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Abstract. We prove that the Yukawa2 quantum field theory with periodic
boundary conditions satisfies the spectral condition, i.e., the joint spectrum of
the energy operator H and the momentum operator P is contained in the
forward cone. In addition, the (p-bound is obtained.

1. Introduction

In the present paper the Yukawa2 (= Y2) interaction in two-dimensional space time
is considered. This theory provides an example of the theory which satisfies all the
Haag-Kastler axioms and many of the Wightman and Osterwalder-Schrader
axioms. In the present paper we prove the spectral condition for the Y2 theory with
the periodic boundary conditions. In addition, we obtain the uniform bounds on the
boson field operators and on their derivatives with respect to coordinates.

The proof of the spectrum condition is divided into the following parts.
In Section 2 we prove the boundedness below and the Nr v estimate for the

Lorentz rotated Hamiltonian in the Y2 theory,

PoHy^ + PPy + CMT^CMrfN^y, T<1, j S g - ^ l , ^>0

uniformly in the ultraviolet cut-off o.
In Section 3 we prove the Osterwalder-Schrader positivity condition in the

theory with Ho v(f}) ( = poHov + f}Pv) as the Hamiltonian and Pv as the momentum
operator.

In Section 4 we prove that the free vacuum Qo v overlaps (see [1]) the vacuum
for HV{P) = POHV + PPV.

In Section 5, using the Osterwalder-Schrader positivity in the spatial direction,
we prove the main result, that the energy-momentum spectrum for the Y2

interaction in a periodic box lies in the forward light cone. As a consequence, the
uniform estimates on the derivatives of the boson field operators and the spectrum
condition for the Y2 interaction with the periodic boundary conditions follow
(Section 6). In Section 6 the (^-bounds are also obtained.
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The same results have been obtained for the P(cp)2 theory with the periodic
boundary conditions [14].

2. PoHy^+PPy + CMTfeCttfrfN^y

Let Hv a be the renormalized Hamiltonian of the scalar or pseudoscalar Y2

interaction with an ultraviolet cut-off a in a periodic box V and Pv be the operator
of momentum.We suppose that our ultraviolet cut-off cr is a sharp position cut-off.

Theorem 2.1.

uniformly in the ultraviolet cut-off a. Here f}% — f}2 = l, /?0>0, T < 1 , C 2 ( /? ,T)>0.

Proof of Theorem 2.1. The proof is completely the same as the one given by Glimm
[2] (see also [3]). Though Glimm had used in his proof a sharp momentum cut-off,
the same proof holds also in the case of a sharp position ultraviolet cut-off. (It holds
also in the case of a general ultraviolet cut-off [3], but we restrict ourselves to sharp-
position cut-offs.)

In Glimm's proof it is necessary to make the following replacements (we follow
in our notations to the paper [2]):

n(K y): = fi(k)+yk- (3/4) (l - \

cb{p)-+cb(p, y): = co(p) + yp - (3/4) (1 - \y\Mpf ,

0
The operation F(y) replaces the operation F and is an approximate inverse to

Ho Ay) (H0,v(y): = H0

We remark that in [2] Glimm denotes the "number" operator NXtV by FT.
The essential point is the translation in variance of the interaction Hamiltonian.

The translation invariance implies that the renormalization constants of Hv G and
Hv a + yPv coincide. Thus, Lemma 3.4 by Glimm [2] is valid and has the following
form :

Lemma 2.2. There is a constant K depending on g but not on o, such that

3

y c(.y) (
i= 1

<K .

Here c\yJff(~S) denote the expression which are similar to ciQa(~E) (see [_2]), and
which correspond to the Hamiltonian Hv a-\-yPv.

The proof of this lemma coincides with that given in [2], because the mo-
mentum conservation gives

r^(^^\ — c (~~\ c{y)(~S) = c (~E)
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In addition we need the slight modification of Lemma 4.2 [2], which, in our case,
has the following form:

Lemma 2.3.

Sb'(p) 5b'*(p)

Here Fv= \... — — , 0 , — ,...}> is the discrete lattice of allowed momenta.

The operators P^a), P2(G) are bounded by o(l)(Nx F-f-1), o(l)-^0 as Q-^CO and
does not depend on a.

The proof of this lemma is the same as the one of Lemma 4.2 in [2]. The
difference in the coefficients is due to the different asymptotics of the functions

y) and cb{p2,y) for large \£\ in the region 3

For y = 0 these asymptotics coincide.
The required inequality

l^ £ ZJp)*Zea(p)
v p<=rv

follows, as in [2], from Proposition 5.1 [2].

