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Abstract. We find all those unitary irreducible representations of the oo -sheeted
covering group G of the conformal group SU(2,2)/Z4 which have
positive energy P°^0. They are all finite component field representations and
are labelled by dimension d and a finite dimensional irreducible representation
(J1J2) of the Lorentz group SL(2C). They all decompose into a finite number of
unitary irreducible representations of the Poincare subgroup with dilations.

1. Summary and Introduction

The conformal group of 4-dimensional space time is locally isomorphic to
G = SU(2, 2); its universal covering group G is an infinite sheeted covering of G.
Both G and G contain the quantum mechanical Poincare group ISL(2C). It is of
physical interest to have a complete list of all unitary irreducible representations
(UIR's) of G with positive energy P°^0. They are at the same time unitary ray
representations of G. In the present paper we shall give such a complete list. We
show that all the UIR of G with positive energy are finite component field re-
presentations in the terminology of [1]. They are labelled by a real number d,
called the dimension, and a finite dimensional irreducible representation (Λ, J2)
of the quantum mechanical (q.m.) Lorentz group SL(2C). Thus, 2jl9 2j2 are non-
negative integers. There are 5 classes of representations. They differ in their
Poincare content [m, s]9 m = mass, s = spin resp. helicity as follows:

(1) trivial 1-dimensional representation d=j1=j2=Q.
(2) jι φ 0, j2 φ 0, d >jl +j2 + 2 contains m>09s = \ji -J2\. . J1 +J2 (integer steps)

(3)Λ/2=
0> d>Jι+J2 + l contains m>0, s^-h/V

(4) j\ Φ 0, j2 Φ 0, d =j\ +j2 + 2 contains m > 0, s = jί +J2.
(5) JJ2 — 0, d =7\ +72 + 1 contains m = 0, helicity j± —j2.

The proof of these results proceeds in several steps.

We start from the observation [2, 3] that positive energy P° ̂  0 implies that also
#^0, where H^(P° + K°) is the "conformal Hamiltonian", K° a generator of
special conformal transformations. Next we point out that any UIR of G with
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positive energy is very much like a finite dimensional representation in that it
possesses a lowest weight vector and is determined up to unitary equivalence by its
lowest weight λ = (d, — j1? —j2) In particular there is an algorithm for computing
the scalar product of any two "K-fmite" vectors.

We then derive (necessary) inequalities for the dimension d from the condition
that the unique candidate for the scalar product is indeed positive semidefinite.
They come out as d ̂  +j2 + 2 i f j J 2 Φ 0, and d ̂ j1 +j2 + 1 i f j J 2

 = °> excePt for the
trivial 1-dimensional representation which has d=j± =J2 = Q

In the last step we construct a unitary irreducible representation of G for every
weight λ satisfying these constraints. Practically all of them have been investigated
in more or less detail before, [4 — 6]. In particular, a careful study of the
representations with d>jί+j2 + 3 has been carried out in Rϋhls work [5]. The
(massless) representations with d=jί+j2 + l have been investigated by Todorov
and the author [6]. For the remaining representations there remained some open
questions concerning either positivity or global realization. In particular, for
practical applications one needs a clean construction as an induced representation
on Minkowski space. This requires particular attention to the center Γ of G.

Our representation spaces consist of vector valued functions φ(x) on Minkowski
space M4 with values in a finite dimensional irreducible representation space of the
q.m. Lorentzgroup SL(2C). They transform under g in G like an induced
representation

*x) for geG,xeM4. (1.1)

The multiplier S is a matrix with the property that S(n, 0) = 1 (unit matrix) for special
conformal transformations n. Thus the representations are of Type la in the
terminology of [1]. The scalar product is constructed with the help of an
intertwining operator ("2-point function"). 2-point functions have also been studied
in [18, 23].

The result of this paper will be used elsewhere in the nonperturbative analysis of
the axioms of quantum field theory with conformal invariance [7, 8]1. In particular
it is crucial in the demonstration that in such theories operator product expansions
applied to the vacuum are convergent.

2.A. The Lie Algebra

The group G ~ SU(2, 2) consists of all complex 4 x 4 matrices g which satisfy the two
conditions

detg = l, g~lβ=βg* for j5= _. (2.1)

i is the unit 2 x 2 matrix. Let cj the real Lie algebra of G.

1 Notations: In the present paper, the elements of Minkowski space are denoted by x, while x stands
for a translation by x. The translation group is called X. In Ref. [8] a different notation is used, viz. x, n~,
N~ in place of x, x, X
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For a neighborhood of the identity in G we may write Q = ex, Xe& The Lie
algebra g consists therefore of all complex 4 x 4 matrices X satisfying the two
conditions

trX = 0, -Xβ = βX*. (2.2)

The maximal compact subgroup of G is K ~S([7(2) x [7(2)). It consists of
matrices of the form

k =Γn t\ k'eU(2)' detfe!fc2 = l - (2.3)
\ U K2/

[7(2) is the group of all unitary 2 x 2 matrices. The Lie algebra f of K consists of
matrices such that X = -X*, whence Xβ = βX*. (2.4)

Following Cartan, the Lie algebra may be split into a compact and a
noncompact part as

where X e p iίXβ = — βX, andXeϊ ifXβ = + βX. Explicitly, p consists of matrices of
the form

Xep iff X= I ^ with a complex 2 x 2 matrix z. (2.6)
\z 0]

We denote the complexiίication of g, ϊ, p by gc, ϊc, pc respectively. gc consists of
complex linear combinations of elements of g etc.

We choose a Cartan subalgebra ί) of g which consists of all diagonal matrices in
g. It is simultaneously a Cartan subalgebra of g and of I. We may then decompose

where n+(n~) consists of upper (lower) triangular 4 x 4 matrices in gc. In particular

*+en+npc iff *-(° j)

with a complex 2 x 2 matrix z. (2.7')

For such X+ the adjoint action of keK of the form (2.3) is given by

(2.8)

We see that pcnn+ transforms under an irreducible representation of K which
restricts to the UIR (£, £) of SU(2) x SU(2).

We may select a basis of gc which is diagonal under the adjoint action of ί), this
gives us the commutation relations of gc in Cartan normal form.

Let us choose a basis of fyR = iί) consisting of

,
σ3 is the third Pauli-matrix, σ3 =diag(+1, — 1).
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The possible eigenvalues of H± 2 are ± j for eigenvectors in n+npc. We will use
them to label the basis Xjk 7, k = ±\ of n+ npc.

Thus

for the upper sign +. A basis for n~ npc can be chosen asXJ k = (X^j_fc)* this gives
CR. (2.10) for the lower signs -.

