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Abstract. Two theorems are proved—the first and the more important of them
due to Sarkovskii—providing complete and surprisingly simple answers to the
following two questions: (i) given that a continuous map Tof an interval into
itself (more generally, into the real line) has a periodic orbit of period n, which
other integers must occur as periods of the periodic orbits of T? (ii) given that n
is the least odd integer which occurs as a period of a periodic orbit of T, what is
the "shape" of that orbit relative to its natural ordering as a finite subset of the
real line? As an application, we obtain improved lower bounds for the
topological entropy of T

Consider an order relation \- on the set TV of all integers ^ 1, defined as follows. Let
N = AυB, A = {2nl:n^QJ^3Joάd}, and B={2m:m^Q}. Order A lexicographi-
cally with increasing n and / order B with decreasing m, and let A precede B. We
have

The main result of [1] is

Theorem 1 (Sarkovskii). Let T: IR— >IR be a continuous mapping which has a periodic
orbit of period n. Then Thas a periodic orbit of period m for every meN such that
n\-m.

The main aim of these notes is to make the contents of [1] available to those who do
not read Russian. The reader should be warned that this is not a translation : some
new results, closely related to Sarkovskii' s work, are presented in Sections E and H,
and the material of [1] has been rearranged and modified to suit my taste and to
avoid one or two mistakes which have crept into Sarkovskii's argument.
Nonetheless, I believe that all the main points of [1] and here, and I have tried not to
omit anything potentially useful.

The proof of Theorem 1 occupies Sections A-D below. Section E contains the
proof of the fact that the "minimal" odd orbits are, up to an order preserving or
order reversing isomorphism, uniquely determined by their period. This result
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(whose proof depends heavily on Sarkovskii's ideas) is not taken from [1] and is
probably new. The construction of continuous maps which have a prescribed set of
periods is described in Section F. Section G contains some further comments and
outlines the differences between these notes, [1], and the related portions of [3] and
[4]. Finally, as an application of Sarkovskii's theorem and our result on minimal
orbits, we show in Section H how to strengthen the recently obtained [2] lower
bounds for the topological entropy and the number of periodic points of T,
simplifying at the same time the proofs of these estimates.

I should like to thank Sheldon Newhouse for bringing Sarkovskii's work to my attention and for
several very helpful discussions, and Joel Lebowitz for his interest and encouragement during the
preparation of these notes.

A. Definitions and Remarks

If T:X^X is a mapping of a set X into itself, the orbit of xeX relative to Tis the set
ω(T, x) = {x, 73c, T2x,...}. An orbit ω of Tis periodic if it is finite and if Trestricts to a
bijective map ω->ω the period of ω is its cardinality # ω. We write Per(7^ fe) for the
union of all periodic orbits of T with period /c, and FixT=Per(7^ 1) for the set of
fixed points of T. Clearly

(1) xeFix(T fc) iff ω(T,x) is periodic and its period divides k;

(2) Perffi n) CPer(jT, n/h.c.L (n, m))

(3) If p is prime, then Per(T,pn+m)=Per(Tpn,pm).

From now on we assume that X = IR and that T is continuous.
We write IR= Fix(T)u UvD, where U = U(T) is the open set {xeIR: Tx > x} and

D = D(T) = {xe^: Tx<x}. If ω is aperiodic orbit of T, we write ωmin = minω, ωmax

= maxω, ωt/ = max(ωnLΓ), and ωD = min(ωnD) (see Fig. 1). If Fix T=0 then clearly
either IR= U or IR = D, and so

(4) If Thas a periodic orbit, then it has a fixed point.

Fig. 1

B. Existence of Arbitrary Periods

(5) Let L and R be two closed intervals such that maxL = /l^ρ = minR. If (i)
TR and R C TL, and (ii) λ < ρ or T2λφR, then Per(7^ n) Φ 0 for all n ̂  1.

Proof (Li and Yorke). Put Ik = L if k = (n— l)modrc, Ik = R otherwise. Since
Ik+ ! C T(Ik)9 we can find a sequence (Ak) of closed intervals such that A0 = /0 = jR,
Ak+lC Ak, and Ί*Ak = Ik. As TnAn = In = R^An,T" has a fixed point a e An. We have

and Tn~laeL.

