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Abstract. As an application of the theory of solutions of the classical, Euclidean
field equation, we prove the existence of solutions to the renormalized
functional field equation, for the λΦ4 interaction in four Euclidean space
dimensions, with non-negative λ and nonzero mass, through order he. That is,
we prove that the functional derivative of the connected generating functional is
in the Schwartz space Re^CR4), when evaluated at external sources in Re^,
through order he. We also prove the existence of all functional derivatives of the
connected generating functional through the same order. All quantities of
interest are analytic in the coupling constant at 0 ̂  λ < oo, and continuous in the
external source.

I. Introduction

A large number of formal, and several exact results, already exist for the loop
expansion of the generating functional for connected, time-ordered vacuum
expectation values of scalar field operators over Minkowski space. In this paper, we
begin to develop the Euclidean version of the loop expansion for the massive scalar
field with λΦ4 interaction, Λ^O, in four Euclidean dimensions, by proving the
existence of the renormalized theory through order he (one loop). We do that by
studying the functional form of the renormalized Euclidean field equation. The
techniques of linear and nonlinear functional analysis have matured to the point
where this becomes a "standard" calculation, and we think it reasonable to hope
that the same is true to all orders in the loop expansion.

Some motivating remarks follow:
(i) In the Minkowski version, Jackiw [1] gives a systematic treatment of the

effective potential in the loop expansion, and he discusses the renormalization of
one and two loops for λ(Φ4)ί + 3 in some detail. We are interested in the Euclidean
version because it is somewhat easier to state and prove rigorous theorems. We say
"somewhat", because the classical field equation in the presence of an external
source plays a central role and the mathematics for the classical field equation in
the Minkowski λΦ4 theory is well developed, albeit in the absence of external
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sources [2, 3]. One could hope that no new ideas would be needed to handle external
sources, and that the Minkowski parallel to the discussion in this paper would go
through. But the Euclidean version is certainly less involved, and we are encouraged
by the Osterwalder-Schrader [4] and Nelson [5], Euclidean to Minkowski
reconstruction theorems to believe that there is no loss of generality in consider-
ing it.

(ii) The principles of renormalization have not yet been formulated or proved as
definitive formal power series (fps) statements in he, in contrast to the fps expansion
in the coupling constant. Rather complete expositions of the latter situation can be
found in the articles of Hepp [6] and Epstein and Glaser [7]. Whether there might
be combinatoric or other advantages to renormalizing the loop expansion, over the
coupling constant expansion, thus remains unknown.

(iii) A treatment of sufficiently high orders1 might conceivably suggest
nonperturbative techniques of renormalization different in flavor from those
currently used in constructive field theory. Unfortunately, the superficially
nonperturbative direction of the loop relative to the coupling constant expansion
cannot be expected to give direct information about things like bound states [1] or
phase transitions, for the interaction treated here, because the terms in the loop
expansion, through one loop at least, turn out to be analytic in the coupling
constant. We are currently studying two or more loops.

(iv) Four dimensions is an upper bound for the techniques of this paper. Three
dimensions admits the Φ6 interaction, and two dimensions admits any power,
subject to positivity constraints. The three-dimensional Euclidean theory might be
considered warm-up practice for the richer existence theory of static, finite energy
soliton solutions in gauge field theories [8].

(v) The immediate practical motivation is that a sufficiently complete treatment
of the Euclidean classical field equation (CFE), which controls a large chunk of the
nonlinearity in the problem, now exists, due to a somewhat one-sided2 col-
laboration between J. Rauch and myself [9].

We devote the remainder of this introduction largely to a discussion of the
functional form of the Euclidean quantum field equation, which is our starting
point.

We imagine the following Euclidean generating functional to exist :

= <Ω0, exp(- V/hc) 0

U) <Ω0,exp(-7/ftc)00>

where Ω0 is the vacuum for the free, Euclidean scalar field of mass m>0, / is in
), Φ(f) is the smeared, Euclidean free field, and

(2)

with λ^O and μ = mc/h both renormalized quantities. There is no normal ordering.

