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Abstract. We discuss some properties of a non-commutative generalization of
the classical moment problem (the m-problem) previously introduced. It is
shown that there is a connexion between the determination of the problem and
the self-adjointness properties in the corresponding Hubert space. This
generalizes the well-known connexion between the determination of the
measure in the classical moment problem and the self-adjointness properties of
the polynomials as operators in the corresponding ZΛspace. The dependence of
the m-problem on the choice of C*-semi-norms and on the action of *-
homomorphisms is also investigated. As an application, it is shown that if a
quantum field (in a very general sense) is essentially self-adjoint then the m-
problem for the Wightman functional is determined on the quasi-localizable
C*-algebra and that the corresponding representation of the localizable algebra
generates the bounded observables of the field. It is pointed out that (ultraviolet
and spatially) cut-off fields fall in this class and, therefore, are in one to one
correspondance with states on the quasi-localizable C*-algebra.

1. Introduction

This paper is a continuation of a preceding one [1] hereafter referred as Parti. Its
object is to complete the algebraic discussion of the non-commutative generaliza-
tion of the classical moment problem (the m-problem) introduced in Parti and to
extend the applications to quantum field theory.

Let us first describe an important result on the classical moment problem [3-5]
which will be generalized in this paper. Let φ be a positive linear form on the *-
algebra C[X] of the complex polynomials with respect to one indeterminate X.
Basically, to solve the moment problem for φ means to produce a self-adjoint
operator π(X) in a Hubert space § with a vector ΩE Q dom(π(X)n) in such a way
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that Ω is cyclic for the von Neumann algebra {n{X}}" and that the equalities φ(Xn)
= (Ω\π(X)nΩ) hold for all integers n^O. Indeed the corresponding conventional
solution is the positive rapidly decreasing measure μ on IR such that, up to a unitary
equivalence, we have: § = L2(IR, dμ\ Ω is the constant function equal to 1 on IR and
π(X) is the multiplication by the identity mapping of IR on itself. Clearly the problem
is determined (<=>μ unique) if and only if (ξ>9π(X),Ω) is unique up to a unitary
equivalence under the above conditions.

Let (πφ9 ξ)φ9 Dφ, Ωφ) be the unbounded cyclic *-representation associated with φ
[1,2] we have canonically Ωφ = Ω,Dφ = linear hull of {π(X)nΩ} ξ>φ = closure of Dφ in
§ and πφ(X) = π (X) Γ Dφ. It is well known, and easy to see, that the moment problem
is determined iίπφ(X) is an essentially self-adjoint operator in ξ>φ. Then, the solution
is given, of course, by ξ> = ξ>φ and π(X) = πφ(X)*. Furthermore, in this case all the
πφ(Xn) = πφ(X)n are also essentially self-adjoint operators (ne]N).

In this paper, this type of result connecting determination and self-adjointness
will be generalized. According to Parti, the m-problem on a *-algebra 21 is a
generalization of the classical moment problem in the following sense: If 91 is the
algebra C[X15...,XJ of the polynomials with respect to n indeterminates,
then the m-problem on 91 is exactly the ^-dimensional classical moment problem.

It will be a consequence of the results of this paper that if φ is a strongly positive
linear form on a *-algebra 9X (i.e. a positive linear form for which the m-problem is
soluble [1]) and if πφ(K) is an essentially self-adjoint operator for any hermitian h in
91, then the m-problem is determined. However, in the applications, it is generally too
strong to assume that πφ(h) is essentially self-adjoint for all the h = h* in 9X. What
frequently happens is that essential self-adjointness holds for the πφ(h) when h runs
over a generating subset Σ of hermitian elements of 91, but in contrast to what
happens when 9Ϊ = (C[Z], this does not imply, in general, essential self-adjointness
for all the πφ(h) with h = h* in 91.