The compact subalgebra I transforms of course according to the adjoint
representation (0,1) + (1,0) of SU(2) x SU(2). '

Therefore we may choose Jf°fce(n+ -fn~)nϊc with (/,/c) = (0, ±1), (±1,0) such
that

rur v®~\ π ΓH vθ π 7*v° Γ£7 v° i 7^v°L*1 o>Λ jk\ = υ j L" i?A jfcJ — 7A jk j L^" 2?A jkJ — K^jk)

(/;/c) = (0, ±1) or (±1,0). (2.11)

Explicitly the matrices ̂  may be chosen as follows: Let us label the rows and
columns of a 2 x 2 matrix by \, — \ from top to bottom and from left to right. Let ejk

the 2 x 2 matrix with 1 in the jk-position, and 0 otherwise. Thus

1 0\ /O 0

0 1

o -« '112>

We also introduce Pauli matrices σ*, in particular σ3 = ei}-e
The multiplication law of these auxiliary 2 x 2 matrices is:

ij j% i T J~~τ i~%') v ̂  -*••'/

with δtj the Kronecker-<5. Define

ej-k\ -_ + * _ / ° σ

0 ' ^"^-^"L f 0,

and //0, f3Γ l9 H2 as in (2.9). The matrices Hm,Xl

jk given thereby form a complete basis
for gc. Their CR. may be worked out by explicit computation using multiplication
law (2.13). One verifies in this way the CR. (2.10), (2.11); in addition one finds

for

~\ — i^fc, -i^kj

2fί1; ίX02k,0,X
0

0,2j]=V (2-15)
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Equations (2.10), (2.11), (2.15) are the CR. of gc in Cartan normal form relative to the
compact Cartan subalgebra I) of g. The generators — zΉ0, —iH^ and — iH2 of ί)
commute of course.

The real Lie algebra cj is spanned by the generators

p : X+ +XIj_t i(Y+ -*:,_*) (/= ± 4, *= ± i)

I: -iHm(m=0,l,2); X?.0-X° l f 0, ^.O+^-LO); (2.16)

^0, 1 ~~^0, - 1? *(^0, 1 +^0, - l)

Besides the compact Cartan subgroup expiί)^ generated by H0, H19 H2, the
group G also possesses two noncompact ones. The most noncompact Cartan
subgroup can be exhibited as follows. We make a basis transformation,

g=l/gl/-> with U = - . (2.17)

The group G may be identified with the set of all complex 4 x 4 matrices satisfying
the constraints

detg = l, (Γ^Mg* with $ = VβU-l=f^ J). (2.18)

The set of all diagonal matrices satisfying these constraints forms a noncompact
Cartan subgroup of G. Furthermore we may now exhibit in a convenient form
several important subgroups of G. To every 4- vector (xμ) we associate hermitean
2 x 2 matrices x and 3c as follows (σk are Pauli matrices)

Σxkσk. (2.19)

To every y4eSL(2C) there is associated a Lorentz transformation such that

AxA* = x', A^-ίxA-1=xf with x'μ = Λ(Aftxv. (2.20)

With this notation, we introduce subgroups of G as follows (They are all at the same
time subgroups of G, s. below.) We omit the " henceforth.

M: Lorentztrans formations

IA 0
m = lθ A*'

A: dilations

a= o
N: special conf. transformations

It 0\
n= _ L nμ real

X: translations

x=(o i)' x"rea1'
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The generators of M, A, N,X are denoted by Mμ\ D, Kμ, and Pμ respectively (after

dividing by ]/—1 as is costumary in physics). The reader may work out for himself
the connection with the generators introduced before. One has in particular

2.B. The Lie Groups

Let us now turn to the universal covering group G of G. It is an infinite sheeted
covering and is given by a standard construction (cp. text books, e.g. [9]) : G consists
of equivalence classes of directed paths on G starting at the identity. Two paths are
equivalent if they have the same end point and can be continuously deformed one
into the other. By the group action in G a path may be transported such that it starts
at any given point. Using this, group multiplication in G may be defined by
juxtaposition of paths.

The structure of G is best understood in terms of its Iwasawa decomposition (cp.
text books, e.g. [10]). Let M~UAmNm the Iwasawa decomposition of the q.m.
Lorentz group M.U~ SU(2) is the maximal compact subgroup of M, Am consists of
Lorentz boosts in the z-direction and Nm is the two-dimensional abelian group
which is contained in Wigners little group [11] of a lightlike vector p pointing in z-
direction. The Iwasawa decomposition of G is then [12]

p with Av = AmA9 Np=NmN,p

A, N as in (2.21). The subgroup ApNp is simply connected, therefore any two paths
on ApNp with the same end points can be continuously deformed into each other.
Thus

G = KApNp , K = universal covering of K.

Explicitly K ~ IR x (SU(2) x SU(2)). Here IR is the additive group^of real numbers, x
denotes the direct product. The center Γ of G is contained in K. It suffices then to
consider K and its coverings. This gives the chain of isomorphisms

/oon£ group of \ ^ & χ ̂

\Minkowski space/

The conformal group of Minkowski space has trivial center. The center Γ of G is
thus isomorphic to Z2 x TL and has two generating elements y x and y2, with y\ = e.

r = Wy?;n 1 =0,l, "2=0, ±1, ...} = Γ,Γ2.

γ1 is the rotation by 2π contained in SL(2C). An explicit formula for y2 will be given
in the next section.

Finally, G is also a covering of G, viz G~G/Γ. Γ'CΓ is given by Γ = {(y^9

n = Q, ±1, ...}. The image Γ/Γ of Γ in G is the center of G, it consists of the

elements Γ7, w = 0...3, 7 = 4x4 unit matrix, i= ]/— 1.
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3. Representations with Positive Energy

Let T a unitary irreducible representation of G by operators 7{g) on a Hubert space
ffl. Suppose that it has positive energy, T(P°)^0. There exists an element ̂  of G
such that &P°&~1=K°. Explicitly ^ = exρ2τπ#2. \βl acts on compactified
Minkowski space like a reciprocal radius transformation followed by a space
reflection. It has been pointed out by Kastrup long ago that this is an element of the
identity component of the conformal group.]

Positivity of energy Γ(P°)^0 means that (ψ, T(P0)Ψ)^0 for arbitrary states Ψ
in the G-invariant domain of T(P°). Consider

, T(KQ)Ψ)

= %Ψ9 T(P0)Ψ) + %Ψ'9 T(

with Ψf = T(3t~l)Ψ. Therefore we have the

Lemma 1. T(P°)^0 implies T(HQ)^Q for the conformal Hamiltonian

This result was known before [2, 3], the proof given here is a modification, due
to Lϋscher, of Segal's argument.

Consider next the action of the center Γ of G. It consists of elements of the form

Since the UIR T is irreducible

T(γ)Ψ = ω(γ)Ψ toΐaΆ.Ψmtf (3.1)

with

ω(γ) = exp 2πind for γ = γ \n = exp 2πinH0.

d is some real number which is determined up to an integer.