3. Osterwalder-Schrader Positivity in the Spatial Direction

Let Hov and Pv be the Hamiltonian and the momentum of the free theory in a
periodic box F.

In this section we show that the theory with the Hamiltonian
HoF(/0 = fi0H0>v + PPV and the momentum Pv satisfies the Osterwalder-Schrader
positivity condition in the spatial direction. Since boson operators are unbounded
we also need the Osterwalder-Schrader positivity condition for bounded functions
of the boson field.

Let us now define and construct the corresponding notions.
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Let Jicoh, </#coh + be the algebras of coherent functions, £ at exp(z'(pF(/i.)), where
real hteC^{\_- 7/2, 7/2]) for the case <Jfcoh and real hteC^(l0, 7/2]) for the case

For the sake of convenience, we introduce a four-component space of test
functions for the fermion field, and we set for such a four-component function
f(x, a)

¥(/):= X $ dxipV9a(x)f(x,*)+ £ I dxipv>a_2f(x,a) .
a=l a=3

Let J*(J*+) be the operator algebra generated by the fermion operators W(f),
where fe C ? ( [ - 7/2, 7/2]) ® (C4(/e CJ([0, 7/2])®<C4).

Let ^(^+) be the operator algebra generated by the algebras Jicoh and
^(^coh,+ a n d <̂ +> respectively).

Let 21(21+) be the free associative algebra over the complex field, the generating
set of which is the set IR x 0> (IR x 0> +) where IR is the set of reals (see [4]).

Let ae2J. Then a may be represented in the following form:

keA jkeAk •>

where A is some finite unordered set ard Ak are some finite ordered sets, £JkeIR and

Fjke^. Moreover, the factors in the product Yl a r e ordered from left to right in
JkeAk

correspondence with the order in Ak (we note that the algebra 21 is non-
commutative !). We define the linear functional S on the algebra 21 in the following
way. If ae2t, then a is of the form (3.1), and we set

S(a): = £ ak (QOyV, t ft (Fjk(tjk)Q0:V) (3.2)
keA \ jkeAk I

where

and T is the anti-time ordering over the time variables t, and if some of the fs
coincide, then the corresponding F stand in (3.2) in the same order as they do in a.

Lemma 3.1. The expression (3.2) defines the linear functional on the algebra 21.

Proof of Lemma 3.1. It is evident that the expression (3.2) defines the mapping Sf

from the set of words to the complex field. If a and b are two congruent words (with
respect to the identities defining the algebra 21 (see [4])), then, since 0> is an
associative algebra, S'(a) = S'(b\ and, thus, S' defines the mapping S from 21 into (C,
and, as it may be easily seen, this mapping is the linear one. Lemma 3.1 is proved.

Now we want to build the operator © corresponding to the Euclidean operator
of the space reflection, x-> — x, such that S(©(a)b) would satisfy the Osterwalder-
Schrader positivity condition in the spatial direction for a,be2I+ .

For this purpose we define the (antilinear) operator 0 on the algebra 21. Let
ae2l, then a is given by (3.1), where each Fjk is

F;*= I F(j*,r) 11 nfd,jk,r)) (3.3)
reRUk) leA(jk,r)
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where

F(jk, r ) e^ c o h , f{ljk, r)e Cg>([ - F/2, F/2])(x)C4

and R(jk) is some unordered finite set, A(jk, r) are ordered finite sets and the product is
taken in correspondence with the order in A(jk, r).

Let

where Ak is the set antiordered with respect to Ak (i.e., if j1J2eAk andy\ <j2 in 4̂fc,
thenj*! J 2 eA k and j1 >j2 in ̂ 4fe) and where

?h= I W ^ S f 1 I] n$f(f(lJk>r))) . (3.5)
reR(jk) leA(jk,r)

Here * denotes the complex conjugate and $fo is the unitary operator in the Fock
space &y of the space reflection x-» — x for the boson field 5b(pF(x)9b"

x = (pF( — x),
and the mapping of the fermion test functions space is defined in the following way

9f acts on the fermion field in the following way. If g and h are a pair of two-
component functions, then

We note that S^ = l.
We use the following representation for the y-matrices

0 1\ / 0 1

0)' M - l 0

Fi=*yi, 75=7170= L

Lemma 3.2. T/ẑ  expressions (3A)-(3.6) define the antilinear operator 0 on the
algebra 21.

