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Abstract. A general approach is given to obtain the system of ordinary
differential equations which determines the pure soliton solutions for the class
of generalized Korteweg-de Vries equations (cf. [6]). This approach also leads to
a system of ordinary differential equations for the pure soliton solutions of the
sine-Gordon equation.

§1

A numerical study [10] of the Korteweg-de Vries equation (KdV in short)

1-̂  = 0 (!)

showed that some solutions of this nonlinear partial differential equation
decompose for large time t into solitary waves travelling with constant velocity (the
so called solitons). A better understanding of this phenomenon was possible when
Gardner et al. [5] developed their ingenious Schrodinger operator calculus which
gave rise to the inverse scattering method for solving the KdV. Since then similar
methods have been developed for other nonlinear partial differential equations
([1], [13], [19]).

In a fundamental paper [12] Lax gave a better explanation of this phenomenon
by considering the gradients of the conservation laws of the KdV equation. As a
result of this he gave a precise description of the 2-soliton case. An integral equation
(Gelfand-Levitan eq.) for the JV-soliton case was already provided by the inverse
scattering method. Considering explicit solutions of this integral equation the
authors of [6] obtained a system of ordinary differential equations for the N-
soliton solution of the KdV. One advantage of this method is that it permits
identification of solitons even during the interaction process.

In this paper a general approach to this system of ordinary differential
equations is given. The only tool on which our method depends is the time
invariance of the spectrum of a family of Schrodinger operators. No other spectral
properties are used and we do not work with reflection and normalization
coefficients. Therefore we have also found a description of the ΛΓ-soliton case for the
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generalized KdV equations. Of course, the time history changes if we replace the
KdV by its generalizations.

In the last chapter we use similar ideas to derive a system of 2N ordinary
differential equations for the Λ/-soliton solutions of the sine-Gordon equation.

The main difference between this paper and the work [12] of Lax is that we use
conservation laws with nonlocal gradients instead of those with local gradients.
Therefore our results do not depend on the ingenious construction of integrals
described in [12] and [16].

§2

To make the paper self contained we start with a brief account of some results from
Lax' fundamental paper [12].

We consider the complex Hubert space L2 = L2(dx), dx being the Lebesgue
measure on R (f,g) = $?(x)g(x)dx denotes the scalar product in L2, d is the
differential operator and L2^ stands for the real functions in L2. For ueL2 the
densely defined multiplication operator f(x)^f(x)u(x) is also denoted by u.
Subscripts ί, ε and x denote partial derivatives.

Let B(u) be a family of selfadjoint operators depending on u and not explicitly
depending on x9 where u can be taken from a dense subspace of L2^, and let S(u)
= d2 + u be the Schrodinger operator. We consider a one-parameter family u(t)e L2^
(t called time) satisfying the operator evolution equation :

S(u(t)\ = ut(t) = i[_B(u(ί)\ S(um (2)

where [,] denotes the commutator and B(u) is required of such a form that

(u(t\ u(t)\ = 0 (energy conservation) .

In the following we always assume that there is a dense subspace D of L^ such
that for any initial condition u0 = u(t0)eD there is a unique solution u(t,u0)eD for
(2) such that w(£,w0) is differentiable (with respect to w0) in D. For v0eD we
abbreviate

o
υ(t) = u(t, t?0) = — u(t, u0 + εt?0)|e = 0 . (3)

Exact criterions for the uniqueness and existence of solutions of (2) can be found
in [8]. In many examples D is a space of sufficiently smooth functions vanishing
rapidly at oo.

For every t the space {v(t)\v0eD} is dense in L2^ because ί0 was arbitrary. Energy
conservation implies (u(t\ v(t))t = Q. And because B(u(t)) is selfadjoint S(u(ή) has to
be a family of unitarily equivalent operators

S(ιι(ί)) = t7(ί)S(ιι0)l/(ί)-1

where £7(ί) are unitary with Ut(t) = ίB(u(t))U(t).
This implies that the eigenvalues λ of S(u(t)) are time-independent and that the

eigenvectors WΛ (i.e. S(u)wλ = λwλ) of S(u(t)) are developing according to (wA(i))f

= ίB(u(t))wλ(t). The content of the next lemma can be found in [12, p. 475]. For
completeness we give a short proof.
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Lemma 1. Let wλ(t) be eigenvectors of S(u(f)} with norm 1. If

(wλ(t\ v(t)wλ(f)} = J K(x, ί)|2φc, ήdx

exists, then it is independent of t.

Proof. Consider S(u(t))wλ(t) = λwλ(t\ where u(t) = u(t, w0 + εv0). Differentiation with
respect to ε at the point ε = 0 gives:

v(f)wλ(f) + S(u(t)) (wλ(t))ε = λεwλ(t) + λ(wλ(t}\.

Forming the scalar product with wλ(t) we get (wλ(t\ v(t) wλ(t)) = λε. D

The next theorem is known in case of the KdV equation, i.e. for special B(ύ) (see
[6] Theorems 3.2 and 3.4).