It follows then from the spectral theorem for the selfadjoint generator T(H0)
that all its spectral values are of the form d + m,m some integer. Since Γ(//0)^0 by
Lemma 1, the spectral values d-hmΞ>0. We may therefore fix the integer part of d
such that the lowest spectral value is d. This gives

Lemma 2. In a UIR T of G with positive energy, the generator T(H0) has a discrete
spectrum. It contains a lowest eigenvalue d, and all the other eigenvalues are of the
form d + m, m positive integer.

4. Lowest Weights

By a vector space V we shall mean a linear space with a finite or countable basis such
that the elements of V can all be written as finite linear sums of basis vectors.

Consider an irreducible representation of the Lie algebra gc (resp. ϊc) by linear
operators T(X) on a complex, possibly oo-dimensional vector space KJrreducibility
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means that there exists no invariant subspace of V. We say that the representation T
possesses a lowest weight vector Ωe V with weight λ if

and

T(H)Ω = λ(H)Ω foral lJ ϊeϊ) c . (4.1)

The weight λ is a linear form on l)c, viz λefyf. λ is specified by the three numbers

λ, = λ(Ht] . We write λ = (λ0 λ, λ2) .

A classic result says that every finite dimensional representation of cjc resp. lc has a
lowest weight. In particular, finite dimensional representations of ΐc have a lowest
weight of the form

λ = (λ0ι —jii —j2) with 2/1? 2/2 nonnegative integers. (4.2)

Infinite dimensional representations of gc need not possess a lowest weight. We
will however prove below that representations T of cjc which are obtained from a
UIR of G with positive energy possess a lowest weight.

Consider a unitary irreducible representation T of G on a Hilbertspace Jjf. It
restricts to a (reducible) representation of K. K is a direct product of an abelian
factor isomorphic to R which is generated by #0, and a compact Lie group K±.

K =R x K! , Kί ~ SU(2) x SU(2) , R= {expίαH0, α real} . (4.3)

Since T(H0) has a discrete spectrum, f̂ decomposes into a Hubert sum

jp= 0Fμ (Hubert sum), (4.4)
μ

where Fμ is a Hubert space that decomposes into copies of one and the same UIR of
K with lowest weight μ. By Lemma 2, all the weights μ appearing in (4.4) are of the
form

μ = (d + JV, — Jj, — J2), N, 2J15 2J2 nonnegative integers. (4.5)

Let us introduce the algebraic sum V of the subspaces Vμ

V=ΣVμ (algebraic sum)
μ

it consists of finite linear combinations of elements of the Fμ.

It is a standard result in the general representation theory of semi-simple Lie
groups with a finite center that all the Vμ are finite dimensional when we decompose
with respect to the maximal compact subgroup [13]. Consequently, V is a vector
space. Furthermore Fis a common dense domain (of essential selfadjointness) for
all the generators X of 9. Thus there is associated with the UIR T of the group an
irreducible representation of its Lie algebra by linear operators T(X) on the vector
space V. Conversely, any representation of g by skew-hermitean operators on Fcan
be integrated to a UIR of the group, and so infinitesimal equivalence implies unitary
equivalence ([13], Theorems 4.5 and 5.3).
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We will take it for granted that all this remains true for the representations of
our group G which we wish to study here, even though G does not have finite center
Γ, and the covering K of the maximal compact subgroup K/Γ of G/Γ is no longer
compact2. The vector space V will be called the "space of K- finite vectors". We say
that the UIR T of G possesses a lowest weight if the associated representation of its
complexified Lie algebra gc on V possesses a lowest weight.

Let d the lowest eigenvalue of T(H0). Then there must occur among the weights
μ in (4.5) at least one weight λ of the form

λ = (d;-ji9-j2) (4 6)

with some integers 2jl9 2j2. There exists then in Vλ a common eigenvector Ω of T(ff ,.)>
i=0, 1, 2, to eigenvalues d, —ji9 — y'2, viz.

T(H0}Ω = dΩ, T(Hk)Ω=-jkΩ (fc=l,2). (4.7)

We claim that this is a lowest weight vector.
We have to verify that T(X)Ω = Q for all Xen~. Now n~ is spanned by

•X klfo, / = i 2)9 X - 1 , 0' ̂ 0, - 1 *

Consider then the vector T(X^)Ω. We have

by C.R. (2.10) Since d is the lowest eigenvalue of T(HQ) by hypothesis, it follows that

Consider next T(XQ_ΐf0)Ω. We find from the C.R. (2.10) as above that this is an
eigenvector of T^) to eigenvalue -ji - 1. Since X°-ί>0etcί the vector T(X0_l>0)Ω
will lie in F'1. But since Vλ consists of copies of one and the same UIR of K with
lowest weight A, the only possible eigenvalues of TXH^) are —jl9 —jί + i,...J1.
Therefore —j\ — 1 is not a possible eigenvalue, hence T(XQ_ 1>0)Ω = 0. One shows in
the same way that T(3Γ° _ Jβ = 0.

We have proven part of the following

Proposition. Let T a unitary irreducible representation of G with positive energy.
Then T possesses a unique lowest weight. Any two such representations with the same
lowest weight are unitarily equivalent.

Proof. Let T1? T2 two representations of the Lie algebra cjc on vector spaces Vl9 V2.
We call them (linearly) equivalent if there exists a bijective map between V± and V2

which commutes with the action of cjc.
We know already that any UIR T of G with positive energy possesses a lowest

weight. Consider the associated representation of the complex Lie algebra cjc on the
vector space V. A standard theorem ([14], Theorem 4.4.5) asserts the following:

The lowest weight of an irreducible representation of gc on Fis unique if it exists.
Let Ω the lowest weight vector and {Xi}i=1 6a. basis for n+. Then V is spanned by
vectors of the form T(XI )

/ίl...T(Jί6)"60, nt nonnegative integers. Finally, any two
irreducible representations of gc with the same lowest weight are linearly equivalent.

A proof is given by M. Lϋscher in [22]
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[It follows from this also that the eigenspace Vλ of T(H0) to the lowest
eigenvalue d carries an irreducible representation of ϊ.]

Uniqueness of the lowest weight is thereby proven. As for unitary equivalence it
suffices to show that a g-invariant scalar product on V is unique if it exists, cp. the
discussion after (4.5). By a g-invariant scalar product we mean a scalar product such
that T(X) is skew-hermitean for X in the real Lie algebra g of G.

Skew hermiticity of operators T(X) for Xeg implies that

T(Z}* = T(βZ*β-1} for Zegc (4..8)

since every element Z of gc is of the form Z=X + iY; X, Y in g.
Let {Xi} the basis of n+ Cgc introduced before, and consider vectors in V of the

form

Ψ{n} = T(X,Γ...T(X6ΓΩ. (4.9)

They span V. It may happen that ψ{n} = 0. The scalar product of two such vectors
must then be of the form

(*W 5W = (fl> T(βX*β- Ύ< ...T(βX*β~ ^TQ[ιr...TQί6rΩ) . (4.10)

lίXten+ then j^fjr1 en~ hence T(βXfβ~ *)Ω = O.We may therefore use the C.R.
of the Lie algebra (Section 2) and hermiticity condition (3.8) to rewrite the left hand
side of (3.10) as a sum of terms of the form

To this end one needs only switch all the operators T(βXfβ~l) to the right and
operators TpΓ,.) to the left until they anihilate Ω.