Proof of Lemma 3.2. These expressions define the operator ©' on the set of words.
Then if a and b are two congruent words [4], then the words O'(a) and 0'{b) are
congruent and thus, ©' maps congruent words into congruent words and thus, G'
defines the mapping © of the classes of congruent words and so is the operator on
the algebra 21. It is clear that this operator is antilinear. Lemma 3.2 is proved.

Now we can formulate the main theorem of this section.

Theorem 3.3. S(0(a)b) is an hermitian positive bilinear form on the algebra 21+.

Proof of Theorem 3.3. The bilinearity follows from the linearity of S, antilinearity of
©( -) and from the fact that 21 is an algebra (i.e. that the product ab is a bilinear
operation in 21).
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To prove positivity we prove first of all that the two-point functions

(3-7)

are positive semidefinite for fc,,fc,.eCg>([0, V/2]) or fe,.fc,.eCS>([0, F/2])®C4 .
For this purpose we introduce the following two-point functions

and

and

tl,Xl, t2,x2)-

, tl9 x,, t29 x2)^

oiv) for h > t2

^ 8 ( X l ) Q o i K ) for ^ > t2

for t1^t2

-(Q w ,{x )e~^tl~t2^H°'v^w (x )Q )

for t1 > t2 .

We start with the consideration of the fermion two-point functions.
In accordance with the polarization principle to prove the Osterwalder-

Schrader positivity it is sufficient to prove that the expressions

a,a',a" = 1
J dt1dx1dt2dx2Spv{+

(3.9)

and

<x,a',a" = 1
{-;tl9x1; t2,

are positive for f(t, x)e C^(JBL x [0, 7/2]) and a = 1,2.
First we consider the function S^F( +). We introduce the function

J^X^QQ) for tl>t2

Here ipa(x),i/0(/}),&0 are the free fermion field, free Lorentz rotated Hamiltonian
and the free vacuum in the full Fock space, i.e., in the Fock space corresponding to
the free boundary conditions.

The functions Spv( + ) and Sp( + ) are translation invariant and

Spv(+;t1-t2,x1-x2)= £ sp(+;t1-t2,x1-x2
n= — oo

where the series converges in the sense of distributions.
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W e use t he L o r e n t z r o t a t i o n t o replace Sfi( + ) by S( + ) ( : =

Besides,

\p(t, x) = J dx'Sfo x - x') ( - iy

V?(t, x) = J dxf\p{09 x
f) (iyo)S(t, x - xf)

where S: = (i&+ m)D and D is the Pauli-Jordan function, S = y0S
 + y0 and S+ is the

hermitian conjugate to S (see [5]).
Let rjk(t) be a smooth function, rjk(t) = l for |t|^2/fc and rjk(t) = O for | t |^

Then (3.9) is equal to

J] lim J dt1dx1dt2dx2 J dx\dx'2r\k{t1-t2)
k

1 ) ( y 0 )

- x2) (iyo)f( - p(x'2 - nV/2), P0{x'2 - nV/2) - x2)

A(p)f(t2,x'2).

We use here the fact that for £#0

Note also that

J dx'S(-/?(x'

), etc.
Then let

0n(t,x)= J dx'iy0S(-P(x'-nV/2), po{x'-nV/2)-x)A(fi)f(t,x').

Using the relations (see [5])

y0S{t,x)y0 = S{t,-x)

yfS(t,x)yE
i = -S(-t,x)

(3.10) may be written in the following form

l,xl)S
Ii{t1-t2,x1-x2)gn{t2,x2) (3.11)

where &{g(t,x)) = g*(t,-x)yE
1.

The supports of S{ = (ijS-+m)D) lie in the light cone, [5], so, in the region where
the integrand is non-zero 0 = 1,2)

), if (x;

(xi + nV/2)(£0 + p)^x, = (x; + nV/2) (j80 - 0 ) , if (xj + nV/2)p <0 .
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Thus, the signs of xt and x| + nV/2 coincide. Since fae C (̂1R x [0, 7/2]), so the signs
of x1 and x2 coincide, and |x 1 +x 2 | = |x1| + |x2 |^fi(/)>0.

Since for | x 1 + x 2 | ^ a ( / ) > 0 SE(t1 — t2,x1+x2) is an infinitely differentiable
function, so as a result we obtain that (3.9) is equal to

£Jdt xdt2dx1dx2g*(t l 9xJyfS^t ,-12 , \xJ + \x2\)gn(t2,x2)^0 .
n

The sum is positive, since the n-th term of the sum is the norm of the vector

$ dxgn(t,x)Qxp(-\x\H0Mt)Q0 .