For instance, let 91 be the tensor algebra T((C2) over C2 equipped with the unique

involution for which x= and y= (eC2C T((C2)) are hermitian and let φ be
w —

the linear form on 91 defined by :

φis a positive linear form on 91 and since 91 is a tensor algebra over an involutive
space, we know (see Part I, Section 4, Theorem 2) that φ is strongly positive so the m-
problem is soluble. On the other hand, we have canonically §φ = L2(IR, dq), Ωφ

= τr1/4e-«2/2, Dφ = {P(q)e-«2'2\P(X)εC[_XV, (πφ(x)Ψ)(q) = qΨ(q) and
dΨ

(πώ(y)Ψ)(q)= —i —— (q) for ΨeDώ. It is well known that πώ(x) and nώ(y) areψ dq ψ ψ Ψ

essentially self-adjoint operators but it is also known1 that there are hermitian
combinations of πφ(x) and πφ(y) which are not essentially self-adjoint on Dφ\ in
other words there are hermitian elements h of 91 for which nφ(h) are not essentially



Generalization of the Classical Moment Problem 153

self-adjoint operators so here Σ = {x, y}. In fact Ωφ is an entire vector for πφ(tx + ry)9

Vί, reR, so one may take Σ = {tx + ry\t, reIR}=£2^lR2 as well as Σ = {x, y}
(=basis of E2). It is worth noticing here that if φ denotes the positive linear form on
the quotient algebra 2Ϊ = W/πφ

1 (0) induced by φ, φ is not strongly positive indeed
21 is the *-algebra generated by Heisenberg canonical commutation relations and it
is well known that this algebra does only admit unbounded ^-representations so
there are no C*-semi-norm on ϊt and therefore no non-trivial strongly positive
linear form on 2ί. The situation is similar if one considers the algebra generated by
the free hermitian field and this phenomena has been already pointed out in the Part
I of this work [see the Remark 9b) in Part I].

In Part I of this work, we have associated to any *-algebra 21 with a unit a C*-
algebra 33(21). 93(21) is such that any hermitian element h of 21 determines a *-
homomorphism/t-»/(/ι) of the C*-algebra #(0)(IR) of complex continuous functions
vanishing at infinity on 1R into 93(21). Furthermore, the ranges of these homor-
phisms generate 93 (21) as C*-algebra (when h runs over the set 21*1 of all the hermtian
elements of 21) (see Part I, Section 6). Let I1 be a subset of 2ί4 and let 93 (Σ) be the C*-
subalgebra of 93(21) generated by [ f ( h ) \ h e Σ , /e^(0)(IR)}. In this paper, we shall
show the following. If φ is a strongly positive linear form on 21, if (nφ, ξ>φ, Dφ, Ωφ) is
the associated cyclic ^-representation and if Σ is a generating subset of hermitian
elements of 21 then, any solution ω of the m-problem for φ [ω is a positive linear
form on 93 (21), see Section 7 in Part I] leads to a cyclic representation πΣ of 93 (Σ) in a
Hubert space ξ>Σ which contains ξ>φ as closed subspace and with Ωφ as cyclic vector
such that ω(f(h)) = (Ωφ\πΣ(f(h))Ωφ) ,heΣ, /e # (0) (R). Furthermore, if the πφ(h) are
essentially self-adjoint when heΣ then ξ>Σ = ξ>φ, nΣ is unique and we have: nΣ(f(h))
=f(πφ(h))', VhεΣ, V/e^(0)(IR). In any case, (πΣ, ξ>Σ, Ωφ) is canonically the G.N.S.

triplet associated with ωl"33(Γ) and φ can be reconstructed from ωΓ93(Σ).
For instance, let 21, x, y, and φ be as in the above example and let Σ = {x, y}. Then

there is a unique representation πΣ of 33({x, y}) = 93(1") in ξ>φ for which Ωφ is cyclic
and πΣ(f(x)) = ffrJd), πΣ(f(y)) = fJπJy)) for any /e#(0)(R).

For the applications to quantum field theory, it is important to realize that,
following H. J. Borchers, we consider that a (scalar hermitian) quantum field is a *-
representation of the tensor algebra over the space of complex test functions.
Furthermore, we shall be interested in self-adjointness properties of the field
operator, so we take 21 = T(@(M)) [ = the tensor algebra over the space Q}(M) of all
complex C°° functions with compact support on the space-time M] and Σ = @(M,
IR) —real C°° functions with compact supports. It turns out that 23 (Z) is the quasi-
localizable C*-algebra 23 (M) introduced in Part I.