If T-^aeR, then Tn"1a = λ = ρ and T2λ=TaeR, an impossibility. Hence
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(6) If T3α^α<Tα<T2α(or T3α^α>Tα>T2α) for some αeIR, then Per(7^)Φ0
for all n^l [4].

Proof. Take L = [α, Tα], R- [Tα, T2α] and use (5).

In particular

(7) If Per(η 3) Φ 0, then Per(7^ n) Φ 0 for all n ̂  1.

Proof. Choose de [c, α] such that Td = b and put L = [c,d~\, R = [d, b].

(9) Let ω be a periodic orbit of T If Thas a fixed point between ωmin and ω17 (or
between ωD and ωmax), then Per (7»Φ0 for all n^l.

Proof. Let ωmin<c<ω l /, Ύc — c, A = {xeωr^U:x>c}. Choose αe^4 such that
{Tx:;xe,4}. Let d^c be the greatest fixed point of T in [c, α]. Since

:^d, the sequence α, Tα, T2α,... cannot remain forever in [d, Tα]. But if
i, Tα], then either xe^ and Tx^Ta.oΐxeD and Tx<x^Ta. Hence there

exists be[d, Tα] such that Tb<d. Since Tα>α, b<α would force a fixed point of T
between b and α, contrary to the definition of d. Hence Ίb<d<a<b^Ta, and we
may use (8).

(10) Let ω be a periodic orbit of T If ωD < ωu, then, by (9), Per(7^ n) Φ 0 for all n ̂  1.

For example, if ω is as in Figure 1, then T has periodic orbits of arbitrary periods.

(11) If Per(η n) Φ 0 for some odd n ̂  3, then Per(T2, m) Φ 0 for all m ̂  1.

Proof. Let ω be a periodic orbit of Twith period n since /t is odd, ω is also a periodic
orbit of T2. Let

ωυ

2 = max(ωn l/(T2)), of = min(ωnD(T2)).

By (10), we may assume that ω^<ωf. Similarly, if ωD<ωu, then Thas arbitrary
periods by (10) and so T2 has arbitrary periods by (2) we may therefore also assume
that ωu < ωD. Note that then ω has no elements between ωu and ωD and between ω\
and ωf. There are therefore three cases consider: ωmin ̂  ω^ < ωf ̂  ωu < ωD ̂  ωmax,
ωmin ̂  ω17 < ωD ̂  ωu

2 < ω^ ωmax, and ωmin ̂  ω^ = ωu

2 < ω% = ωD ̂  ωmax. But T (and
hence T2) has a fixed point y between ωu and ωD, and so in the first two cases T2 has
arbitrary periods by (9). It remains to consider the third case. Let αeω, Ta = ωmin.
Then α>Tα and so a>ωD. Let beω, Tb = a: then b>T2b = ωmίrι, and so
b > 0)2 = ωD. But then b>Tb = α^ ωD. Let c e ω, 7c = ωmax. Then
T2b = ωm{n^c^ωv<Tb. Hence there exists delRsuch that Tb^d<b and Td = c.
We have T2b<y<d<b^T2d, and so T2 has arbitrary periods by (8).

C. Proof of the Main Theorem

(12) If Thas a periodic orbit of period ^ 2, then it has a periodic orbit of period 2.

Proof. We assume that Per(7^ 2) = 0 and prove by induction that Per(7^ n) = 0 for all
π^2: Let Per(7;2)=... =Per(7;n) = 0, and let αePer(7;n+l). Let Ck be the
connected component of T*α in IRXFixT As Fix(T) = Fix(T2)- ... = Fix(T"), the
sign of Tpx — x is constant on each Ck for p^n. We claim that, for xeuC f c and
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For if Ck is between two fixed points, then Ck C TnCk for all m ̂  1, and so there exists
y such that {y, 7>, ..., T"j;} C Ck. If Ck is (say) on the left of all fixed points of T9 we
have Tpx >xonCk: else x > Tpx > T2px > ... and Ck could not meet a periodic orbit.
This proves (*). If now say α<Tα, then a<T2a. As Tn(Ta) = a<Ta, we have
a<T2a<Ta. But now Tn-\T2a) = Tn+la = a<T2a, Tn(T2a)=Ta>T2a, a con-
tradiction.