In conclusion, there exists an algorithm for computing the scalar product of
arbitrary vectors in V [ = finite linear span of vectors of the form (4.9)] if it exists.
Therefore the scalar product is unique up to normalization and Proposition 3 is
proven. Moreover, a scalar product can only exist if the bilinear form computed by
the above algorithm gives a positive semide finite norm squared || Ψ\\ 2 — (Ψ, Ψ) to all
the vectors Ψ of the form (4.10).

5. Necessary Conditions for Unitarity

Having established uniqueness, we now turn to the question of existence : What are
the conditions on λ = (d; — /1? —j2) that λ is lowest weight of some UIR of G. We
know already that

λ = (d;—jl9 —j2) with 2j { , 2/2 nonnegative integers,

(5.1)

The last condition comes from the requirement (Lemma 1) that Γ(fί0)^0, which
implies that the lowest eigenvalue d of T(//0) is nonnegative.

We shall derive sharper inequalities on d. They come from the requirement
stated at the end of the last section : The bilinear form computed by the algorithm of
Section 4 must assign positive semidefinite norm to vectors Ψ of the form (4.9).



Representations of the Conformal Group 11

Let us introduce the vectors (in Vλ) defined by

One knows from the theory of angular momentum that they are normalized if
(Ω,Ω) = 1 as we assume. Moreover the generators of K act on them as follows:

(5.3)

We shall distinguish 3 types of lowest weights λ = (d; —j1} —J2)

1st Case: jΊΦO, J2ΦO. Consider the vectors

sW;'*~*= Σ co\,iA-*;Mi-«i,*i

Herein C are vector coupling coefficients in the notation of Rose [15]. We remark
that this vector transforms according to the representation of K with the lowest

weight (d + 1; -j\+i -Λ+έ)-
Since T(X~ιm2)Ω = 0, the norm of this vector is

(»ΓίiΓ^a"i.^Γιί;j2"i)=- Σ Σ (CG-coefficients)

We insert commutation relations (2.15) and evaluate the resulting matrix elements
with (5.3). With the vector coupling coefficients (B.I) of Appendix B we obtain the
final result

(ψh-±,h-± ψh-±,h-%\ — fl_; _ _?
V^MiM 2 ' ΎM±M2 >~a Jl J2 Δ

This must not be negative we obtain therefore the condition

d^j,+j2 + 2 if ΛΦOJ 2 ΦO. (5.4a)

2nd Case : ji φ 0, j2 = 0. We consider the vectors

= Σ c(jι, k,h -έ;M1-«,m)ϊχγ1ilίl)oJίl_mι0.
m

The norm squared of these vectors is computed in the same way as above to be

(ψjι~τ,i ψJι-iA\ — ,]_i __ 1
V- rM iM 2 ' YM1M2 >~a Jl L '

This must not be negative; we obtain therefore the condition

if ΛΦOJ 2 = 0. (5.4b)
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3rd Case: Λ = 0, ;2^0. This case is just like the 2nd case, one finds the condition

d^/2 + l if Λ=OJ 2 ΦO. (5.4c)

4th Case: jv =j2 = 0. We consider the vector

Ψ= Σ TW UW-m^ Λo
m\m-2

We remark that it transforms according to the representation of K with lowest
weight (d + 2 0, 0). The norm squared is computed in the same way as before. One
finds

This must not be negative, we obtain therefore the condition

d = 0 or d^l if jί=j2 = Q (5.4d)

By uniqueness, the special case d=jί=j2=Q corresponds to the trivial 1-
dimensional representation which is indeed unitary.

Conditions (4.4) are necessary for the existence of a UIR of G with lowest weight
λ — (ά\ —jί9 —72). We shall see below that they are also sufficient.

6. Induced Representations on Minkowski Space

Let G the universal covering group of G ̂  SU(2, 2). As we know, the center Γ of G is
Γ = Γ1Γ2 with /\~Z2, Γ2~Z.

It is well known that Minkowski space M 4 = {/* } can be compactified in such a
way that it becomes a homogeneous space for G, and therefore also for G. The
conformal group of (compactified) Minkowski space is isomorphic to
S0e(4, 2)/Z2 ~ G/Z4 cz G/Γ. It is compounded from the following subgroups

! Lorentz transformations

y*^Λ»y\Λ

A dilatations

N special conformal transformations

y^σ(yΓί(yμ-^y2)9

with

nμ real, σ(y) = 1 - 2ny + n2y2

X translations

(6.1)

The need for considering a compactified Minkowski space M4 arises from the fact
that special conformal transformations can take points to infinity.
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The little group in G/Γ of the point x = Q consists of Lorentz transformations,
dilations and special conformal transformations. Thus M*^(G/Γ2Γί)/(MAN/Γί),
or

MΪ~G/Γ2MAN. (6.2)

This is meaningful since MAN is simply connected and therefore contained both in
G and in G. Here and in the following we denote by M the quantum mechanical
Lorentzgroup, it contains the factor J\ of the center of G. On the other hand Γ2 ~ Z
has a generating element y2 as we know (Sees. 2B, 3)

Γ2 = {y%,N = Q,±l,...}9 y2 = ̂ expiπ#0; ^ = exp2ταΉ2. (6.3)

We leave it to the reader to verify that the parametrization (2.21) of G ̂  G/Γ' induces
the transformation law (6.1) on cosets.

Let us now turn to induced representations on M *. To every λ = (d —jl9 ~j2) we
associate a finitedimensional representation of Γ2MAN by

Dλ(yman) = \a\ceίπNcDhh(π\) with c = d-2, for y = y%. (6.4)

Here Dhh is the familiar spinor representation OWi) °f M~SL(2(C), viz.
Dhjί(m) = Dhh(A] for m of the form (2.21). It acts on a (2j1 + 1) (2/2 + l)-dimensional
vector space Eλ. We equip Eλ with the natural scalar product < , > which is such
that

Dhjί(m*) = Dhjί(m)* for meM as in (2.21) (6.4')

Consider the space $ λ of all infinitely differentiable functions φ on G with values
in Eλ which have the covariance property

φ(gyman) = |α|2DA(yman)~ 1φ(g) (6.5)

We make £ \ into a representation space for G by imposing the transformation law

1Qf) (6.6)

Since translations act transitively on the dense subspace M4cM*~G/Γ2MAN,
almost every element g of G may be decomposed uniquely in the form

g = xyman, xeX , γmaneΓ2MAN (6.7)

Therefore functions φ in $ \ are completely determined by their values on X.
Let x' and yman determined by x, g through the unique decomposition

g~ 1 x=x'yman, geG; x,x'eJf; ymaneΓ2MAN. (6.8)

The transformation law (6.6) becomes then by virtue of the covariance property
(6.5)

(T(g)φ) (x) = |α|2Dλ(ymanΓ V(x') (6.9)

Note : translations xeX are in one to one correspondence with cosets x = xΓ2MAN.
Both may be parametrized by Minkowskian coordinates xμ, μ = 0...3. Functions φ
may thus be considered as functions on Minkowski space {xμ} with values in the
finite dimensional irreducible representation space Eλ of the q.m. Lorentz group M.
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We call them "finite component wave functions (or fields)". Equation (6.9) is the
typical transformation law for an induced representation on Minkowski space,
induced by a finite dimensional nonunitary representation of the (nonminimal
parabolic) subgroup of stability Γ2MAN. Equation (6.8) says that xfμ is determined
by xμ by the usual action on cosets, x^g""1*, which is explicitly given by (6.1).