N

Theorem 1. Letfort = t0 the solution u(t) of (2) be of the form u(tQ)= Σ αJWλ^o)!2-
«=ι

we have for all t

N

I N \
c. According to Lemma 1 \u(t)— Σ ^l^λJOPjKO i§ independent of t and

\ n=ι n /
therefore equal to 0 (evaluation at ί0). Now, the theorem follows from the fact that
the v(t) are dense in L2^. D

Lemma 2. Ifω with ω2eL2 is a solution of the ordinary nonlinear differential equation

(d2 + \ω\2)ω = λω (5)

then there is a celR such that u(x, t) = \ω(x — ct)\2 is a solution of (2).

Proof. Let u(t) be the solution of (2) fulfilling the initial condition w(ί0) = |ω0|
2, where

(52 + |ω0|
2)ω0 = lω0. From Theorem 1 we obtain w(ί) = (ω0,ω0)|wλ(ί)|2 and

ω = (ω0,ωo)1/2 wλ(t) must be a solution of (5). The L4-solutions of (5) are a one
parameter family generated by translation. Therefore we have u(x, t)
= \ω0(x — φ(i))\2. With our evolution Equation (2) we get

ut(x,t)=-\ω(x-φ(t))\2φt

(x-φ(ί))|2),L(|ω(x-φ(ί))|2)]. (6)

Now, let a be such that |ω(α)|2 φ 0 then evaluation of (6) at x = φ(t) + a gives that φt is
independent of t. Π

The same proof goes through for the equation (d2 — \ω\2)ω = λω. But some
acquaintance with Schrodinger operators tells that this equation has no L4-
solutions. It is quite easy to determine the solutions of (5). Integration yields :

ω(x) = (2λ)ίl2 {cosh(A1/2(x - χ0))} ~ 1 . (7)

Since Lemma 1 does not depend on the special form of B(u) we have proved that (7)
also determines the shape of the solitary waves of the generalized KdV equations.
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§3

The Korteweg-de Vries Equation (1) came up in the study of shallow water waves
and has many applications in physics ([9] or [11] for references).

It is well known ([5], [12]) that the Schrδdinger operators S(u(tJ) = Θ2 + u(t) are
unitarily equivalent if u(t) is a solution of the KdV. The infinitesimal generator of (2)
is then given by

ίB(u)=-4d3-3ud-3du. (8)

Solutions of (1) being of the form u(x, t) = sλ(x — ct) are called travelling waves.
Obviously they are solutions of an ordinary differential equation. Lemma 2 tells us
that a travelling wave has to be a translation of (7). Inserting (7) in the ordinary
differential equation describing the travelling waves gives the well known result
c=4λ. Other nonlinear evolution equations leading to (2) are called generalized
KdV equations ([12], [15]). For these equations it was observed that the solutions
often decompose for ί->oo into travelling waves of the form (7) the so called
solitons.

Here we are interested in pure N-soliton solutions, which means that for t-> oo the
total energy (u, u) of u is carried by N solitons and that the decomposition into
solitons is stable. To be more precise we require :

u(x, t) = Σ sjx - 4λnt + θn) + Δ(x, t) (9)
n = l

where the error term A(x9t) = A is such that

ί)|2dx = 0 (9A)

for ί-»oo the eigenvectors of (d2 + u(t)) are converging
in L4(dx) to the eigenvectors of (d2 + u(t) - A(t)) . (9B)

(v(t\ v(t)) is a bounded function in ί, where v(t) is
defined by (3). (9C)

Theorem 2. Let u(x, t) be a pure N-soliton solution of a generalized Korteweg-de Vries
equation. Then u(x) = u(x, ί0) must be for any time t0 a solution of the following system
of N ordinary differential equations

d^.+u(X)ωn(X)=λnωn(X) (10)

N

where u(x) = £ (ωn(x))2.
n=l

Proof. Let u(x, t) be as in (9) and consider

N

h(x,t) = u(x,t)- Σ an{wλn(x,t)}2

where wλn are the normed eigenvectors of (d2 + u) with eigenvalues λn, and where an

is the integral over the square of the function given by (7). Because of Lemma 2 and
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the asymptotic behaviour of u one obtains lim(h( , ί), h( , ί)) = 0 Now, energy
ί-> oo

conservation and Lemma 1 imply that (h( , t\ v(t)) is independent of time. Taking
the limit for ί-> oo one gets with the help of our stability relations (h( , t\ v(f)) = 0
which has h(x, t) = 0 as a consequence since the υ(t) are dense. By the definition
ωn = α« / 2 wAn

 tne desired result is obtained. D

A partial differential equation for the time development of a soliton is easily
obtained. For fixed n we express u by (10) in terms of ωn and insert this in (8). Thus
we obtain as in [6] in case of the KdV the evolution equation

ωωt = 3ωxxωx - ωωxxx - 6λωωx. (11)

For the KdV equation Theorem 2 is already contained in [6, Theorems 3.2 and 3.4].
There it was proved by considering explicit pure soliton solutions. As in [6] we call
from now on the square of! the real eigenvectors of S(u(ή) solίtons.