We use the above results to show that the bounded observables of cut-off field
theories generate concrete C*-algebras which are images of cyclic representations of
the (universal) quasi-localizable C*-algebra 23 (M) with the ground states of the
hamiltonians as cyclic vectors. The corresponding states on S3(M) being elements of
the weakly compact states' space of 23(M), a program of removing the cut-offs by
compactness arguments is suggested. A difficulty connected with general features of
the construction described in the work (Part I and this paper) is pointed out:
Namely we do not take into account the topologies of our basic spaces (*-algebras,
spaces of test functions) with this algebraical construction.
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In a forthcoming paper, we shall analyze the restrictions which come from the
continuity properties in the m-problem.

In Section 2 we analyse the connexion between the determination of the m-
problem and the self-adjointness properties in the corresponding hermitian cyclic
representation [1,2]. We give a generalization of the well-known connexion [3—5]
between the determination of the measure in the classical moment problem and the
self-adjointness properties of the polynomials as operators in the corresponding L2-
space.

In Section 3 we discuss the dependence of the problem on the choice of sets of
C*-semi-norms. We introduce a notion which generalize the notion of support in
the classical moment problem.

In Section 4 the action of *-homomorphisms is investigated. We define C*-
algebras associated with real vector spaces. This generalizes the definition of the
quasi-localizable C*-algebra given in Part I.

In Section 5, we apply the above results to quantum field theory. We show that,
if for every real test function the smeared field operator is essentially self-adjoint on
the cyclic subspace generated from a unit vector in Hubert space by the polynomial
algebra of the smeared field operators, then the m-problem for the corresponding
vector state on the tensor algebra over the space of test functions is determined on
the quasi-localizable C*-algebra and that the corresponding representation of the
quasi-localizable C*-algebra generates the bounded observables of the field.

The last result works for a hermitian scalar field in a very general sense. In
particular, it is pointed out in Section 6 that a form of φ4-cut-off field introduced by
Jaffe in his thesis [6] fall in this class. The self-adjointness of the space-time smeared
cut-off field is obtained as an application of a general method introduced by Glimm
and Jaffe in their study of (φ4)2 theory [15] (see also [16] and the paper of McBryan
[17]). We define, for each cut-off, a state on the quasi-localizable C*-algebra which
correspond to the ground-state-expectation-values of the bounded observables. We
allow the mass, the coupling constant and the field normalization to vary with the
value of the cut-off.

In conclusion, we discuss some possible pathologies associated with the "limits"
obtained (by compactness) when the cut-off is removed. These pathologies were
avoided in the work of Glimm and Jaffe on (φ4)2 when they proved the "local
normality" of the "vacuum state" (see, for instance, the Theorem 4.2.1 in Les
Houches 1970, [18]).

Throughout this paper, we use the notation of Part I. If 33 is a C*-algebra and if
ω is a positive linear form on 33, we use the term, G.N.S. triplet associated with ω to
denote triplet (πω, §ω, Ωω) of the cyclic representation πω in Hubert space §ω with
cyclic vector Ωω obtained from ω by the Gelfand-Naimark-Segal construction
(G.N.S. construction).

£^(0)(IRn) denote the space of continuous complex functions with compact
supports on IR".

n) denote the space of C°°-complex functions with compact supports on IR".
is the space of complex continuous functions on IRW.

^(0)(IR") is the C*-algebra of complex continuous functions vanishing a infinity
onIR".



Generalization of the Classical Moment Problem 155

2. Self-Adjointness and Determination

Throughout this section 91 is a *-algebra with a unit (ie9l), Γ is a separating
directed set of C*-semi-norms on 91 and 33(91, Γ) is the associated C*-algebra
defined in Part I (Part I, Section 6, Definition 3).

