasing function that

, f ( \ = .

(ii) / is convex for u^ — — and it is concave for u^. — -R, i.e. / is linear if

(iii) There exists a constant d>0 such that \f\u)\2f^df(u).

Then the derivative / ' of / is nonnegative and (ii) implies that

(iv) ff(u)Sf(v) + f(z) if v£u£
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If coeQ, iieR2, cr^l and xf = xf(a)), v^v^co), J = J(co\ then P^is defined as

W{co, fi,a)=Y f{° ~ \xt - ii\) W^CD) , (8)
ieJ

where

Wt(co) = 1 + |t>,|2 + £ WVR ~ l\*i ~*j\) + U(xt -x •)] (9)

and 2 = 7 if (R) holds, X = 0 otherwise. Let us remark that £/(x) ̂  — - in view of (E),
c> b

thus WJ(a/)^ 1 and Wis a nondecreasing function of cr. Consider now the quantity
Wg(co) defined in (5) by (8) and (9), g is an Si-function. It is plain that

^12 if \xt-ii\^G + 5R (10)

and A^1 + 5R, further U+(x) = Af(3R-3\x\)+U{x)^0 is a superstable pair
potential, thus the constant A can be choosen to be so large that even

2 if \Xi-ii\£<r + 3R, (11)

where Nt = N(co9 xi9 2R) — 1; (11) is a direct consequence of the definition of
superstability (see [4], [5] or [7]) and of W$((o)^l.

Now we are in a position to prove (6). Let cot denote any solution to the
equations of motion such that (otzQg for each t^.0, then W{cot,jjL,o) is a dif-
ferentiable function of t. For notational convenience the following abbreviations
will be used: et and etj are the unit vector directed as n—xt and Xj—x^ while fi9ff,
fij9 fy denote the value of / and of / ' at o — |x. — ji\ and 3R — 3\xt — Xj\, respectively.
Differentiating W(copji,a) with respect to t and exploiting
grad U(xt — x̂ ) + grad U{xj — x() = 0 and the equations of motion, an easy calculation
yields

^ , (12)

where

(13)

= f I I Wj -ft) (g^d U(xt - Xj), vt + vj), (14)

ieJ jeJt

These sums are estimated as follows. Since

ieJ

^WicOvfrcr), (17)

where

V=Vg(cov^v) = g(M + a)[Wg(cot)Y
/2 (18)

denotes the nonconstant factor in (10).
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Applying the Lagrange theorem and (iv) for fj—fi9 it follows from (E) and (P)
that

iel jeJi

^ Zfi I [Ju + bUixt-XjMvU + W), (19)
ieJ jeJi

where ftj = aftj if (P) does not hold, i.e. A = - in (9); otherwise ftj is defined as Jj7 = a if

— Xy)]1/2 if |xf — x7.|><5. In the first case we have

u j
ieJ jeJi

^W{cot,n,a). (20)
do

On the other hand, if (P) holds_then there exist such constants Kx and K2 depending
only on U that fij^K1 and fij^K2[U(xi — x,.)]1/2, thus in this case we obtain

Q2£2bAV-?-W(<Dt9iJL9o) + K1S1+K2S2 , (21)

where

in view of (11) and of \vt\ ̂  1 + |t;f|
2, further

(23)
ieJ jeJf

Set Jt
i = {j'9\xi-xj\^2R9jeJi}9 then

holds with the same constant A as (10) does, therefore applying the Cauchy
inequality to the second sum in (23) we obtain that

ieJ ijeJ'

*,*)• (25)
ieJ [ jeJt

Observe now that /y = 0 if 1^ —XJ. |^2JR, thus Q3 can be splitted into the
following three terms:

, (26)
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where

Qsi = lLfiZfjfi'MpVi)> (27)