1 Jackiw [1] emphasizes that less than two loops is structurally too simple
2 Although I was able to contribute a few parallel arguments, the style of the collaboration was mainly
that J. Rauch explained to me what he regarded as the standard analysis of the questions I posed, which I
then digested as what seemed to me powerful and interesting applications of unfamiliar techniques
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The renormalization constants are regarded as fps in he (they may equally well be
regarded as fps in λ) :

(3)

with dimensionless coefficients an, bn, and cn. The infinite parts of these coefficients
are to be chosen in n-th order to make the solution of the field equation finite in that
order. We may leave the finite parts unspecified, corresponding to finite re-
normalizations.

At the formal level, we think of S(f) as the Laplace transform of the interacting,
Euclidean path space measure. The reason for studying the Laplace rather than the
Fourier transform is that it gives c-number fields that are real, with the correct sign
of the coupling constant in the Euclidean field equation.

The field equation can be derived by a formal integration by parts on the free
Gaussian measure :

Q = (Ω0,[_(-A+μ2)Φ + δV/δΦ-nQxp(-V/hc)expΦ(f)/heΩoy, (4)

where we have dropped an infinite normalization factor that turns out to be
irrelevant. If we express g(f) in terms of the connected generating functional,

<f(/) = expL(/)/fte, (5)

it is well known that a fps expansion oϊL(f) in he is the loop expansion of connected
Feynman graphs [10], the term of order (hc)n (the term with n loops) being an infinite
fps expansion in λ. The field equation takes the functional form

J, (6)

where

Φc = δL/δf(x), δΦc = δΦc(x)/δf(x),

δ2ΦcEEδ2Φc(x)/δf(x)δf(x). (7)

Infinite renormalization is required because of the singularities in the functional
derivatives at equal arguments. We conjecture that the onumber function Φc

belongs to the real Schwartz space of test functions Re^^R4) to all orders in he, if/
is in Re^(^4). We prove that through order he. The functional derivatives of Φc, at
independent arguments,, give the connected n-point functions, when evaluated at
/= 0. Finite orders in he for these objects will also be finite sums in λ, so the standard
application of perturbative renormalization makes them finite. We show that these
functional derivatives are tempered distributions before putting/=0. Infinite fps in
λ are being summed here, and we are getting thereby the loop expansion of the
Laplace transform of moments of the putative Euclidean measure. The smeared
functional derivatives of Φc belong to Re ̂  through order he , just as Φc does.

The connected generating functional L(f) may itself be computed in terms of
these results, through order he and we do so.
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To set up the detailed part of our discussion, let

00

Φc= Σ φtftcγ. (8)
n = 0

The field equations for order n = 0 and 1 are :

n = 0 (tree approximation) :

Kφ0 + kp*=f9 K^-A+μ2. (9)

This is the classical field equation (CFE), which we discuss in Section III.

n = 1 (one loop correction) : Let

(10)

Then

Kλφ1 = - 3λφ0δφ0 - cγλ
2φl - a^μ2φQ + biλΔφ0

(11)

In Section IV, we show that the infinite parts of α1 and cί can be chosen to
renormalize δφ0 into

δφ0.R = δφ0 + ̂ c1λφ2

0+^μ2a^^GθM(R4)9 (12)

where 0M is the set of infinitely differentiable functions with polynomial bounded
derivatives. We shall see that this puts φί in Re £f . The constant bi is finite, as usual.

The n-th order correction obeys an equation of the form

Rn_^ (13)

where the r.h.s. still requires renormalization, but depends only on φs and its
functional derivatives for s^n— 1.

In Section II, we review some relevant properties of Sobolev spaces. Although in
some sense the natural arena for our discussion is Re^, only the Sobolev norms get
much use.