A. Intertwining Operator

As a prerequisite for writing down an invariant scalar product on δλ we shall first
define a map (or operator)

where 3Fλ is a space of generalized functions Φ on G with values in Eλ having
covariance property

Φ(gyman)-|α|2Dλ(yman)*Φ(g) for geG,ymaneΓ 2 MA/V (6.10)

It is made into a representation space for G by imposing the transformation law

(T(g)Φ)(gO-Φ(g-1g/) (6.11)

The map A + will be required to commute with the action of the group, viz.

φ for φ'mβλ (6.12)

Because of this property, Δ + is called an intertwining operator. The construction of
Δ\ parallels to a large extent the construction of the intertwining operator for the
Euclidean con formal group as described by Koller [17, see also 18].

Consider the special element ̂  of G introduced in Section 2. It has the following
properties :

for meM,

for seA (6.13)

Working with the parametrization (2.21) of M one has rh^m*)"1, therefore

D^(rh)* = Dhh(mΓ 1 (6.14)

We define the map Δ + by a generalized Kunze Stein formula [19]

(6.15)

n+ is a normalization constant. Integration is over the subgroup of translations,
with Haar measure dx = dx° . . . dx3. One may ask under what conditions the integral
makes sense (it may need regularization). This is a difficult question which we
postpone. For the moment we proceed formally.

Let us verify that Φ has covariance property (6.10).
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with x = $n&~1eX. We introduce new variables of integration

x'^ma^xx'arrΓ1 dx" = \aΓ4dx'

This gives

Φ(gyman) = n+ |α|4 J dx"φ(gMx"yπ\a ~ x)

= n+\a\2Dλ(yman)*Φ(Q) q.e.d.

In the second line we used co variance property (6.5) and in the third line we used
(6.14) and the definition (6.4) of D\

Let us next express the map A \ in terms of the restriction of functions φ toX. We
have

X

Using the decomposition (6.7) we may define x", yman as functions of x' by

^x'^x's'1, s = γn\aneΓ2MAN (6.16)

The jacobian of the transformation x'->x" will be found below with the result (cp.
(6.20b))

dx' = \α\4dx"

Thus

Φ(x) = n+(λ) J dx>(xx"(ymanΓ x)
x

= n+(λ)$dx"\α\2Dλ(γman)φ(xx") (6.17)

Let us reinterpret (6.16) as an equation which determines x', s = yman in terms of x",
viz

(6.18a)

Define the intertwining kernel A +(x) by

(6.18b)

yman depending on x" through the unique decomposition (6.18a). Writing
multiplication mX additively, viz. x - y in place of xy~ 1

9 Equation (6.17) becomes

Φ(x) = n+(λ) J dyAλ

+(x - y)φ(y) (6.19)
x

Since X may be parametrized by Minkowskian coordinates {xμ}, the intertwining
kernel A +(x) may be considered as a matrix-valued function on Minkowski space
M4.

Our next object will be to derive an explicit expression for the kernel (6.18b).
To this end we must evaluate yman. Write y = y^, y 2 the generating element of Γ2

introduced before, viz. y2=^expzπJ[ί0.
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Let us first consider Equation (6.18a) modulo Γ', i.e. as an equation between
elements in G~G/Γ'. We write x in place of x". Using parametrization (2.12) we
have

where A = (A*) ,ρ = \a\2

and

Ό i\
i ix)

The solution of the equation &~ *x = x'yman (mod Γ') is found by comparing both
expressions. From comparison of the second column we have

We take the determinand of the first equation and use det^4 = 1. This gives ρ~2

= (— )N - 1detx >0. But xx = άQtx = xμxμ = x2. Inserting in the second equation
gives the final result

e2 = |fl| = |x2|-i ; A~1=iN-1\x2\-^x; (-f=-sgnx2 (6.20a)

x'--^-1 viz. x /"=-xμ/x2, dxf = \x2\~4dx = \a\4dx (6.20b)

Similarly one finds from the first column

n=-x[_x2Yv (6.20c)

It remains to determine y = y%. This is done by applying both sides of Equation
(6.18a) to the identity coset in M~G/MAN. The necessary computations will be
done in Appendix C. The result is

N = N(x) = Θ(x2) signx0 = sign* (6.21a)

Inserting this into formula (6.18b) for the kernel we obtain

We extend the definition of the representation Dhh of SL(2C) to GL(2C) by

Dhjl(ρA) = ρ2h + 2jίDhh(A)

Using x = x2x~1 we obtain the final result (d =

x2 + isx°Γd~h~J2Dhjί(ίx) (6.22)

The matrix elements of Dhh(ix) are monomials in the coordinates xμ.

B. Scalar Product

For functions φ in δλ we introduce a sesquilinear form by

(<Pι> <P2) = ίdx1dx2<^φί(xί\ Δλ+(x^- X2)φ2(x2)> (6.23)
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Herein <,> is the scalar product on the vector space Eλ introduced with (6.4'). We
note that the sesquilinear form (6.23) is formally G-invariant :

Let Φ2 = Aλ

+φ2. Because of the intertwining property (6.12) of Aλ+

Let g - 1X! = xyman, whence dxl = \a\~4dx. Then this is

(φ l ϊφ2) <l e d

It remains to investigate the question under what conditions on λ the candidate
(6.23) for a scalar product is well-defined and positive semi-definite (for suitable
choice of n+(λ)\

Ideally, the scalar product (6.23) should be well defined and positive on all of the
representation space δλ. We shall be less ambitious for the start. Functions φ in δλ

are infinitely differentiable functions on G. It is therefore clear that their restriction
φ(x) to X defines functions on Minkowski space {xμ} that are oo differentiable in the
coordinates xμ. We shall therefore also write φ(x\ Δ(x\ dx = d*x in place of φ(x),
A(x\ dx etc. That is not all, however. In addition φ(x) must admit certain asymptotic
expansions when some or all xμ-» oo. We will not write them down explicitly, but we
note their existence. They come from the requirement that φ(g) are oo differentiable
also at those points g which map xμ = Q into points of M4 at infinity of Minkowski
space M4.