Lemma 1. Let π be a representation of 33 (9ί, Γ) in a Hubert space §π and let h be an
arbitrary hermitian element of 91. Then, in the Hubert subspace ξ)π(h) of §π spanned
by the set {π(f(h}) Φ|Φe§π and /e^(0)(IR)}, there is a unique self-adjoint operator
π(h) for which we have: π(h)π(f(h))Φ = π(fI(h))Φ, VΦe§π and V/e^(0)(IR), where
/JG^(0)(R) is defined by fI(t) = tf(t) (VίeR). Furthermore, we have
π(/Cl))^δπCl)=/(π('ϊ)X ^/e^(o)(^)' and if A is a bounded operator in §π which
commutes with π(f(h)) for any /ee^(0)(IR) then ξ)π(h) is stable by A and the
restriction of A to §>π(h) commutes with π(h) (i.e. its spectral projections).

Proof2. Let D%(h) be the linear hull in §π of the set {π(/(/ι))Φ|Φe§π and

0)(IR)} D®(h) is a dense subspace of §π(/z) and there is a unique linear mapping
of Dj(ft) into itself satisfying π°(h)π(f(h)}Φ = π(fI(h))Φ, VΦe§π and

(R). As an operator in §π(/z), π°(/z) is a symmetric operator for which D°(h)
is a dense domain of entire vectors. Therefore π°(/z) is closable and its closure π(h) is
a self-adjoint operator in §π(/ι) which is clearly unique under the above conditions.
Using the definition and the fact that D° (h) is dense stable domain of entire and even
bounded vectors for π(h), it is straightforward to see that the equality π(f(h])Φ
=f(π(h)) Φ holds for any /e^(0)(R) and any ΦeD°(h) and therefore, by continuity
it also holds for /e^(0)(R) and Φε£π(h).

Suppose that Aε^&J commutes with {π(f(h))\fε<£(0)(K)}. Then, for any
Φe§π and for any /e0(0)(R), we have: Aπ(f(h))ΦeD°(h), since
Aπ(f(h))Φ = π(f(h))AΦ, and, Aπ(h)π(f(h))Φ = Aπ(fl(h))Φ = π(f1(h))AΦ = π(h)
Aπ(f(h))Φ. Therefore we have: AD°(h)cD°(h) and Aπ(h)Φ = π(h)AΦ for any
ΦeD^(ft). Let Φα be a net of vectors in D®(h) such that (Φα) converges to Φ and
(π(/τ)Φα) converges to Ψ in §π(/ι); then ^Φ = lim^4Φα(e§π(/z)) and we also have
y4!P = lim(^π(/ι)Φα) = liιn(π(/ι)y4Φα) (since A is bounded). So, if Dπ(h) denote the
domain of π(Λ) (Z)^(/ι)cDπ(/z)C§π(/z)), we have: ADπ(h)cDπ(h) and

This achieves the proof of the Lemma 1. D
Let (/> be a positive linear form on 91 and let πφ be the corresponding cyclic *-

representation [8] in Hubert space §φ with cyclic vector ΩφEξ>φ and domain
Dφ = πφ (91) Ωφ such that φ (x) = (Ωφ \ nφ (x) Ωφ] it is well known that, for φ fixed, (πφ9

§φ, D^) is unique up to a unitary equivalence under the above conditions. Suppose
that φ is Γ-strongly positive and let ω be a solution of the m (Γ)-problem for φ. Let
(πω, §ω, Ωω) be the G.N.S. triplet associated with ω and let us use the notation of the
Section 7 in Part I (in particular see the Proposition 3 in Part I). In the Proposition 3
of Part I, it was shown that πφ(x) Ω^Ψω(x) define an isometric inbedding of ξ>φ in
§ω. Therefore it is justified, and we shall always do so in the following, to identify §φ

with a closed subspace of §ω, writing: Ωφ = Ωω, πφ(x)Ψω(y)=Ψω(xy); Vx, ye9ί
[whenever ω is a solution of the m(Γ)-problem for φ]. In general, the inclusion
ξ>φCξ>ω is strict (see what happens in the classical moment problem).