In Section III, we state the basic theorem on solutions of the CFE and we show
enough continuity of the solutions in the external source to let us prove that the
generating functional in the tree approximation has functional derivatives of all
orders, which are analytic in the coupling constant.

We renormalize the one loop correction in Section IV, show that the generating
functional is well-defined, and prove the existence and analyticity of its functional
derivatives.

Several appendices contain the proofs of certain lemmas.
The reader may survey our main results by taking a look at Theorems 1, 12,

and 20.

Acknowledgments. I should like to thank Jeffrey Rauch for introducing me to some of the techniques of
partial differential equations, and Paul Federbush, Ira Herbst, and Rudolph Seiler for their
encouragement.
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II. Technical Preliminaries

We want to review what we need to know about Sobolev spaces and Sobolev
estimates in four dimensions. Let ^(R4) be the Schwartz space of infinitely
differentiable functions of rapid decrease. The notation Hn stands for the
completion of the pre-Hilbert space ^(R4) with inner product

Λ+μ2)"/>, (14)

where < , •> = <•, >0 is the L2(R4) inner product. The Sobolev norm is

\\f\\2,n=«f,M/2 (15)

Most important are the norms for n= — 1, 0, 1, 2, ... .
The injections induced by the inclusions Hn+lcHn are continuous relative to

the respective norms. Indeed,

l l/lkn+i^ll/lk,,. (16)
The Sobolev inequalities for four dimensions correspond to the continuous

inclusions

H2CLP, 2^p<oo. (17)

The inequalities are the statement of the boundedness of continuous linear maps,
such as the injections induced above, between Banach spaces.

We also recall that

HnCL^ n>2, (18)

for four dimensions, again a continuous inclusion. In this case, feHn has an L t

Fourier transform, and so is absolutely continuous and zero at infinity.
Our notation for the Lp norms in four dimensions is || ||p.
We use the common multi-index notation / = (/1> ... /4),

Dl = (d/dxl)
lί...(d/dx4)

l\ |/ | = /1 + . . .+/ 4 ; xl = xlϊ...xlj. (19)

For bounded operator norms on Hn> we use the notation

\0\n = \Kn/2OK~nl2\, (20)

where | | is the L2, bounded operator norm. We denote the normed space of
bounded, linear operators on Hn by B(Hn).

In case the operator O is multiplication by a function h, we can estimate its norm,
for non-negative integers n, by

|Λ|π^C I lmax[| |Λ| | 0 0, | |Λ| | 2, I I + 1]. (21)

The argument for this is easy and presumably known, and we are just ignorant
about whom to quote3. Nevertheless, we present it in Appendix!. Note that the
Hn+1 norm controls unless n = 0 or 1.

3 Reed and Simon give a similar result for general dimensions that is not quite as sharp as that in
Equation (21) for four dimensions. See Proposition 2 on page 51 of [2]
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We use the familiar notation F = 0(ε) to mean JF^C|ε|, where C is uniformly
bounded in ε near ε = 0. We use the same notation for the absolute value of a number
as for the B(L2) norm.

We shall be dealing with functional F(f\ where/is in R.Q^(R4) and F has values
in the complex numbers, Hn, or B(Hn). Continuity of F at /0 in Re 5 ,̂ relative to the
norm appropriate for the values of F, is typically achieved by having F be norm
continuous as/->/0 in Hn for some non-negative n. Since these Hn norms are part of
a complete set of seminorms for the topology of ̂ , if/->/0 in Re5^, then/-»/0 in
Hn, and hence F(f)->F(f0) in norm.

III. The Tree Approximation

Our starting point is a theorem on solutions of the CFE:

Theorem 1. Let Kφ + λφ3 =f be the CFE, where μ2 > 0 and λ^.0. Then for each f in
Re<9%R4), there is a unique solution φ in Re^. The solution is analytic at all points
Λ,e[0, oo ) in all of the Hn norms.

The proof is given in [9], for a general class of interactions and dimensions one
through four.