(13) If Per(7;2M)Φ0, then Per(7;2/c)Φ0 for O^fc^n.

Proo/ Let ro = 2*-1. By (2), Per(Tw,2II"k+1)*0. Now use (12) and (3).

(14) If Per(7;2k/)Φ0 for some odd ί^3 and some fc^O, then Per(η2M)Φ0 for all

Proof. Use (2), (12), and (13).

(15) Lemma. Let Per(X»φ0 for some rc^3, n odd.
(a) 7/fc^2n, £/zerc Per(7;fc)Φ0.
(b) If k>n9 then Tk has a fixed point ρ such that #ω(T9 ρ)^3.

The proof is given in Section D.

(16) Let Per(7; n) Φ 0 for some odd n ̂  3. Then Per(7; fe) Φ 0 for all odd k^n.

Proof. Let ρ be as in (15b) and let r= φω(T,ρ). Then r^3, r divides fc, and r is odd. If
r = fc, we are done. Otherwise, r^fe/3. By (15. a), Per(7^m)Φ0 for all m^2r and so
Per(7;/c)Φ0.

(17) If Per(T2, n) Φ 0 for some n ̂  2, then Per(^ 2n) Φ 0.

/ Let αePer(T2, n\ r = Φ ω(7^ a). Clearly r^n and r divides 2n. If n is even, then
T"<2 φ α and r = 2n : we may assume that r = n and that n is odd. But then n ̂  3 and
the result follows from (15. a).

(18) If Per(7»φ0 for some odd n^3, then Per(7;2/c)Φ0 for all k.

Proof. This follows at once from (11) and (17).

(19) Let Per(7;2"/)Φ0 for some rc^O, ^3, / odd. Then Per(7;2m/c)Φ0 whenever
m > n or m = n and k ̂  /.

Proo/ For n = 0, this is just (16) and (18). Assume that (19) has been proved for n—1.
By (2), Per(T2, 2n~ ll) Φ 0. By induction hypothesis, Per(T2, 2m~ 1/c)φ 0 for m > n and
m = n, k^l. Now use (17).

Theorem 1 now follows at once from (13), (14), and (19).

D. Proof of Lemma 15. Remarks

Let ω be a periodic orbit of T, of odd period n^3. By (10), we may assume

(a) ωu<ωD.

As n is odd, there exists a such that either

(b) {
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or {α, TαjCωnD; without loss of generality we may assume (b). The rest of the
argument applies to any periodic orbit satisfying (a) and (b) the fact that n is odd
is not used again.

We claim that there exists b and c in ω and an integer m such that

(c) Tnc^a<Ta^b<c^Tb and Tc<Tα;

(d) l^m^n-2.

To show this, let q ̂  2 be the smallest positive integers such that

(e)

for some beω. Taking b = Ta, we see that 2^q^n—l. As Tq~1Tb^a, we cannot
have Tb<T2b by the minimality of q. Hence TbeD. Let 1^.2 be the first positive
integer for which Tlbe U. Thus {Tfo, ..., T*"1^} CωnD. Since be ωnt/, (a) implies
that b<Tl~1b^Tb. Put c = Tl~lb and note that Tee ωn 17 and so Tc<T2c. But
Tq~lTc=Tqb^a and so Tc<Ta by the minimality of q. Now put m = q — l+l.

Next, we assume (c) and put p — m + 3. There exists ξeIR such that

(f)

(g) Tx>T2ξ for T2ξ^x<Tξ.

(Choose 77 in [b, c] such that Tfy = c and the smallest C in [77, c] such that Tζ = ηι note
that Tx > η iϊ η^x<ζ. Now choose ξ in [77, £] such that Tξ = ζ.)
Observe that T2 maps [£, Tξ] onto a larger interval, and so T2 must have fixed
points between ξ and Tξ : let ω: and ω2 be the smallest and the largest of these. We
have

(h)

(i)

We find sequences (αf) and (j8f) such that

(j) ξ-α0<α1<...<α I.<...<ω1^ω2<...<A < .