2 This proof is influenced by the appendix of a paper of Ruelle [7]
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Lemma 2. Let φ be a Γ-strongly positive linear form on 91 and let ω be an arbitrary
solution of the m (Γ)-problem for φ. Then we have: Dφ = Ψω(3f)CDπω(h) and
πφ(h) = πω(h)ϊ Dφ, V f t = ft*e9I (where Dπω(h) denote the domain of the self-adjoint
operator πω(h) in §πω(ft) defined as in Lemma 1 and where we make the above
identif actions).

Proof. Let Ψω(x)(xe<Ά) be an arbitrary element of Dφ. We know (Proposition 3 in
Part I, Section 7) that ωx is a solution of the m (Γ)-problem for φx, where ωx and φx

are defined by: ωx(y) = (Ψω(x)\πω(y)Ψω(x))9 VyeS(3l, Γ), φx(y) = φ(x*yx)
= (Ψω(x)\πφ(y)Ψω(x)),VyE<Ά.

It follows (see, in Part I, the Theorems 4 and 5) that the positive measure μh ω on
IR defined by (ft = ft* e 91)

cox(f(h))= lf(t}dμht(0χ(t\ V/e<r(0)(lR),

is a rapidly decreasing measure and that we have :

Let χn be a sequence of continuous function on R such that 0^χn^l, χn(t)=l if \t\
< W j χn(ί) = 0 i f | ί |^n+l. Then πω(χn(h))Ψω(x) is a sequence of element of D%ω(h)
and πω(h)πω(χn(h))Ψω(x) = πω(χI

n(h))Ψω(x) (with the notation of Lemma 1). We
have:

|| πφ(h) Ψω(x}-πω(h)πω(χn(h)} Ψω(x)\\2= f t2(l - χn(t))2 dμh,ωχ(t)

Both terms converge to zero when n goes to infinity; so Ψω(x)eDπω(h) and
πω(h)Ψω(x) = πφ(h)Ψω(x). This prove the lemma since xe9I and ft = ft* e 91 are
arbitrary. Π

Corollary 1. Let φ and ω be as in Lemma 2 and let h = ft* be a hermitian element of 9X
such that we have: πω(/(ft))§φC§φ, V/e*(0)(R). Tften πω(ft) KδφnDπω(ft)) is α se//-
adjoint extension of the symmetric operator π^(ft) m § .̂

Corollary 2. Let φ and ω be as above, let Σ be a set of hermitian elements of 91 which
generates 9ί and let^B(Σ, Γ) denote the C*- sub algebra of %3(9I, Γ) generated by the set
{/(ft)|fteΣ and fe<β(Q)QK)}. Then we have ξ>φ £ πω (95 (Σ9 Γ)) Ωω (where the bar denote
the closure in §ω) and if the equality holds πω(ft)t(§φnDπω(ft)) is a self-adjoint
extension of π^(ft), V f t e Γ (these corollaries need not to be proved).

Theorem 1. Let φ be a Γ-strongly positive linear form on 91 and let Σ be a set of
hermitian elements of 91. Suppose that for any heΣ, π^(ft) is an essentially self-adjoint
operator in ξ>φ. Then the m(Γ)-problem for φ is determined on the C*-subalgebra
»(Γ,Γ) of »(9Ϊ,Γ) generated by the set {/(ft)e93(9X,Γ)|fteΣ and /£^(0)(R)}.
Furthermore, if ω is an arbitrary solution of the m(Γ)-problem for φ and if π^(ft)
denote the closure of nφ(h\ for heΣ (considered as an operator in ξ>φ), we have:
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Proof. It follows from the Lemma 2 that, for any hermitian element h of 91, we have
άom(πφ(h))cDπω(h) and πφ (h) = πω (h) I dom (πφ (h)) for any solution ω of the m(Γ)-
problem for φ. If heΣ, nφ(h) is by assumption a self-adjoint operator in §φ; let
ίh->EΛ(ί) be its spectral resolution (πφ(Λ) = J tdEh(t) in § )̂. For any positive number 5,