Consider now the subspace £fλ of vector- valued Schwartz test- functions on X
(or M4) with values in Eλ. They can be extended by co variance equation (6.5) to oo
differentiable functions on G which vanish with all their derivatives at points g in G
that map xμ = 0 into points at infinity. Thus £fλ C $λ is a proper subspace of $λ which
is not G-invariant. Indeed it is clear that δλ is the smallest G-invariant space
containing £fλ. £fλ is however invariant under the Poincare subgroup with dilations,
and it is also invariant under the Lie algebra cj of G which acts by differentiation
with respect to g on functions φ(g) on G.

Elements of Sfλ possess a Fourier transform (F.T.)

φ(p)=$dxeίpxφ(x) with px = pμx
μ (6.24)

We see from (6.22) that the intertwining kernel is a distribution in £f'λ and possesses
therefore also a Fourier transform. We are now going to determine it.

Let p = (£, 0) and U ~SU(2) the q.m. rotation group U C M, it leaves p invariant.
The generators of U in the (/Wi) representation of M will be denoted by
J = (J1J2J3). We may decompose the vector space Eλ into irreducible subspaces
with respect to U

Eλ= £ ΠsEλ so that J2ΠsEλ = s(s+l)ΠsEλ (6.25)
S=\h-J2\

Πs are projection operators that project on the irreducible subspace of Eλ which
transforms according to the 2s -1-1 -dimensional representation of U.

Πs = 77s*, nsnl = dstn
s (6.26)
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For p in V+9 the open forward light cone, define Πs(p) by

Πs(Λ(rcί)p) = Dhh(π\ ~ l)*ΠsDhh(m ~l) for m e M, p = (E, 0) . (6.27)

For reasons of dilational and Lorentz-invariance, the Fourier transform of the
intertwining kernel (6.22) will be of the form [λ = (d, — A — J2)

 as usual] :

Aλ

+(p)^^dxeί^Aλ

+(x) = Γ(d-jί-j2-lΓl 'if κs(λ)Πs(p)(p2Γ+

2+d

s=\Jι+h\

where

(P2Γ2+d for d>J!+j2 + l (6.28)

(p2)jl +J2Πs(p) are polynomials in pμ A λ

+(p) is therefore an integrable function for the
indicated range of d. We will fix the normalization factor n+(λ) in the intertwining
kernel by imposing the

normalization convention α^ + h = 1 (6.29a)

The c-number coefficients αs(l) will be determined in Appendix D, the result is

λ = (d',-h,-j2) (6 29b)

The sesquilinear form (6.23) becomes now

(φ1,φ2) = Γ(d-Λ-J2-l)-1 'Ϋ xs(λ) $ d4p(p2Γ2+d

S=\Jl-J2\ V +

(6.30)

The boosted projection operators Πs(p) are positive and the integral exists for
d>j1 +7*2 + 1. Equation (6.30) will therefore define a positive semi-definite scalar
product for d in this range if all αs(/l)^0. From the explicit expression (6.29) we
see that this will be so in the following cases

for all φe£eλ if (6.31)

either

or

7\=0 and/or 72

=^'

In the second case there is only one term in the sum over 5 in (6.30).
It remains to investigate the limiting cases j2 = 0, d=jl + 1 andji =0, d =j2 + 1.
Suppose j2 =0. Then Πh = 1 and

(P

2rΠ^(p) = D^(p}^Π^(p} as V-^0 (6.32)

through V+.
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Here ΠJ

hQl is the covariantly normalized projection operator on the unique
eigenstate (1-dim. subspace) in Eλ of the helicity Jp/pQ to eigenvalue j\.Ίt is
normalized according to

To verify the first of Equations (6.32) take m of the form (2.21) with A = (p/ J
and use the fundamental formula (2.20) of spinor calculus, viz. A*~1pA~ί

— (Λ(A)pY. The second assertion of (6.32) is well known from the theory of massless
particles [11].

The second case jl = 0 is analogous. To take the limit in (6.25) we use a standard
formula for the ^-function [16] and insert (6.32). The result is

for A = (d,-j1,-j2)

=o or J2=θ (6 33a)

The scalar product becomes then

(<Pι,Φ2)= ί ^pδ(p2)<φMΠJ

h^
h(p)φ2(p)>^

p0>0

for d=Λ+j2 + l, Λ = 0 or J2 = β (6 33b)

It is positive semide finite since also ΠJ

hel(p) is a positive operator.

Cy'Poincare — Content and Irreducibίlίty

Using the positive semidefinite scalar product (φl9φ2) introduced in the last
subsection we can complete £fλ to a Hilbertspace 3^λ after dividing out zero norm
vectors. The elements of J^ will be equivalence classes of functions, the equivalence
relation will be denoted by ~ and will be explicitly given below.

To exhibit the Poincare content of Jfλ let us define to every p in the forward

lightcone V+ a boost L(p)e SL(2(C) which takes p = ( J/p^, 0) to p. Explicitly we may
take

JXp) = (p/l/PI)i since then L(p)pL(p)*=p (6.34)

by the fundamental formula of spinor calculus (2.20).
To every φe£fλ we associate a Wigner wave function Ψ(p) with values in Eλ

defined for pεV+ by

Ψ(p) = iy^(L(p)Γ1φ(p) (6.35)

Let us introduce a basis esm in Eλ which consists of orthonormal simultaneous
eigenvectors of J2 and J3 (J = generators of the rotation group) to eigenvalues
s(s -I- 1) and m respectively. We may then expand

'if (̂P)̂  (6 35/)
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with complex functions Ψsm. They transform under homogeneous Lorentz-
trans formations in the Wigner way,

for m = o
*; pεV+. (6.36)

Ds is the (2s + l)-dimensional representation of the q.m. rotation group SU(2). We
leave it to the reader as an exercise to rederive (6.36) from the transformation law
(6.9) with g ~ 1 = m e M. The label s has the physical significance of Lorentz-in variant
spin.

We can reexpress the scalar product (6.30) in terms of the Wigner wave functions
Ψ(p). Since Πtesm = δstesm we obtain for the norm

(p)\2 (6 37)

Consider first the case when d >jί +j2 + 2 or jJ2 = 0, d >jί +j2 + 1. Then all as(λ)
> 0. Thus (φ, φ) = 0 if and only if all Ψsm(p) = 0 for pe V+ . Translated back to wave
functions φ, this means that the Hubert space $?λ consists of equivalence classes of
functions with equivalence relation ~ as follows :

Jf^.φ^O iff Φ!(P) = O for all peV+

provided λ = (d\ -jl9 -J2) with d>jί +j2 + 2 oτjJ2 = Q9 d>j1 +j2 + 1.

lϊjJ2ή=Q and d=j{ +j2 + 2 then αJ 1+>/2 = l but αs = 0 for s<jι_ +j2.
Thus (φ,φ) = Q iff fijl+J2Ψ(p) = Q. Translated back this means that jf?λ consists of
equivalence classes of functions as follows

3Hrλ : φ -Ό iff Πh + h(p)φ(p) = 0 for all p e F+

in the case Ί Φ O , J2^09 d=jl+j2 + l.