Q32=lfila-fj)fi'j(eu,vi) (28)
ieJ jeJl

and

ieJ

j M j
ieJ jeJ'i

ZlZftfVt + Vj] (29)
ieJ jeJ'i

by the Lagrange Theorem and (iv). Let

s3 = £ / / !»> (30)
ieJ jeJi

St-'tfMZfj; (31)
ieJ jeJi

since / f > | and /f}4=0 imply that / ) ^ , we have

j if / ( >f (32)

as //. 1^1+din view of (ii) and (iii). On the other hand, the Lagrange theorem and (i)
and (iv) imply that

fi = fi-f{-'iR)^Rfl if fah (33)

consequently

Q32^3R(l+d)S2 + (2 + 2d)S4. (34)

Consider now the sums Q31 and g33. Since / / . ^ l +d, we have

6 3 1 ^ ( 1 + ^ 4 > (35)

further

Q33^(2 + 2d)RS1+2RS3; (36)

but

^ ^ c r ) ( 3 7 )

follows in the same way from (iii) and (24) as (25) has been derived.
' 8W

To this point we have shown that -r— is bounded by a linear combination of Sl9

S2, S3, and of S4. In view of (22), (25), and of (37), the last step is to bound S4 by a
constant multiple of W(cov \i, a). For this the following elementary inequality is
needed.
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Lemma. Let V8{y) denote the square of center yeR2 and diameter <5 >0. The sides of
Vd(y) are parallel to the co-ordinate axes, J(y)={i;xieVd(y)}, Ji(y) = JnJi; then
whenever J(y) has at least two elements, we have

E fil'Scl ft E \xt-Xj\-\
isJ(y) J ieJ(y) jeJdy)

where the constant c is independent of the underlying configuration co = cov

(38)

Proof Let JE denote the set of such ieJ(y) that l^ — x ^ e holds at least for one
Jf), and set

= E /«.
ieJ(y)

ieJe

areWe assume that 0 < e < 3, then the --neighborhoods of such points xk that

disjoint and each of them is contained in the same square of side 23 and center y,
thus

l&2(Z-Ze)^432 . (39)

On the other hand,

(40)

where P denotes the sum on the right of (38), i.e. cP dominates the left hand side of
(38).

First we assume that T>9 , then s = 33Z 1/2<3 and (39) results in I^3Ie,
whence by (40) we obtain

Z3<3554P . (41)

In the second case we may assume that 35<54P^36, i.e. P^L3d 4. Therefore the
trivial bound S~4Z^P implies Z3^9d~20P, thus (38) holds with
c = max{35<S4,9(T20}.

Now we can estimate S4, too. Observe first that

ieJ ieJ

(42)

and the first sum on the right is not larger than the actual value of W(cot, \i, a). On the
other hand, (R), (38) and the relation W^co^l imply that

) (43)
. ieJiy) J \ W ieJ(y)

holds even if the cardinality of J(y) is less than two. Let Z 2 denote the points of the
integer lattice in R2, Z2

d = {y\ ]/23~1yeZ2}, Ay = {x;xeZ2,\x-y\^2R + 3} and k
is the cardinality of A . Then for ysZj we have

ieJ(y) jeJ( zeAy ieJ(z)

ZM3,
ieJ(z)

(44)
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/ c\
thus summing over yeZj in (44), we obtain that the constant K3=4k2 1 + - is so

large that

tZjf (45)

whence

54^4%,M) (46)

follows by (42) with K4 = 1+K3.
Since each of g l 5 Q2, Q3l9 <232, Q33 is bounded by a linear combination of Sl9 S2,

S3, S4, our inequalities (22), (25), (37), (46) result in (6) with a universal constant K.

5. A priori Bounds

First we show that any ^-tempered solution cot satisfies (7), g is an SI-function. Let
T > 0 and consider the unique solution r(t\ O^frgT of the integral equation

r(t) = a +K]g(\fi\ + r(s))[Wg(cosft
 1/2ds , (47)

t

then r is differentiable with a bounded derivative r', so that (6) implies

eW(cop fi, r(t)) = - Ke-KtW(cop & r(t))