+ s

let Ss(/ι) be the closed subspace of S v defined by :§s(/ι)= j dEh(f)ξ>φ. (J §s(7t)isa

dense subspace of ξ>φ contained in the domain άom(πφ(h)) of the self-adjoint
operator Έffi in jy We have ^(/Γ) §S(Λ) C $S(Ό and πω(ft) Γ §S(Λ) - π^(Λ) Γ Ss(ft) so
πω(/(Λ))ΓS s(A)=/(πφ(Λ))Γ§ s(Λ) V/e5(0)(R) [since π0(ft)Γ$β(Λ) is a bounded self-
adjoint operator in §s(/ι) with \\πφ(h)ϊ$s(h)\\^s]. So we also have: πω(/(A))f§^
=f(πφ(h)\ V/e^(0)(lR) and V/iel" [where ω is an arbitrary solution of the m(Γ)-
problem for φ~\. This implies in particular that if ω^ and ω2 are two solutions of the
m (Γ)-problem then we have :

and

Therefore (since Ωωι=Ωω2 = Ωφeξ>φ} we have, VxeS3(Σ,Γ) ω1(x) = ω2(x). This
achieves the proof of the theorem. D

Remark L a) Replacing Σ by Σu{i} it follows that we may replace in the statement
95(Σ,Γ) by S(Zu{ί},Γ) [which contains the identity of 95(91, Γ)].

b) Remembering that if ΓM is the set of all the C*-semi-norms on 9ί then
95(2l,ΓM) is denoted by S(9t) (and called the C*-algebra associated to 9ί), the
m (ΓM)-problem is called the m-problem and a ΓM-strongly positive linear form is
called a strongly positive linear form and that, furthermore, every solution of the
m(Γ)-problem is a fortiori (canonically) a solution of the m-problem for φ [via the
canonical surjective *-homomorphism : 95(2I)ι-»95(2l,Γ)]; it follows that the
condition of Theorem 1 is already a sufficient condition for the determination of the
m-problem. Since it may happen that a m (Γ)-problem is determined and that there
are several solutions of the corresponding m-problem (compare Stieltjes problem
and Hamburger's problem in the classical moment problem), one cannot expect, in
general, that the condition of Theorem 1 is a necessary condition of determination
of the m (Γ)-problem.

c) In the proof of theorem it was shown that the representation πω of 95(Γ,Γ)
leaves ξ>φ invariant and is unique on ξ>φ [i.e. independent of the choice of the
solution ω of the m (Γ)-problem and even the m-problem by b), replacing 23(1", Γ) by
95 (Σ1)]. Finally, let us notice that this implies that, if Σ generates 91, the closure of
πω(23(Γ,Γ))Ώω in §ω is exactly ξ>φ (compare with Corollary 2).

Lemma 3. Let φ be a pure state3 on 91 which is Γ -strongly positive and let &φ be the
(convex and weakly compact) set of all the solutions of the m(Γ)-problem for φ. Then
every extreme point of &φ is a pure state on 95(91, Γ).

Proof. Let ω be an extreme point of ®^ and let ωt be a positive linear form on
83(91, Γ) such that ω^ωx. If πω is the cyclic representation associated with ω, we

3 A state on 2ί is a positive linear form on 51 for which φ(t) = 1. A positive linear form φ is pure if the
only positive linear forms Ψ satisfying ψ(x*x) ̂  Ψ(x*x) are the multiples Ψ = λφ of
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know that there is a positive A1Eπω(^Ά(<Ά9Γ))f with O g^^ί for which ωx(x)
= (Ωω \Aίπω(x)Ωω\ Vxe 93(2ί, Γ). From the last part of Lemma 1 and from Lemma 2,
it follows that we have^M^
= (πφ(h)Ωω\A1Ωφ), V7ιe2l, and from Org^ ̂ i it follows that φ t defines a positive
linear form on 21 for which φ1(x*x)^φ(x*x). It follows that φ1=λφ. For some
constant 0^/ί^l (since φ is pure). This implies immediately that ώ = λ~ίωί is a
solution of the m(Γ)-problem for 0 if ΛφO, and that, if λή= 1 the same is true for ώ\
= (ω — ω ί ) / ( l — λ ) so we have ω = λώί+(l — λ)ώ'ί which implies (since ω is an
extreme point in S^) either ώl=ώ'l=ω either λ = 0 or λ = 1 so in any case λωl = ω
which means that ω is pure. D