This proves that the two-point function Spv(+ ;t1, xx; t2, x2) satisfies Osterwal-
der-Schrader positivity condition in the spatial direction. In the same way we prove
that Spv(— ;tl9x1; t29x2) and Gpv{tl9x1; t2,x2) satisfy the Osterwalder-Schrader
positivity condition. This implies that the two-point functions (3.7) and

J dt^Sm^yif^, -)))(t2,(pv(f2(t2, •))))

are positive semidefinite for / 1 5 / 2 G C ^ ( 1 R X [0, 7/2]) or

/ 1 ? / 2 e C - ( I R x [ 0 , 7 / 2 ] ) ® C 4 .

Now there are two positive semidefinite bilinear forms which are defined on
CJ(lRx [0,7/2]) and C^(lRx [0, 7/2]) ®<C4, respectively. We form two Hilbert
spaces J^ M and ̂ / l 5 respectively, by dividing out by the vectors of norm 0 and
completing. Let tFph be the symmetric and 3Fpf the anti-symmetric Fock spaces over
the Hilbert spaces 3FphX and ̂ / l 5 respectively.

Let

Now let us proceed to the proof of the positive (semi)definiteness of the bilinear
form S(0(a)b).

We show that

S(O(a)b) = (N(a\N(b))^p (3.12)

where N(a) is a linear mapping from the algebra 91 + into the Hilbert space J^. In
fact, JV( •) is the normal ordering.

First we define the mappings Nb and Nf (the normal ordering of bosons and
fermions, respectively).

Let 21 + b and 91+>f be the subalgebras of 91 + with the generating sets 1R x J%coht +
and IRx J*+, respectively.

The mapping Nb'M+ h-^^p b we define in the following way.
Ifae9I+ Z j , then

a= Eak I ^
keA jkeAk\ reR(jk)
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We define Nb( •) by

keA r{ -)e®k [\jkeAk

(

.Gpv{t'-t",x'-x")( £ hJkMjk)(x")5(tjk-f'i
\ j A

where 0ik is the set of all functions from Ak into (J R(jk) with the following

properties r(jk)eR(jk). By 8t we denote the translated ^-function St : = d( • — t) and

00 7W

ExoffiT)== 1 ffi) (/C) f(x t ^ (x) /^fx ^ ) (x) (x) /^fx ^ )
n — 1 *' •

is the coherent vector in the space # ^ .
Now we define the fermion normal ordering Nf( •). If ae9l+ / ? then

, E n
reRUk) leUjk,r)

Let

^ff n (
keA r{-)e0tk \jkeAk\leL{jk,r)

and on monomials we define Nf( •) in the following way. We define Nf( •) on the
monomial as the formal normal ordering, i.e., as the sum over all contractions
(pairings) of the fermion operators. Then in each term of this sum the contracted
and uncontracted fermion factors appear. We replace each contracted pair

by its T product

and in correspondence with the parity of the permutation the sign (±1) appears.
Each term in the sum over contractions gives a vector in the fermion Hilbert space.

If uncontracted fermion operators have test functions and times, say, ...(t^fj
...(t2,f2)...(tn9fn..., then this term of the sum over contractions gives the
vector with the wave function f18ll ®af28t2 ® a • • • ®afn^tn multiplied by the product
of all contractions of this term and each contraction enters with its sign (±1). The
full contracted terms give the vacuum vector in # ^ / [i.e., the vector (1,0,0...)]
multiplied by the sum of the products of all corresponding contractions with their
signs.

Now let a e 31+, then

2>* II
keA jkeAk
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where F(jk,r)eJ(coht+ and Q(jk,r)e<%+.
We set

{
keA r{-)e&k[ \jkeAk

®Nf(Yl (^eo>(/

It is easy to see that N( •) is a linear mapping from the algebra 21 + into the Hilbert
space SF^

Now let us prove the equality (3.12). For this purpose we shall calculate
(N(a),N(b))rfizndS(0(a)b).

The relation

- ^ J dx'dx^(x?

» = j

the definition of N(-),S(-) and Wick's theorem imply that to prove the equality
(3.12) it is sufficient to prove that

G ^ y u i ? X j ; t 2 , x 2 ) = G ^ F ( — tli—x1
m

9 — t29— x 2 )

But these relations follow from the definitions of G/3F,
 iF, Qf by the direct

calculation.
Thus,

Since (, )& is the scalar product in the Hilbert space J^ and AT is a linear
operator, so S(@(a)b) is a positive bilinear form. Theorem 3.3 is proved.

4. The Vacuum Overlap

To prove the vacuum overlap results we use the arguments of Seiler and Simon [1].
We start with the convergence of Hv a as a->oo.