(k) T2ai = ai_1,T
2βi = βi_1ι

(1) T2]αi,ω1[ = ]α ί_1,ω1[,Γ2]ω2,A[ = ]ω2,j8ί

Next, find λί and A2 between α and T2ξ such that

(m) Tλ1=ωl and Tx<ω! for α^

(n) Tλ2 = ω2 and Tx>ω2 for

Finally, we find sequences (σ ) and (τf) such that

(o) α^σ_ 1 <σ 0 <...<(j ί <...<λ 1 ^Λ, 2 <... <τ^< ... < τ 0 < τ _ 1 ̂

(p) Tσ f = αf and Tτf = ft for / ̂  - 1

(q) 7Ίσιαι[ = ]α ί,ω1[,Γ]λ2,τ ί[ = ]ω2,j8ί[ for z^-1,

where we take α_ ί = T2ξ and /?_ i = T*ξ.
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We are now in a position to prove (15).
Let first k = p + 2i, /^O. We have Tkλ2 = Tk~1ω2>λ2by (g) and because ω2 is a

fixed point of T2; Ί^τi = Tp-lT2iβi=-Tp-^Tξ<τi. Hence Tk has a fixed point ρ
such that λ2<ρ<τί. Since, by (q), Tρe]ω2, /?f[, (1) implies that

Hence, by (i),

(r) ρ<T 2ξ<ω 2<Tρ<T 3ρ<...<T 2 ί + 1ρ<Γ 2 l ' + 3ρ.

Let r=Φω(7^ρ). If rrg2z + 3, then r must be even and ^2i + 2, contradicting
T+1ρ>Tρ. Hence

(s) r=

If k = p + 2f+l , z^O, we find as before that Tfc has a fixed point ρ such that
σi<ρ<λl, and therefore

(t) ρ<T2ξ<ξ<T2ί+1ρ<T2ί-1ρ<...<Tρ.

By (g), we also have T2l + 2ρ>T2ξ. As above, we conclude that

(u) r=

applies and again r^3.
Finally, if /c^2π, then r>(k — ri)^k/2 and so, since r divides /c, r = k. This

concludes the proof of (15).

Remark 1. Repeating the above argument for i= — 1 we obtain ρ1 and ρ2 such that
Tp-lQι=Q» Tp~2ρ2 = ρ2, Tρ^ρ, and Tρ2Φρ2.

Remark 2. Sarkovskii shows that if p is even, k = p + 2i + 1, i ̂ 0, and ρ is the greatest
fixed point of Tk in [σί? AJ, then # ω(7^ ρ) = k. For assume that r < k. Since k is odd
and r divides /c, r is odd and k — r = 2q. By (1), ai<Tρ<ω1 implies that Tρ = T2qγ for
some y such that αf +ί < y < ωv By (1) and (i), y > T2qy = Tρ. Hence there exists δ such
that ρ <δ < λ1 and Tδ = γ. But then Tkδ = T~ 1 Tk~rTδ = Tρ=ρ<δ. As Tkλ1 >λί9

this would force a fixed point of Tk between δ and Λ,1 5 contradicting our choice of ρ.

The results of this section are summed up in the next two lemmas.

(20) Lemma. Let m = m(T) be the smallest positive integer1 such that
^Tb and Tc<Ta for some α, b, and c in JR. Letp = p(T)be the

smallest positive integer 1 such that Tpξ^ a < Ta ̂  T2ξ < ξ < Tξ < T3ξ and Tx > T2ξ
for every x in [T2ξ, Tξ\_Jor some aeJRand ξeR Then (1) p^m + 3 (2) Ifk^p- 2,
then there exists ρεΊR. such that Tkρ = ρ and Tρ Φ ρ (3) Ifk §; 2(p — l ) o r ί f p is even and
k>p is odd, then Per(7;/c)Φ0.