Lastly consider the case d =j^ +j2 + ίJJ2 = 0. We see from (6.33) that J^λ consists of
equivalence classes of functions

jTλ:φ~Q iff JTίiΓj2(p)Φ(p) = 0 for p2=0,Po>0

in the case jJ2 =0, d =j^ +j2 + 1

From Equation (6.37) resp. (6.33) we can also read off the Poincare content of the
representation space 3fλ. The result is as indicated in Section 1.

Let us next turn to the question of irreducibility. If either jJ2 =0ord =jί +j2 + 2
irreducibility of ̂ λ is obvious since the representation restricts to an irreducible
representation of the Poincare group with dilations. It remains to investigate the
case d >j^ +J2 + 2, jJ2 ή= 0.
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We start from the infinitesimal form of the transformation law (6.9). We denote
the con formal generators obtained from Γ(g) by Kμ, Pμ, Mμv, D as usual while the
generators in the finite dimensional representation Dhjl of the Lorentzgroup will be
denoted by Σμv — they act in the vector space Eλ.

The infinitesimal form of the transformation law (6.9) reads then as follows

Pμφ(x) = ίdμφ(x) Mμvφ(x) = i(xμdv - xμdv - ίΣμv)φ(x)

Dφ(x) = ί(4-d + xvd
v)φ(x] (6.370

Kμφ(x) = i([8 - 2d]xμ + 2xμxvdv - x2dμ - 2ixvΣ
μv)φ(x) .

In view of the general result of [1] it suffices to check validity at xμ = 0 (identity in
X\ everything else follows then from covariance. We have from (6.9) and (6.4)

for meM

for aεA;

(T(n)φ)(0) = φ(0) for n e J V . (6.38)

for Lorentztransformations m, dilatations a and special conformal transformations
n, respectively. The infinitesimal form of this is (6.37') with xμ = Q.

Let us introduce matrices (J1, J2, J3) = J, (JV1, N2, N3) = N

Jl = 2£ijkΣJk > Nk = ΣQk (sum over repeated indices, ε1 2 3 = 1)

We wish to derive from (6.37') the action of infinitesimal special conformal
transformations Kμ on Wigner wave functions Ψ(p). It is defined in terms of the
action (6.37) of Kμ by

KμDhh(L(p))Ψ(p) =

We have

\P\

where

m=}/p2,

A straightforward computation leads from the Fouriertransform of (6.37') to

= ty = {-2dd()-2pvdvd
0+p0Ώ + m-1

= Q) = {- 2dd - 2pvd
vd - 2i(J x 8)

Q). (6.39)

It suffices to have the tranformation law at p = 0 since Kμ transforms as a 4-vector,
viz.

for Lorentz transformations meM. (6.40)
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And we know from Equation (6.36) that Lorentz transformations do not make
transitions between spin states. Neither do dilatations nor translations.

We insert the expansion in basis vectors (6.35') and make use of the explicitly
known action of the generators J, N on basis vectors esm oϊEλ (cp. Appendix A). As
a result we obtain

•Cβ+Λ+lim+...}ysw(p = 0) (6.41)

where the dots stand for terms proportional to es >m, and Cs = Cj

s

2Jί are the constants
given by Equation (A.I) of Appendix A.

We see that K3 makes transitions between states with different 5. The
coefficients oϊ es_i m and es+ 1>m do not vanish (identically in m) for d>jl +j2 + 2
unless

S = Smin = l/l -72 1 ΓeSP S = 5max =h +J2 '

Therefore there exists no invariant subspace and the representation is irreducible.

D. Integrabilίty

So far we have demonstrated existence and positivity of the scalar product (φί9 φ2)
only for Schwartz test functions φ in ίfλ. But unfortunately £fλ is invariant only
under the action of the Lie algebra g of G but not under the group G itself (cp. Sec.
6B). Therefore we are faced with the question whether our representation of the Lie
algebra is integrable to a unitary representation of the group G. [It follows then a
posteriori that the scalar product is defined and positive for functions φ in δλ, since
$λ is the smallest G-invariant space containing 5̂ ]. This problem is solved by the

Lemma 3. Suppose the scalar product

exists and is positive for functions φ such that

φ(p} = \ ds$d3xe-pos+ίpxχ(s,x) for p2^0,p0>0. (6.42)
s>0

χ an infinitely differ entiable function with values in Eλ and compact support contained
in the half plane s>0. Then the representation of Q is integrable to a unitary
representation of G.

This lemma is a corrolary of the theorem of Liischer and the author on analytic
continuation of contractive Lie semigroup representations (generalized Hille
Yosida theorem) [3]. A proof of the lemma is implicit in Section 4 of Ref. [7].
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Remark. In purely group theoretical language what is involved here is this:
Functions of the form (6.42) with suppχ in a given compact subset of the upper half-
plane 5>0 form a dense set of equi-analytic vectors for the hermitean generators of
G. Integrability follows then from a classic result of Nelson's [13, 21].

It is evident from the explicit form (6.28), (6.33a) of the intertwining kernel Δ\
that the hypothesis of the lemma is fullfilled. We have thus constructed unitary
representations of the universal covering group G of SU(2,2).

E. Another Realization

Let 3Fλ the space of (generalized) functions of the form

Φ(x) = $dyAλ

+(x-y)φ(y),

$λ is the function space introduced at the beginning of this section. 3Fλ is a
representation space for G. Since the F.T. A λ

+(p) has support concentrated in V+9 the
closed forward lightcone, Φ(x) are boundary values of holomorphic functions in the
field theoretic tube domain. In the limiting cases jJ2 Φ 0, d =jt +j2 + 2 anάjJ2 = 0,

they satisfy in addition certain differential equations. For instance

= 0 if Λ/2 = 0, ί=Λ+Λ + l (6-43)

Since Φ fixes uniquely the equivalence class of φ in ^fλ, the scalar product (6.23)
makes 3FK into a Hilbertspace which carries the same unitary representation of G
constructed before. In practical applications it can be useful to deal with the space
3Fλ of generalized functions instead of the spaces of equivalence classes of functions
in δλ. RϋhΓs work deals with functions in 3Fλ.

As our last task we should show that the UIR's of G in the Hilbertspaces #?λ

constructed so far have lowest weights λ. If so, it follows by the uniqueness theorem
of Section 4, that we have constructed all the inequivalent UIR's of G with positive
energy. We shall instead refer to RϋhΓs work [5]. It follows from his results (and the
remarks above) that all our representations constructed so far are (linearly)
equivalent to analytic representations that have explicitly known lowest weight
vectors (viz. constant functions) with the right weight λ.