Lemma 4.1. As a-+co Hv a converge in the sense of strong resolvent convergence to
the self-adjoint operator Hv.

Proof of Lemma 4.1. The proof of this lemma is similar to the proof of Theorem 3.4
[1], reformulated for the case of the periodic boundary conditions and it follows
from the fact that all the estimates and bounds of [6] can also be obtained in the
periodic case. Lemma 4.1 is proved.

The resolvent convergence and the commutativity of Hv a and Pv imply that Hv

commute strongly with Pv.
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Lemma 4.2. The operator Hv + yPv is bounded below, self-adjoint and has the
compact resolvent for — 1 <y < 1.

Proof of Lemma 4.2. The proof follows from the uniform bound of Theorem 2.1
and from the compactness of the resolvent of Nz>v forr>0. Lemma 4.2 is proved.

Now we define Jost states [1]. Since Hlv^Py, the vector valued distribution
(f)1(x1)...(j)n(xn)QOfV [where (/> is either cpv{x) or *F(x)] is the boundary value of
a vector-valued function (=Jost state), analytic in the region Imzx,
lm(z2 — z^,... ,lm(zn — zn_ 1)eV+, where V+ is the forward light cone. By cyclicity
of the vacuum, the set of linear combinations of Jost states is dense in 3FV. We
call a Jost state /? Euclidean if and only if each zk is zk = (xk + if}tk,iflotk) with
xk,tk real, /?0 = (jS2 + 1)1/2 and, moreover, the tks are non-coincident.

We call a vector a fi "good" Jost state if it is an integral over space variables x and
n

a sum over fermion indices of /? Euclidean Jost states with a function (X) fk9

fkeC?([-7/2, V/2]) or / k e C ? ( [ - 7/2, 7/2])®<C4 and t1912-tl9...,*„-*„!"'are
all positive. We say the state is supported in (a, b) x (c, d) if supp/fc c (a, b) [that is,
supp/k(x,a)c(a,b) in the case of a fermion test function] and c<tk<d.

We call a vector a bounded /? Jost state supported in (a, b) x (c, d) if it has the
form

where each y4k is either Qxp(i(pv(hk)) with real /zfeEC^([— 7/2, 7/2]), supphkc(a,b),
or nfk) with / k e C ^ ( [ - 7 / 2 , 7 / 2 ] ) ® C 4 , supp/fc(-,a)c(fl»&) and, in addition,
t1,t2 — t1,...,tn — tn_1 are all positive and c<tk<d.

Lemma 4.3. Fix a, b, c, d with — V/2 <a<b< 7/2,0 < c < d. The linear combinations
of bounded ft Jost states with support in (a, b) x (c, d) are dense in Fock space J*y.

Proof of Lemma 4.3. The proof is similar to the one of Lemma 5.2 [1]. Suppose, rj is
orthogonal to all bounded /? Jost states with the support property. Then n is
orthogonal to all /} good Jost states. By taking the smearing functions to delta
functions, r\ is orthogonal to all /} Euclidean Jost states with the support property.
By analyticity, it is then orthogonal to all Jost states and hence is zero. The lemma is
proved.

Theorem 4.4. The Fock vacuum QOfV overlaps the vacuum for f30Hv

Proof of Theorem 4.4. To prove the theorem we prove the estimate

(4.1)

for appropriate rj and use Lemma 5.1 [1].
We shall prove the inequality (4.1) for all n which are bounded /? Jost states

supported in [7/8, 7/4] x [1,2].
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We note that though in the formulation of Lemma 5.1 [1] an estimate of the
type (4.1) is needed for a dense set of vectors, in fact, as can easily be seen, it is
sufficient to prove such an estimate for a set of vectors the linear combinations of
which are dense in the Hilbert space.

In principle, the slightly modified estimate can also be proved for linear
combinations of bounded ft Jost states.

After this remark we proceed to the proof of (4.1). To prove the estimate (4.1) we
shall approximate the expression

(ri,exp(-tHy(P))ri)

by the ones for which we apply the Osterwalder-Schrader positivity condition of
Theorem 3.3.

Let an ultraviolet cut-off be given by an even function xa(x) = GX{GX\ where %(x)
is a positive C^([— 1,1]) function with the total integral one.