Notice that, quite generally, if φ is an arbitrarily Γ-strongly positive linear form
on 21, if ω is a solution of the m(Γ)-problem for φ and if Pψ denote the orthogonal
projection on ξ>φ (as a subspace of §ω) then the mapping At->P%AP% of J£?(§ω) in
JδP(Sφ) maps the commutant πω(93(2I, Γ))' of πω(93(2l,Γ)) in the weak commutant
πφ(^ϊ)w °f π4>(^ϊ) m Sφ (where πφ is considered as a ^-representation of 21 in $0 with
domain D^ [2]).

Let 5(21, Γ) be the convex cone of all the Γ-strongly positive linear forms on 21
and let M(2ί, Γ) be the convex cone of all the positive linear forms on 33(21, Γ) which
are solutions of m(Γ)-problems. Any element ω of M(2ί,Γ) is solution of the m(Γ)-
problem for a unique element φω of 5(21, Γ) and we have:

Φ ί ιωι+ί2ω2 = ίιΦωι + ί2Φω 2; Vω1?ω2eM(2ί,Γ) and Vί 1,ί 2eR+.

Lemma 4. Let (φΛ) be a net of Γ-strongly positive linear forms on 2ί and let us choose,
for each α, a solution ωα of the m(Γ}-problem for φa. Suppose that (φΛ) converges
weakly to φ (in the dual space of 21) and let ω be the weak limit (in 33(21, Γ)' ) of an
arbitrary weakly convergent subnet of (ωα). Then ω is a solution of the m(Γ)-problem
for φ.

Proof. Let (ω^) be a subnet of (ωα) which converges weakly to ω. For each β let ψβ be
the linear form on the subspace 21 + 93(21, Γ) of «s/(2I, Γ) which is positive on (2ί
+ 93(21, Γ))n j/+(2I, Γ) and satisfies :φβ = ψβΪM and ωβ = ψβ 1 93(21, Γ). The net (ψβ)
is by assumption simply convergent on 21 and on 93(21, Γ) so it is simply convergent
to a linear form φ on 21 + 93(21, Γ) which is positive on (21 + 93(21, Γ))nj/+(2I, Γ)
and such that we have :

φ = ψϊM and ω = v> Γ 93(21, Γ) . D

Remark 2. This lemma implies in particular that if the m(Γ)-problem for φ is
determined on 93(Σ,Γ) (for some Σc2ί^) then the net ωJ93(Γ,Γ) is weakly
convergent.

3. Stability of the m-Problem: Supports

Let 2ί be a *-algebra with a unit and let ̂ (21) be the set of all the C*-semi-norms on
21 equipped with the uniformity of the simple convergence on 21. The relations
caracterizing the C*-semi-norms define a closed subset in R91 so «yΓ(2I) is a complete
uniform space. Furthermore, ^Γ(2I) is canonically an ordered directed set.
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Let Γ be a directed set of C*-semi-norms on 21 [i.e. Γ is a directed subset of
«yK(9l)] and let 2ΓT be the locally convex topology on 91 generated by Γ. According to
Part I, the directed set Γ of all the ^-continuous C*-semi-norms on 91 consists of
all the C*-semi-norms on 91 which are bounded by C*-semi-norms of Γ and all the
concepts and constructions introduced so far do only on Γ(j/(9I, Γ) = <β/(2ϊ, Γ)'
etc....). It follows that the convenient assumption that Γ is directed may be
dropped. Indeed, if Γ is an arbitrary set of C*-semi-norms (Γ C ^Γ(9I)) on 91, then the
locally convex topology 2ΓΓ on 91 generated by Γ is also the locally convex topology
generated by the directed set Γ of all the ̂ -continuous C*-semi-norms on 91 so, for
instance, we may define ja/(9X,Γ) to be j/(9ί,Γ) etc ..... Notice that we have:

^ sup (#) for a finite family (ft)ίe/ in Γ}. Many constructions
P

introduced in Part I are only auxiliary constructions needed to state and to discuss
the m-problem so it is natural to look for the dependence on Γ of the m(Γ)-problem
[Γ being now an arbitrary subset of yΓ(9I)] it is the object of this section.