We mention one last result without detailed proof. A UIR of a semi-simple Lie
group G is said to belong to the discrete series if (and only if) its matrix elements are
square integrable on the group. It is known that the discrete series is nonempty iff G
has finite center Γ and possesses a compact Cartan subgroup [13]. Quotient groups
G/Γ" with Γ" C Γ of our group G possess these properties if their center Γ/Γ" is finite.
This motivates the

Definition. A unitary irreducible representation T of the semi-simple Lie group G
with denumerable center Γ is said to belong to the interpolated discrete series iff

$ dg\(Ψ,T(g)Φ)\2«v
G/Γ

for some nonzero vectors Ψ, Φ in the representation space, (dg is Haar measure on
the group G/Γ).
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We note that the definition is meaningful since the integrand is invariant under
g ->gy for g 6 G, γe Γ (cp. Sec. 3). It can therefore be considered as a function on G/Γ.

The representations of G constructed in this paper belong to the interpolated
discrete series if and only if

d>h+J2 + * (6 44)

Sketch of Proof. There is a canonical way of reconstructing unitary irreducible
representations as (irreducible parts of) induced representations on G/K. [Here we
may consider the space of functions f*(g) = (Ωm, T(g~v)Ψ\ m = (m1m2); cp. Sec. 5].
Representations with lowest weight give rise to analytic representations in this way.
Square integrability furnishes a scalar product on this function space. Rίihl has
constructed the analytic representations on G/K and has found the condition (6.44)
for the scalar product in question to converge [5].

Acknowledgement. The author is indebted to M. Lϋscher for discussions.

Appendix A: Finitedimensional Representations of SL(2C)

Let J and N the generators of rotations and Lorentz boosts respectively. They
satisfy the usual commutation relations

[J1, J2] = U\ [_N\ JV2] = - ίJ3 , [ J1, AT2] - ίN3 and cyclic.

Write

J±=Jl±ίJ2; N±=Nί±ίN2.

Finite dimensional representations of SL(2C) are labelled by (J1J2)' > 2/ l5 2/2

nonnegative integers. A basis in the representation space may be labelled by s, m,
with s(s + 1) the eigenvalue of /2, and m the eigenvalue of J3 : s = \j\ —J2\ J\ +J2>
m= — S...S in integer steps.

According to Naimark [20] the action of the generators on the basis vectors eSf m

is

and for the boosts

with

As = ίkc/s(s+l), C, = (i/s) {(S2~k2)(s2-c2)/(4s2-!)}- (A.I)

1» k=Jι~J2> s = \k\...c-lin integer steps.
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The sign of the square root in Cs is a matter of phase conventions. It is costumary to
have the generators Nk, and therefore also Cs, change sign when one interchanges

Examples:

Appendix B: Clebsch Gordan Coefficients for SU(2)

The vector coupling coefficients C(jί^Jί—^;m — m2ym2) in the notation (and
phase convention) of Rose are given by [15]

(B.I)

Appendix C: The Homogeneous Space M=G/MAN

Let MAN the (nonminimal) parabolic subgroup of G consisting of
Lorentztrans formations meM~SL(2(C), dilations aeA and special conformal
transformations neN. MAN is simply connected and therefore also contained in G.
Consider the Iwasawa decompositions G~jL4pΛΓp and M~UAmNm with Av

= AmAι Np = NmN (see Sec. 2). It follows that the homogeneous space

M = G/MAN ~ K/U c* 1R x S3

S3 the unit sphere in IR4. Thus M may be parametrized as

M = {(τ, g), — oo < τ < oo, ε = (ε1ε2ε3, ε5) a unit 4-vector} .

Elements of K^JRxK 1 ? act on M as translations of τ and rotations of ε. In
particular

:τ->τ ε-^— ε.

The center Γ = Γ1Γ2 of G acts therefore on M as follows : Γί acts trivially, while Γ2

consists of elements of the form 72

y2 = $eίπHo takes τ-*τ + π, ε-^-ε

A domain F contained in M is called a fundamental domain (with respect to the
discrete subgroup Γ2) if

= (J
yeΓ2

M= ( yF, FnyF = 0 for y^e in Γ2.
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A fundamental domain F may be chosen as follows :

F = {(τ,ε)eM, — π < τ < π , β5> — COST}

It may be identified with Minkowski space M4 through the reparametrization

o sinτ i £ί c Λ^\xϋ = - « ; xl= - =• (ι = 123)
cosτ+ε cosτ+ε

translations xeX map F into itself. They translate coordinates xμ. For further
details see e.g. Section 7 of Ref. [3].

Consider now the equation encountered in Section 6A.

x , x ' i n J f , mane MAN, y = y%

We wish to determine N as a function of x. Apply both sides of the equation to
the identity cosete = (0,έ) έ = (000, 1). Evidently, by what has been said above

x'ymaneey^F

Since we know that the integer N is a Lorentz-invariant, it suffices to consider 3
cases for the right hand side

x%<0: take x° = 0 then xe = (09s) with ε 5<l

therefore ^-1xe = (0, — ε) with — ε5> —1 = — cosO.
Thus Λ'^eeF whence N = 0.

xμxμ>0, x°>0: take jc = 0, x°>0. Then xe = (τ,έ) with 0<τ<π.

therefore ^~1x^ = (τ, -ε) withO<τ<π, έ5=-(-έ5) = l.

Thus 3$~ixeeγ2F whence N=ί.

xμxμ > 0, x° < 0 : In the same way one finds N=—l.

Appendix D: Fouriertransform of the Intertwining Kernel

Our task is to determine the intertwining kernel Aλ

+(p) in momentum space. We
know already that it will be of the form (6.28). Consider

= Γ(d-j1 -J2- 1)'1 Σαs(A)77V);2+d P.I)
s

Instead of working out the Fourier transform of (6.22) it is easier to work out the
coefficients αs from the requirements of infinitesimal conformal invariance. In
particular, we must have

(D.2)

for arbitrary Wigner wave functions Ψ(p)= ^esmΨsm.
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K3 is given by Equation (6.39) or (6.41), and K3' is obtained from it by
substituting d-+4 — d and reversing the sign of boost-generators N. This is in
accordance with the transformation law (6.10) of Φ = Aλ

+φe ̂ λ which differs from
(6.9) for φeSλ.

The projection operators

From Equation (6.41) we find

Q)

Σ {αs_1(2-d-S)[(5-m)(S-f m)]*CA.lf

while

The dots stand in each case for terms proportional eSfM. Cs are the constants [for the
OVi) representation] given in Appendix A. By comparison we find two identical
conditions on αs, viz.

d-2-s
-αs for s = \Ji~J:

This is a recursion relation whose solution is

s ( d — 2+j1-\-j2)...(d + s—l) jί+J2' 1 2 1 2
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