Let

HI{A(G)) = X J dx:\pyta{x)r\pVta{x)\<i>y9a{x),

where F = 1 or iy5 and the set A(o) is

Corollary 2.1.2 [7], which is also valid in the periodic boundary conditions case,
allows to obtain the following simple bound

±HI(A(CJ))S J dxMa{NxV + l)^co-*l\NxV+l)

uniformly in a.
The operator Hj(A(a)) is bounded with respect to Hv a with the relative bound

zero and Pfi^Py is bounded with respect to Hv a with the bound less than 1. Thus,
[8, p. 287-288]

H'VJP): = P0Hv>a + fSPv - PoHjiAia))

is self-adjoint operator on Q}(RV J = @(H0 v).
Then

uniformly in a for sufficiently large a and for sufficiently large positive £ not
depending on a.

But

5-lim Qxp(isHV(T(P))= s-\im Qxp(isf30Hv J

pPv) = Qxp(isHv(P))
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thus,

s-lim(H'vJP) + 0"* = (HyiP) + 0'1

for sufficiently large £.
Since H'v$tr(f}) is bounded below uniformly in o, so [8, p. 502]

5-lim exp( — tH'v Jf})) = exp( — tHv(p)) .
<T~~~* GO *

Now we make the next approximation.
Let

V/2
W+(a)= — \bm2{V,o) J dx:(pv(x):

o
and

o
W_(a)= —\bm2{y,o) j dx\cpv(x)\

-VI2
where dm2(V, a) is the (divergent) boson mass renormalization. W±(a)eLp for some
P>2[9].

Let
\W+(&) for \W+{a)\^n

n for | W+ (a)\ > n '

We define

W_(n,a) = exp(-iPvV/2)W+{n,(j)exp{iPvV/2)

and

W(n, o) = W+ (n, a) + W_ (n, a) .

Let

Hj ±(Q9CT) = A J dx:t/;F a(x)ripv a(x):Q~X sin(^<^F CT(x))
[-V/2,Vf2]\A(a)

±x>0
and

and let

Hfj(a) = X j dx\\py a{x)r\pv a(x):(?Kfff(x) .
[-VI2,V/2]\A(a)

Since Ff±((7)eLp for some p>2 [9], so W(n, a)-+W(a) in any Lq norm with q<p
(Lemma 3.5 [1]). On the domain Fn@(H0 v\ where F is the set of vectors with a
finite number of particles,

s-lim li

(4.2)
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where y=/?/?o * a n <i

H0V(dm2) = H0v-^dm2{V,a) j dx:(p2(x): .

Since Fn3>(H0>r) is a core for Hov(5m2) [9, Theorem 4.2d] and yPv is the
operator bounded with respect to H0V(dm2) with the bound < 1, and H'j(a) is
bounded with respect to Hor{dm2) with the bound zero, so [8, p. 287-288,429] the
resolvents of the operators in (4.2) converge strongly as g-»0, n->oo.

Since ||exp( — tFF(n))|| x is bounded uniformly in n for each t, so Corollary 2.14
[9, p. 133] implies that

uniformly in n.
Since HJ(Q, a) and H'^o) are infinitely small perturbation, we have [8, p. 502]

s;jim lim exp ( - t(fio{Hoy + W(n, a) + H,{Q, a)) + PPV))

= exp( - t(0o(HoiV(dm2) + H'M)) + PPV)) •

Now let us consider the operator

exp( - t(P0(H0<r + W(n, a) + H^Q, a)) + fiPr)).

The operators W(n, a) and HJ(Q, a) are bounded operators and thus

exp( - t(j80(H0>K + W(n, a) + H^Q, a) + pPv))

(4-3)

And finally, we make the last approximation. We approximate W± by the
coherent functions and replace the integration over the box in Ht ±{Q,O) by the
summation.

Kaplansky's density theorem [10, p. 46] implies that the bounded real function
W+(n,a) can be approximated by the real functions W+(N,n,a)eJicoh + with
\\W+(N,n,a)\\S\\W+(n,(j)\\. We define

W_(N,n,G) = exp( - iPvV/2)W+(N,n,G)exp(iPvV/2) .



Energy Momentum Spectrum in Y2 45

Let

Hj ± (N,Q, a): = N " i £ : V V , » r W , » -Q "* s i n (Q<PvAn))
neN ±

where

AT+: = {[O,K/2]V4((x)}nZw,

and ZJV = {xeZN|JVx is integer}.
Let

then the expression in the curly brackets in the right hand side of (4.3) is equal to

As the result of all the approximations we obtain the expression for which
Theorem 3.3 is applicable.