As terminology, we sometimes shorten "φ is a solution" of the CFE for / in
Re 5̂  to "φ is a solution".

The map <ph»/is trivially continuous from Re^ to Re^. We need continuity
for the inverse map f\->φ in the Hn norms, and that results from the next two
lemmas.

Lemma 2. Let φ1 and φ2 be solutions corresponding to fv and f2. Let n^l be an
integer. Then if there exists a polynomial P2 such that

ί>2(ll/lll2,,-2, II/II2..-2) (22)

for all /i and f2 in Reί'7, it follows that there is a polynomial Pί such that

B-ι) (23)
Proof. We learned the basic argument from J. Rauch. Let Δaφ(x) = φ(x + a) — φ(x).
Since the CFE is translation invariant, and has unique solutions,

). Thus,

\\Δa<P\\2,n^UJ\\2,n-2P2(\\f\\2,n-2, II/II2..-2). (24)

where the two arguments of P2 are the same because of the translation in variance of
the norm and

\\Aaφ\\2,n/\a\^(\\AJ\\2,n-2/\a\)P2. (25)

A standard theorem says that ΔJ\a\ is uniformly bounded as a linear operator
from Hn to Hn_ 1? for 0 < a rg 1. Passing to the limit along fixed directions, we find

(26)
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Since this is true for any directional derivative, and since we may put /2 = φ2 = 0 in
the hypothesis of the lemma to eventually get a similar bound on ||φ||2>π5 there is a
constant C such that

. (27)

The Hn_2 norm in P2 may be replaced by the larger (up to a factor μ"1) Hn_1

norm. Π

Lemma 3. Let φ1 and φ2be solutions. Then for each integer n^l there is a polynomial

P such that
n^\\f1-f2\\2,n-2P2(\\fl\\2,n-2,\\f2\\2,n-2)- (28)

For n = 1, we learned from J. Rauch that /κ>φ is in fact a contraction from H_ ί

to Hί. We repeat his argument, and give our own induction proof for n>l in
Appendix II. The proof is straightforward, given the B(Hn) bound in Equation (21).
It is valid for a large class of interactions, including any polynomial obeying certain
positivity laws [9].

Remark 1. Lemma 3 states a stronger condition than we actually need. For example,
it would be enough to know that some Sobolev norm occurs on the r.h.s., not
necessarily the one for n — 2. We have taken some pains to get the n — 2 norm
because in the theory of the CFE there is a natural correspondence:

In the next lemma we collect some useful facts about the linear operator
Kλ = K + 3λφ2, corresponding to any fixed /GRe5^.

Lemma 4. (i) As an operator on L2, Kλ for λ ̂  0 is strictly positive and self-adjoint on
the domain of K, @(K) = H2CL2.

(ii) The inverse operator K^ l is bounded on L2 and maps Hn into Hn + 2 for every
integer n^Q.

(iii) Kλ and K^1 map ̂  and Re^ continuously onto themselves.
(iv) The operators KK^1 and K^1K are bounded on Hn for all integers n^O.
(v) The same operators are analytic at λe [0, oo) in the bounded operator norm on

Hn for all integers n^Q.

The proof is in Appendix III.

We want to study functional derivatives of solutions of the CFE. In doing so,
functionals F(f) will arise that have values in the complex numbers, in Hn, or in
B(Hn). The functional derivative with respect to /in the g direction, for geRe^, is

δf(g)F(f) = limAf(sg)F(f)/s
ε-»0

= (d/ds)F(f + s g ) \ Λ ί S θ , (29)

where we define the difference operator with respect to / by

(30)

and where the convergence is in the norm appropriate to the image space of F.
We make the index / explicit in these notations, because later we are going to

want to consider functional derivatives and finite differences with respect to φ.
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In the case of interest, δf(g)F is a continuous linear functional for g in y, and
higher functional derivatives are multilinear and separately continuous on Sfx w, so
the following notation is sensible:

(31)

The difference operator gets bounded in the next few lemmas.