§4

Now, we shall use ideas similar to those of the preceding chapters to obtain a system
of ordinary differential equations describing the shape of a pure soliton solution of
the sine-Gordon equation ([1-3], [7] and [19]):

uxt + 4sm(u) = Q (12)

which results out of a variable transformation for the nonlinear Klein-Gordon
equation Φtt — Φxx + sin(Φ) = Q. Again our analysis does not depend on any
knowledge of the explicit ptire soliton solutions given in [3] and [7]. The principal
tool will be the commutator formalism for (12) which was developed in [1] (see also
[2], [11], [13] and [19]).

We begin with a brief account of the results needed from those papers. We are
interested in real valued solutions u of (12) with uxeL2(dx). For this, one considers
the operator A(u):E^E given by

(w \1 , w1? w2eL2(dx) equiped with the scalar product

(w,w) = (w1,w1) + (w2,H
;2) If u evolves according to (12) then we have

ΛtΛ = RΛ-AR (14)

with

), sin(«)\

\sm(ύ) , — cos(κ)/

A+ is given by A+ = TAT where

ί
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As a consequence of (14) to (16) the eigenvalues of A are real and independent of
time. If we normalize the eigenvectors wλ of Λwλ = λwλ by

wΛ) = l (17)

then the time evolution of wλ is given by:

(wΛ),=λ-1 {ΛwΛ-(ΓwA,Λw>Λ}. (18)

As in §2 we define

d
v(t) = v(t, v0) = — u(t, u0 + ευ0)\e = 0

08

and we assume that {v(t)x\υQ possible perturbation} is dense in L2(dx\ where
u(t, u0 + εv0) is the solution of the sine-Gordon equation (12) for the perturbed initial
value u0 + εv0. We consider the derivative of λ = (Twλ, Λwλ) with respect to ε at ε = 0
and we obtain with (17) and (13):

dλ

Since λ does not depend on t this implies that

ί ί) (Y t} ίlw (Ύ t\ !2-l-lvι; (\ t\ I2l^/v MQ"!
X\ 9 / X l λV 5 x l l ^̂  I λ\ 5 / 2 l )MΆ> \^JLS I

is time independent. Here (wΛ)1? (wΛ)2 are the first and second components of WA.
Fortunately from (12) we can show that (uχ9ux) is time independent. Therefore we
can argue exactly as in Theorem 1 and Lemma 2 to obtain:

Theorem 3. Let for t = tQ the solution u(t) of (12) be such that

N

n = l

Then we have for all t

N

Lemma 3. Let ε= ± 1. // ω= I 1 is α solution of the following system
\a>2/

-(^l)χ- 2Wxω2=^ωl (21A)

Mx = ε(|ω1|
2 + |ω2|

2), ί/zβπ there is a ceR swc/z that

φ,ί)x = ε(|ω1(x-cί)|2 + |ω2(x-cί)|2)

is ί/ie derivative of a solution of (12).
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In Lemma 3 we have to admit negative coefficients which were excluded in
Lemma 2 because of the special structure of the Schrδdinger operator.

For obtaining the relation between c (speed of the travelling wave) and λ we
determine the real solutions of (21) explicitly. Multiplication of (21 A) with εωλ and
(21B) with εω2 and subtraction gives

O If 2 2,\ /ΌO\

Inserting ux this results in:

2λux + uxx = 4ελω2 (23 A)

2λux-uxx = 4ελω2. (23B)

(21A) ω2 minus (21B)^X gives with the help of (22)

1
(ω1ω2)x + —— uxuxx = 0.1 2x 4ελ x xx

This compared with (23A) (23B), i.e.

results in

(ux)
4 = 16λ2(ux)

2 - 4(uxx)
2. (24)

'The solutions of (24) with uxeL2(dx) are

e±2λ(χ-x0)

ux = z%λ- ±4λ(x-xo} =ε4λ{cosh(±2λ(x-x0))}~1 (25)

or

u= +e4tan"1{e±2A(x~Xo)}. (26)

Insertion of u(x — ct) in (12) provides us with the desired relation:

c=r2. (27)

The travelling wave solutions determined by Lemma 3 are the so called kinks and
antikίnks (cf. [9]).

Therefore with similar arguments (as in Theorem 2) about the asymptotic
behaviour of u one can interprete the system (21) as the differential equations which
determine the shape of the Λ/-kink-antikink solutions of the sine-Gordon equation.

Theorem 4. A pure field ofN kinks and antikinks with asymptotic speeds —^ solves the

following system of ordinary differential equations:

1 , ,
1 ί=l, ...,# (28A)

+ Kf)2χ- \ujiω^ = λt(ωλ)2 i= 1,..., N (28B)

N

where ux= ^ ^{(ωλ)l + (ωλ)
2} and st= ±1.

n=ί
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The evolution equation which gives the relation between the time development
of the kinks and antikinks and the constants of integration of (28) is:

(ωAfλ=}(Λωi|-j8ίωi|) (29)
Ai

where ft = (Tωλi, ωλ)~1 (Tωλi, Rωλ).
(29) differs from (18) because we have renormalized the eigenvectors such that

the coefficients in (20) become ±1.
Explicit soliton solutions of (12) were given in [3] and [7].
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