Let rj be a bounded ft Jost state supported in the region [F/8, F/4] x [1,2]. Then

(kt/m,B_)(kt/m,B+)rjt\ (4.4)

where we have used the same notation both for rj as the element of the Fock space
Jy , and for the element of the algebra 91, and where (• )v (•)~ are the following
operations on the algebra 91. If a is given by (3.1), (3.3), then

keA jkeAk

keA jkeAk

where

FI= z FU»Z)* n w u f .

Here !F(/)+ is the operator which is the hermitian adjoint to the operator W{f). We
note that W(f)+=l¥(f+\ where / + is the following mapping of fermion test
functions. If (g, h) is a pair of two components functions, then (g9 h)+ =(h*y0, g*y0).
We note that

9f(f+)=-(»f{f))+. (4.5)

Since B+ contain an even number of fermion operators and since fermion

operators anticommute in S for separated points, so (4.4) is equal to

k=l fc=l
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Then, from the definition of 0 and B± it follows that
I

[
k=l \k = m

This equality is connected with the Euclidean invariance of the Y2 interaction.
Using Theorem 3.3 and Schwarz's inequality we obtain that (4.4) is less than

l/2

)

\ \k = m )k — m

( I m \ m \ l / 2

0[ ft (kt/m,B+)frjt) [I {ktlm,B+)rfnt\ . (4.6)
Taking into account (4.5) and using that B± contain an even number of fermion

operators once more to reordered the factors in (4.6), we obtain
\m \ l / 2

m \ l / 2

where rj' is some vector in the Fock space 3FV (rj'= f(rj0(rj))Qov).
It should be noted that just to express the second factor in (4.6) in the

Hamiltonian form it is essential that rj is a Jost state, i.e., a monomial of fermion
operators rather than a linear combination of Jost states. For a linear combination
of Jost states we would obtain a sum of expressions like + (rj\ ( )t]"\ where rj', r\" are
Jost states, but, nevertheless, this sum may easily be estimated and gives the slightly
modified estimate (4.1).

Taking N,R,m,Q,n,<T-*co in (4.7) we obtain

) 1 / 2 . (4.8)

By Lemma 5.1 [1], Theorem 4.4 is proved.

5. Hl^P2
v

In this section we proceed to the proof of the main theorem. We normalize the
vacuum energy so that inf spectrum Hv = 0.

Theorem 5.1. The joint spectrum of Hv and Pv lies in the forward light cone, that is,

) = inf spectrum#FOS) = 0 , TC(J8) = n(P = 0 ) .

Here n(p) denotes the projection onto the vacuum subspace of Hv(fi).

Proof of Theorem 5.1. By Theorem 4.4 [or by the inequality (4.8)]

inf spectrum Hv(p) = - lim t~~x \n(Q0 v, exp( - tHv{f5))Q0 v)

= - limr1ln(Qov,Qxp(-tHv)Qov) = 0 .
t->00 ' '
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Hence

The commutativity of Hv and P F implies the commutativity of n(fl) and PF . Thus

±Pvn{P)£c{p)Hv(P)n{P) = O ,

hence, HVTC(P) = 0, Hv(f3)n((3 = 0) = 0, and so n{P) = %{p = 0).
Furthermore, the commutativity of H F and Pv implies that Hv — PQ2P2PV^0,

and so, by limits as /J-»oo

This completes the proof of the theorem.

Corollary 5.2. Let feC$(£- 7/2, 7/2]),

Proof of Corollary 5.2. We use, as in [11], the unitary operator U = exp(i<pF(/)) to
transform the Hamiltonian Hv(ft). We show that on @(HV)

. (5.1)

To prove this statement we use Theorem 3 by Me Bryan [12].
First we show that

as bilinear forms on @(HV) x 2}{HV).
Indeed, by the Nz v estimates the left and right hand sides are defined correctly

on 2{H v) x 3>(H F). Let R - (Hv + yPv• + 0 " x and Ra = (ffF(T + yPF + C)~\ where (is
positive sufficiently large and ifF a is the ultraviolet cut-off Hamiltonian (more
precisely, Hv a is Hv a — Ev, where EF is the vacuum energy of the Hamiltonian
without the ultraviolet cut-off. Remember that Hv is normalized so that
in f spectrum Hv = 0).

By Theorem 2.1, by the commutativity and by Lemma 4.1 Ra is defined correctly
for sufficiently large £ and s-limK(r = .R.

Each vector xe@(Hv) is of the form x = R2y and the NZtV estimates imply that
v( f)) 3 ®(HV), so we obtain

i {{{Hv

- i{{Ry, <pv{f)x) - {<pv{f)x9 Ry)}

= i{((pv{f)Ry,x)-(x,(pv(f)Ry)}
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where x(T = R(TRy and then we have

y9<r + yPv)xa9cpvU)xa)-(cpv(f)xa,(HVa + yPv)xa)} .