(21) Lemma. Let ω be a periodic orbit of Twith (not necessarily odd) period n^3.
Assume that ωu < ωD and that there exists aeω such that a<Ta< T2a. Let q = q(ω) be
the smallest positive integer such that Tqb ̂ a<Ta^b<Tb for some a and b in ω. If
m = m(T) is defined as in (20), then

Or oo, if no such integer exists
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E. Minimal Orbits

We say that an orbit ω of Tis minimal if (1) ω is periodic, (2) n = φω is an odd
integer ^3, and (3) P(T,m) = θ for every odd integer m such that 3^m^n — 2.

In this section we prove that, for every odd integer n *t 3, there exists only one
"type" of minimal orbit (see Fig. 2). More precisely, note that the restriction of Tto a
periodic orbit ω is a cyclic permutation of a finite subset of R Up to an order
preserving isomorphism, there are exactly (n—ί)\ such permutations. We shall
prove that only two of these (n— 1)1 permutations (say M and P) can possibly be
order-isomorphic to a minimal orbit of a continuous mapping R->R Moreover,
M^P if we allow order-reversing isomorphisms.

Let ωx and ω2 be two finite totally ordered sets and let T± :ωί-^ωΐ and
T2 : ω2->ω2. We say that 7i and T2 are ίsomorphίc if there exists a bijective map
φ :ω1->ω2 such that (1) φ is either order preserving or order reversing; and (2)

Theorem 2. Let ωbea minimal orbit of a continuous map T : R-»IR,
Then T\ω is isomorphic to the permutation M = Mn of {1,2, ...,n}9 where M2s+1(l)

Thus M5 is the cyclic permutation (1,3,4,2,5), M7=(l,4,5,3,6,2,7), etc. (see
Fig. 2).

Fig. 2 Mn

Proof. Let ω be a minimal orbit of i; # ω = n = 2fc + 1. Without loss of generality, we
may assume that rc^5, Φωn(7>ΦωnD, and ω = {l,2, ...,n}. There exists αeω

such that

{0, ΓαjCωnL/.

By (10), ωc/<ωD, and so
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Assume first that a Φ &>min. Then Tsa = ωmin for some 5, 3^s^n— 1. Taking b=Tam
Lemma (21) we see that, in the notation of that lemma, q^s— I rgn — 2. But then, by
Lemma (20), there exists ρ e IR such that Tn~2ρ = ρ,Tρ + ρ. Since r= φω( i; ρ) divides
ft — 2 which is odd, r is an odd integer ^3, contradicting the minimality of ω. This
proves

(a) α = ωmin = l ;

(b) if xeωnU" and xφωm i n, then TxeωnD.

It follows that ΦωnD^ Φ(ωnC7)- 1 and hence ΦωnD= *(ωnί/)-l. Hence

(c) ω ϋ =k+l and ωβ = /c + 2.

Furthermore, since every point of ωnD has pre-image in ωn U and T\ω is injective,
the image of every point of ωnD lies in ωn£/, or

(d) If xεω and x^/c + 2, then Γx^/c+1.

We claim that in fact Ta = ωu = k+l. For if not, then Ta < ωu. Put & = ωϋ in Lemma
(21) and let Tsb = a for some s, 1 ̂  5 ̂  fi. Since b Φ α, b Φ Ta, we have in fact s^n — 2
and therefore q^n — 2in Lemma (21). As above, this leads to a contradiction with
the minimality of ω and so

(e) Ta = ωu = k+ί.

Assume now that T2a^=ωD. Put c = ωD,

a = ωu<c<T2a.

Clearly Tsc = a for some s, 2rgs5^n — 3. Hence m^n — 3in Lemma (20) and we again
arrive at a contradiction. Thus

(ί) T2a = ωD

Summing up what we know and writing α(s) = Tsa, we obtain

(g) l=ωm i n = α = φ)

(h) α(l) = fe+l and

(i) α(2s+l)<a(l) and α(2s + 2)>^(2) for l^s^

This proves the theorem for n = 5. For n^Ί it is sufficient to show that the finite
sequences (α, α(2), α(4), ...) and (α(l), α(3), a(5\ ...) are monotonic. This is proved by
induction, starting from a < a(2) < α(4) and a(ί)> α(3) and using (i) together with the
following result.