0 (48)

for each fixed ju and a if 0?g t^ T, so that

W(coT, n, a) S W(co0, fi, r(0))eKT (49)

as r(T) = a. Suppose now that o ̂  g{\iA\ then (47) implies r(0) ;> g(\fi\% thus (49) turns
into

sup ( — ) ] , (50)

where r(0) and a are related by (47).
t

Let z(t) = f [ W;(Q)S)] 1 / 2 ^ S , since r(0) ̂  r(s) ̂  o- ^ (̂1̂ 1) ̂  1 and g(u + v) ̂  #(«)
o

if u, v are positive, we obtain from (47) that

r(0)^<r + K(a + g(r(0)MT). (51)

However, g(u) ̂ 1 + 2 ]/u, thus

r(0) ̂  a + 2X(a + l/K0))z(T) , (52)

whence

/ ? ( 5 3 )
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follows directly. Substituting (53) into (51), by the subadditive property of g it
follows that

(54)

where K > K is a new constant; (50) and (54) yield (7), i.e.

z\t) ^ \/w~KeRt(l + zg(z2)), t ̂  0 , (55)

provided that Wg(co0) ̂  w. It will be important later that K does not depend on g.
Introduce now the function G = G(z\ z^O by

] (56)

G is a differentiable and strictly increasing function of z^O and, by substituting
u2 = v into (56), we see that lim G(w)= + oo, i.e. G has a continuous inverse

u—• + oo

function G"1 =G~1(v) defined for each v^O. Since any non-negative solution
z = z(t) of (55) satisfies

} t - l ) , (57)

we have

z{t)SG-\\/w(eRt-l))<+oo for each t^O . (58)

The comparison of (55) and (58) yields an explicit bound for Wg(cot). What we have
proven is the basic result of this paper:

Proposition 2. For each Sl-function g and w > 0 there exists a continuous function
Q{t)= Qg(t>

w) defined for t^.0 such that Wg(cot) ̂  Qg{t, w) for each t^O, whenever cot is a
g-tempered solution with Wg(coo)^w.

As a consequence we show that the distance travelled by a given particle is also
uniformly bounded in finite intervals of time.

Proposition 3. For each Sl-function g and w>0, w>0 there exists a continuous
function a(t) = ag(t,u,w) defined for t^O such that |xf(cos) — X;(co0)|rgag(t,u,w) if
0 ^ 5 ^ t , I^COQ)!^u, Wg(cD0)^w and cot is a g-tempered solution.

Proof. We know that |i;. |^^(|xj)|/^(t,w), set

at= sup |x.(cos)-^(coo)| (59)

o{ ̂  g(u + at)z S 2g(u)z + 2 ]/Vtz (60)
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follows by the subadditivity of g, whence (}/o\— z)2^(g(u) + z)2, i.e.

(j, ̂  max{z2, (g(u) + 2z)2} ^(g(u) + 2z)2 . (61)

Substituting (61) into (60) we obtain that

z, (62)

which proves the statement.

The use of W instead of H is justified only if we know that

Qg = {a;Wg(co)< +co)

for each SI-function.

Proposition 4. There exist such constants B and C > 0 depending only on U that
H()^ W()B C(o) if

Proof. The first inequality is trivial. For the second one let Nx(co) denote the number
of points of co in the unit square of center xeZ2. Since U is a superstable pair
potential (see Section 1 in [4]) there exist such constants Bl and C1>0 that

(63)

where co^ a denotes the configuration obtained from co by deleting the points
outside the disc of center \x and radius o. Hence

E N2
x(co,J S C2H(CD, & a) + B2G

2 (64)
xeZ2

follows immediately, B2 and C 2 > 0 are new constants depending only on U. The
statement of Proposition 4 follows from (64) by a direct calculation.

The proof of Theorem 2 is based on the following result, it is an extension of
Proposition 3 in [3].

Proposition 5. / / coo G Qg holds for a tempered solution cot and g is an Si-function, then
cot is g-tempered.