The vectors xa

As an operator equality on @{Hov)r\F, where F are vectors with a finite number
of particles,

Since the domain @(H0 v)nF is a core for Hv a + yPv, q>vU\ V<Pv(f\ nvU\ then for
xae@(H0>v)

i {{{HVa + yPv)xa, cpv{j)xa) - ((pv(f)xa, (HVtff + yPv)xo)}

and by the Nx v estimates we obtain in the limit as cr->oo

i {((Hv + yPv)x, <pv(f)x) - (<pv{f)x, (Hv + $Pv)x)}

= (x,(nv(f)-yV(pv(f))x) .

Since @(Hy) is a core for Hv + yPv and by the NT>V estimates this bilinear form
extends on 9{Hv)x$)(Hv). Since W(nv{f)-yV(pv{f))R\\< oo and
||JR

1/2^F(/)i^1/2||<cx), so Theorem 3 by McBryan [12] implies that
U(s)@(Hv)C@(Hv) [here U(s) = Qxp(iscpv(f))~], (Hv + yPv)U(s) is strongly con-
tinuous on @(HV) and thus for xe@(Hv)

( - s)x, (Hv + yPv) U(-s)x)

- ((Hv + yPv) U( - s)x, cpvU) U( - s)x)

Integrating the last equality over se[0,1] we obtain

i.e., the equality 5.1. This implies the statements of Corollary 5.2.

6. <p-Bounds and the Energy-Momentum Spectrum in the Infinite Volume

To extend the results of the pervious section to the case of the infinite volume we
need some sort of vacuum expectation values in the infinite volume (Schwinger or
Wightman functions, or a state on the quasilocal algebra of observables or on the
quasilocal field algebra). The simplest way, we think, is to obtain uniform cp-bounds
and then, using the compactness, to construct Wightman functions. These
Wightman functions, as the limit of the finite volume ones, satisfy the spectral
condition.



Energy Momentum Spectrum in Y2 49

Theorem 6.1. Let feC%([-±S) and | |/ | |2= j \f(k)\2(k2 + lfdk then for V^l

for suitable constants cvc2,c3 (not depending on V).

Proof of Theorem 6.1. Let us prove the first bound. Let Ev(f) be the ground state
energy for Hv + (pv(f). To prove (^-bounds we need only to prove [13,1].

Let integer n be such that 2nS V<2n+1. Let F be the function obtained by trans-
lating / by 1/2 unit and taking the sum of the translation and its reflection about
x = 0. Then, as in [1], we first claim that

-Ev{f)^ - 1/2EV~1/2EV(F) . (6.1)

This follows as in the proof of the vacuum overlap (Theorem 4.4) and as in the proof
of Theorem 5.1 (cf. with the proof of Theorem 7.1 [1]). By iterating (6.1) and using
the translation invariance we obtain

where Fn is obtained by iterating the passage from f^Fn times. Now by the
vacuum overlap [which holds for Hv + (pv(Fn) if n^l since Fn is symmetric]

- Ev(Fn) = lim t x In f exp((pF(Fn(x);((O, 0)) det r e n(l + Kv t)dfi0 v .
t-+oo

As in [6] one can easily obtain the bound

-1 ln(Jdet r e n(l + KFit)
2i/z0fV)1/2

and

-I- r
T / j / / = —V ' " i n - ' II— 1 T 2 '

In the same way we prove the second bound. Theorem 6.1 is proved.

Theorem 6.2. The Wightman functions for the Y2 interaction with the periodic
boundary conditions exist as distributions.

Proof of Theorem 6.2. The (^-bounds and the arguments of Glimm and Jaffe [13]
imply the uniform estimates on the Wightman functions for a finite volume and,
thus, the compactness of the Wightman functions with box cut-offs. Theorem 6.2 is
proved.

Theorem 6.3. The infinite volume limit Wightman functions for the Y2 theory with the
periodic boundary conditions satisfy the spectral condition.
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Proof of Theorem 6.3. Since the Wightman functions are translation invariant, so
by the Stone theorem the unitary representation of the group of translations is of
the form

U(t,x)= j Qxp(itpo + ixp1)E(d2p)

and on the Wightman domain the measure E(d2p) is the weak limit of measures
Ev(d

2p), corresponding to the Wightman functions in a finite volume. But these
measures satisfy the spectral condition and so E(d2p) also satisfies the spectrum
condition. Theorem 6.3 is proved.
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