(j) If x<T2x and T4x<T2x (or x>T2x and T4x>T2x)

for some xeω, then T4(x)^a(l)<a(2)^T2(x)

[or T4

To prove (j), note that T ~ 2 T2x = x < T2x and T ~ 2 T4x = T2x > T4x. Hence T" ~ 2

has a fixed point ρ between T2x and T4x. By minimality, ρ must be a fixed point of T.
But then (9) implies ωu <ρ<ωD, proving (j) and concluding the proof of the
theorem.
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F. Examples

(a) Continuous maps 1R->R with minimal orbits of a given odd period n are
obtained as piece-wise monotonίc extensions of the cyclic permutation Mn defined
in the preceding section (Fig. 3).

Extending My

Fig. 3 1 2 3 4 5 6 7

To indicate why these mappings do not have odd periods between 3 and n - 2,
take n = 5 (the general case is similar). Labelling the intervals as in Figure 4 we note
that, under the action of T.

(*) l-»2, 3->4->5, 2-»lu3, and 5->lu2u4.

Note also that the fixed point S acts as a source: the interval 1 is "stretched" by T2

onto Iu3. Hence no periodic orbit remains forever in Iu2. On the other hand, a
periodic orbit which remains in 5u4 must be of an even period. Hence periodic
orbits with odd period /c^3 meet the interval 3. By (*), k^5.

S = fixed point
Fig. 4

(b) It is easy to give examples of maps with Per( 7^ n) = 0 for n φ 1 (or n φ 1, 2) and
with periodic orbits of period one (or of period 1 and 2).

(c) Other examples are obtained using the "square root" construction: If
T: [α,b] <D and K>b — a,we define a "square root" S of Tby S(x) = T(x) + K on
[α, b], S(x) = x — Kon[a + K,b + K'] and extend S monotonically across [ft, a + X]
(see Fig. 5,6). It is clear that, apart from the fixed point in [b, a -f fe], every periodic
orbit y of S meets a unique periodic orbit ω of 7^ φy — 2Φω.

(d) Starting from (a) or (b) and iterating the construction (c) we obtain
mappings with Per(7>)φ0 for a given n and Per(7^/c) = 0 for all k\-n (see p. 237).
With a little care we can also construct continuous maps T:IR-»IR such that
Per(X; «)Φ0 if and only if n is a power of 2.
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T+ K

5 ='square root Of Ί} T = [a.

Fig. 5

a b

S='square root1 of T

a+K b+K

Fig. 6

G. Comments

(a) Theorem 7 of [1] states that if a < b are two elements of a periodic orbit ω of
period n, then between a and b must lie a fixed point of Ts for some s<k. For
let a=φ{s'Λ^s<k,Tsa<a}=φ{xeω:x<a} and β= *{s:l^s</c, Tsb<b}
= Φ{XECO :x<b}. Clearly β>α>0 and so there exists s such that 1^ s<k, Tsa>a,
and Tsb < b. For example, the interval labelled 3 in Figure 4 meets an orbit of period
4.

(b) The proof of the main theorem remains valid if we assume that T is a
continuous map J*f-»IR, where X is an arbitrary interval in IR.

(c) If ω is a periodic orbit of T with period n, and if n\-k, where \- is the
ordering defined on p. 237, then Thas an orbit of period k which is contained in
[ωmin,ωmax]. This follows from (b) on taking X = [ωmin,ωmax].

(d) I took (5) and (6) from the paper [4] of Lie and Yorke in which they prove (7)
and study some other consequences of the existence of periodic orbits of period 3.

Sarkovskii gives a direct proof of (8) and does not state or use (5) and (6). The
assertion (7) is a special case of his main theorem.