Proof There exists an Si-function h for which cot is /z-tempered; we may assume that
g(u)^2h(u) because h can be replaced by j(g + h) otherwise. Let gn(u) = g(u) if
0^u^nandgn(u) = g(n) + min{gr(n + 0)h{u-n\ 2 ( | / u - ]/n)} if u^n, n = l , 2 , . . . ; it
is easy to check that gn is an SI-function and g(u)^2gn(u) for each u and n; thus
^n(<^o) = 41^(coo) = w. On the other hand, gn has the same asymptotic order at
infinity as h does, therefore cot is gn-tempered for each n and Proposition 2 implies

gnt,w); (65)

at least if o^ign{\ii\). However, limQgn(t, w) = Qg(t, w) uniformly in finite intervals of
n

time as gn(u) = g(u) ifn>u [see (55) and (58)]; thus the statement follows directly
from (65) and Proposition 4.
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Finally we deduce a contraction property of the equations of motion from the g-
Lipschitz condition. Let co and co belong to Q, for convenience we assume that
J(co) = J(co) = J. Further, xt = x^co), vt = vt(cb\ w > 0, p > 0, g is an Si-function, L and
/ are defined in (1) and (i), (ii), (iii), JR is the range of U in the forthcoming notation.

Xn(w) = [ ]/wg(4Rn + 4R)L(wg2(4Rn + 41?))]1/2 , (66)

-|x,!)(AM(w)|x£-xf| + \vi-vi\), (67)
ieJ

M1(w) = l,Mll(w)=A1(w)A»...AII_1(w)iff.>l,and

Z>>, co; w) = £ ^ Mn(w)rfn(«,«; w). (68)

It is easy to check that (U) implies that X(w) = o{n), i.e. lim - X Jw) = 0 for w > 0,
n n

thus Dp< +00 if co,co are from i5. Further, D^co,co;w)>0 if co=Nco, and for a
sequence coneQ^ we have limcon = co if and only if there exist such p>0 and w>0
that lim Dp(a>n, co ;w) = 0.

Proposition 6. Suppose that U satisfies a g-Lipschitz condition with an Sl-function g,
then there exists a constant q depending only on U such that D1(covc~dt;w)
= ^i +qt(

(jOo> <̂ o j w)> tf tne solutions cos, cos satisfy Wg(cos)^ w, Wg(cbs)^w for O^s^t,
and J(co0) = J(co0).

Proof. It is essentially the same as that of Proposition 4 in [3]. If max{|xf|, \xt\}
<,(4n + 3)R, then from (U) and (11) we obtain that

j ;

^ L(wg2(4Rn + 4R)) \ A \/w~g(4Rn + 4R) \xt - xt\ + E \xj" *j\ 1; (69)
L jej; J

|xf — x j ^ l ^ — iJJ almost everywhere, the cardinality of J\ and the velocities

appearing in the derivative of/ can also be estimated by A ]/w g(4Rn + 4R), see (10),
(11). Further, dn(cov cot; w) is an absolutely continuous function of t, thus taking into
account the properties of / and the above relations, we obtain that

— dn(cos, d)s; w) S q^n(w)dn+ ^co,, cos; w) (70)

a.e. in (0, t). Hence, following the proof of Proposition 4 in [3], we obtain the
statement of Proposition 6.

The tools needed to prove the results formulated in Section 3 are all summarized
in the propositions of this section.
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6. Proof of the Theorems

Theorems 1-3 follow from Propositions 2-6 by standard methods discussed in
details in [3], this is why here we only sketch them.

For the proof of Theorem 1, consider the sequence (pn(t,co) of approximate
solutions. In view of Proposition 4, Wg(co)< + oo with an SI-function g, thus Wg is
uniformly bounded at t = 0 for the corresponding finite systems. Therefore
Propositions 2 and 3 imply that, given i and T, |ty(<pw(£, co))\ S ]/Q9 where g does not
depend on n and t^ T; so that using the diagonal method, we can select a convergent
subsequence q>nk(t, co). Because interparticle distances are bounded away from zero
if Wg is bounded, this limit is necessarily a solution.

The first statement of Theorem 2 is just Proposition 5. For the second one it is
enough to remark that cbt = co5

+_f is a ^-tempered solution if cose Qg, s > 0, as follows
from Proposition 5. Thus <x>0 = cos

+ e Qg and cot is g-tempered.
Theorem 3 is a direct consequence of Propositions 2, 4, and 6.
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