Lemma 5. Let I be any multi-index, m ̂  1 any integer power, and 2 rg p ̂  oo. TTien there
exists an n such that

\\DllΔf(h)φ-]m\\p = 0(\\h\\ln). (32)

Proof. First, suppose pΦ oo. By its definition, the difference operation commutes
with the gradient so we can let the derivatives act, and bound the Lp norm by a sum
of products of pt norms, p<pt < oo, of the form

\\Δf(h)D^φ\\p=\\D^Δf(h)φ\pi

^C\\Δf(h)φ\\2,2 + ] l ί l = 0(\\h\\2M), (33)

where the last step is from Lemma 3.
That leaves p = oo. Bound the L^ norm by a sum of products of the same form as

the l.h.s. above, but with p. = oo. Now bound these norms by H3 norms, etc. D

It is sometimes convenient to treat Af(h)φ as a multiplication operator on Hn.

Lemma 6. For any integer n^O, there is an n' such that

\Δf(h)φ\n = 0(\\h\\2^. (34)

Proof. Lemma 5 for p = 2, and the estimate in Equation (21). D

Lemma 7. Consider K^ 1 as a functional off. Then for every integer n ̂  0 there is an n'
such that

\Δf(h)K-λ\f\ = 0(\\h\\2^. (35)

Proof. The idea is that the resolvent expansion for K^1(f+h) about K^l(f)
converges in norm for h small in some norm, and that we may thereby bound the
difference. Thus

m=l

ι\2

n/(\-a\K-\), (36)

where a = \Δf(h)(3λφ2)\n = 0(\\h\\2^\ by Lemma 6. Π

These lemmas can no doubt be sharpened by computing the optimum norm for
h. Which norm occurs, however, is irrelevant for us, because we typically consider
limits where h scales to zero, and so goes to zero in every Hn.
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With these estimates, we begin to compute functional derivatives. We use the
temporary notation Aε = Δf(εg). We get the first functional derivative of φ from

Δeφ = K^{sg-λ[3φ(Aeφ)2 + (ABφ)*l}. (37)

Lemma 8. δf(g) φ = K^ lg belongs to Re^, exists in Hn norm for every integer n ̂  1, is
analytic at Ae[0, oo) in those norms, and

n,) (38)

for some n'(n}.

Proof. To compute the functional derivative write

\\ε-lΔεφ-K^g\\2_n

^(λl£)\\K-λ^φ(Δcφ)2+(Δεφ)^\\2tn. (39)

The factor K^ x is bounded on Hn, and its norm may be factored out. Apply Lemma
5 to show that the r.h.s. goes to zero like ε. The bound on the functional derivative
follows from Lemma?. The fact that the derivative belongs to Re ̂  follows from
Lemma 4.iii; and analyticity in λ is a consequence of Lemma 4. v. D

Before considering higher derivatives, let us introduce the functional derivative
and the difference operation relative to φ. Since the correspondence between /and
φ is one-to-one, we can make a change of variables and write

F(f) = G(φ). (40)

Then we define

Fh-F. (41)

We often do not bother to give F a new name in terms of the variable φ, and the
notation is always Fh = G(φ -f h\ unless we state otherwise.

Functional derivatives of F with respect to φ are now defined like those with
respect to/, but using the difference with respect to φ instead of/ An important link
between the two derivatives is the

Bounded Difference Condition. A functional F(f) with values in one of the relevant
normed spaces is said to obey the bounded difference condition relative to the norm in
that space is there is an n such that

\\Aφ(h)F\\=0(\\h\\2J. (42)

Note that, by Lemma 3 and the continuity property mentioned in Section II, a
functional that obeys the bounded difference condition is continuous from Re^ to
the image space. In practise, the φ differences that we shall encounter obey the
condition above for complex h. And although we shall only need real φ derivatives,
all objects that we consider will in fact be analytic functions of the parameter ε in the
definition of the derivative, for small ε.