(e) My proof of (12) is different from Sarkovskii's, which seems to break down
for n = 3 and 4. The proof of (15) is a slight modification of the proof of Sarkovskii,
which contains some mistakes.
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(f) Guckenheimer [3] gives a different proof of Theorem 1 assuming that Tis
smooth, Γ:[0,l] <D, T(0) = T(1) = 05 and the derivative of T vanishes at a single
point.

(g) As far as I know, Theorem 2 on minimal orbits (Section E) is not stated
anywhere in the literature. Sarkovskii gives in [1] the examples reproduced here in
Section F(a), without pointing out that these examples are essentially the only
possible ones. It seems likely though that he was aware of this fact.

H. An Application

Bowen and Franks prove in [2] the following theorem.
(BF) Let T:[0, 1] ? be continuous and assume that Per(T;rc)Φ0, where

n = 2dm and m ̂  3 is odd. Then

(i) the topological entropy h(T) of Tis> -log 2;

(ii) there exists Kn (independent of T) such that if r = 2dk and k^Kn, then

Combining the approach of Bowen and Franks with Sarkovskii's results and
with Theorem 2 as indicated below, it is easy to strengthen both of these estimates.
We first remark that for n = 3 a considerably simplified version of the argument of
Bowen and Franks yields

(a) /z(T)^logx, κ = (l + 51/2)/2 = 1.618.

If now n is odd, then, by Theorem 1 or directly by (11), Per(T2, 3)Φ0. Since h(T2)
= 2h(T\ this gives

(b) Λ(Γ)^logκ1 / 2 .

Note that, in contrast to (BF(i)), the right-hand side of (b) does not tend to zero
when n = 2k+l tends to infinity. From (b) it follows at once that, under the
assumptions of (BF),

(c)

The estimate (c) can be further improved if we use Theorem 2 :

Theorem 3. // T satisfies the assumptions of (BF), then
(i) /z(T)>2~dlog21 / 2;

(ii) there exists a constant Km (independent of T and d) such that ifr = 2dk and
k^Km, then ΦP(T,r)^2r/2d.

Proof. As in [2], we may assume that n is odd. Taking n = mas small as possible and
using Theorem 2, we find that Thas a periodic orbit ω isomorphic to Mm. Subdivide
the interval [ωmin, ωmax] as in Figure 4, replacing the fixed point S if necessary by an
interval S = [α,/Γ] where α (resp. β) is the smallest (resp. largest) fixed point of T
between ωu and ωD. In view of (9) and the estimate (a) above we may assume that T
has no fixed point elsewhere in [ωmin, ωmax].) Labelling the subintervals of
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[ωmin, ωmax]\S as in Figure 4, we obtain the m x m incidence matrix

A =

/o
1

0

0

0

0

0

\°

1

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0..

0.

0.

0.

0.

1 .

0.

0.

.0

.0

.0

.0

.0

.0

.0

. 1

A
1

0

1

0

1

1

°/
with the characteristic polynomial —f(λ\ where

(d) f(λ) = λm-2λm-2-l.

It is easy to see that/has exactly 3 real roots: λmϊn, — 1, and Amax, and that, for m ̂  5,

(e) -21/2<Am i n<-(2m/(m + 2))1/2 and 21 / 2<^m a x<21 / 2 + 2-(w+3)/2.

Using the argument of Bowen and Franks, it is sufficient to show that, for large r

(f) Traced ~^ax.

As in [2], it can be shown that (f) follows from the Perron-Frobenius theorem. We
can, however, obtain a more precise information directly: we claim that

(g) μ f < l for l^z^m-3,

where λt are the remaining m — 3 roots of / A simple proof of (g), for which I am
indebted to A. Connes, goes as follows. Set g = λm — 2λm~2 and note that, for every
sufficiently small ε>0,

1 = |/— 01 <M on the circle |λ| = l + ε .

Hence, by Rouche's theorem,/has exactly m — 2 zeros in the disc \λ\ ̂  1. It is easy to
check that λ— — 1 is the only root of / on the unit circle, proving (g) and so (in
combination with the arguments in [2]) concluding the proof of Theorem 3.

We note that (g) can be used, together with (e) and the inequalities on pp. 7
and 8 of [2], to obtain an explicit upper bound for the constant Km.
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