Lemma 5. Let x be an arbitrary element of 91 and let p1 and p2 be two semi-norms on 9ί
such that p1(i) = p2(i) = 1 and ft(ft(x)i — x)^ft(x) for i = 1,2. Then the semi-norm p
= sup(p l5p2) satisfies p(i) = l and

Proof. Suppose for instance that P1(x)^p2(
 χ) Then, we have sup(p1?p2)

(sup(p l5p2)(x)i-x)= sup ft(pi(x)ll-x). By assumption p1(pl(x)ί-x)^p1(x)
i= 1,2

= sup(p1,p2)(x), and we have p2(Pi(xn-x)^p2(p2(x)i-x) + p 2 ( [ p 1 ( x ) - p 2 ( x ) ' ] t )

= Pι(x) — (p2(x} — p2(P2(χ)^~}Cϊ) = Pι(}C)' So we have P(p(x)^ — x)^P(χ) and, on the
other hand p(i) = 1 is obvious. D

As usual, the positive cone 9ί+ of 91 is the convex cone in 91 generated by

Lemma 6. Let h be an arbitrary hermitian element of 91 and let Γ be a set of ^-semi-
norms on 91. Then h is in the ^-closure of 91 + if and only if we have: p(p(h)t — h)

\ VpeΓ.

Proof. Let Γ± be the directed set of C*-semi-norms on 91 generated by Γ. We have
*rτ^?Γγ and j3/(9ί,Γ1)^^/(9I,Γ). On the other hand, by the Lemma 5, we have:
"p(p(/z)ί-/ι)^p(/ι); VpGΓ"o"p(p(ft)l-ft)^p(ft); Vpe/Y'. As usual (see in Parti),
we may assume that FΓ = 3ΓΓ^ is a Hausdorff topology on 91 (otherwise replace 9ί by
the factor algebra 91/{0}^r) So h is in the ^-closure of 91 + if and only if
/ze9ίnj3/+(9I, Γ x) and this is equivalent to np(h) positive, VpeΓ1 [see Part I,
Section 2, Lemma 3d)]. On the other hand, it is known that in a C*-algebra with a
unit, a hermitian element x is positive if and only if it satisfies || ||x|| i — x|| ^ ||x||, [9].
Therefore /z = /z*e9X is in the ^-closure of 9I+ if and only if we have p(p(h)ί — h)
^p(h) for any peΓ1 [i.e. VpeΓ 1 ? |||l^(^)||i-^(/z)|| ̂  ||^(fc)||] and, since this is
equivalent to p(p(h)t — h)^p(h) for any peΓ, this proves the Lemma 6. D

Lemma 7. Let x be an arbitrary element of 91. Then p±->p(p(x)t — x) is a continuous
mapping of yΓ(9ί) in R
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Proof. Let p0 be an arbitrary element of Λ^(9l) and consider, for any ε>0, the
neighborhood of p0 in «yΓ(9I) defined by:

^Ofβ^pe^(9l)||p0(x)-^^

For any pe^p0ffi, we have: \p0(p0(x)t-x)-p(p(x)ί~x)\^\p0(p0(x)ί-x)
-p(p0(x)t-x)\ + \p(p0(x)ί-x)-p(p(x)ί-x)\^ε, where we used \p(a)-p(b)\^p(a
-b) and p(l) = l. This prove that ph->p(p(x)l-x) is continuous since ε>0 and

(9X) are arbitrary. D

Remark 3. Notice that pι->p(p(x)i — x) is not uniformly continuous.

It follows from the last lemma and from the Lemma 5 that the set Γx

t — x)^p(x)} is a closed directed subset of ^K(SI) for any x

Proposition 1. Let Γ be a set of C*- semi-norms on 91 and let W + ̂ ~r denote the closure
o/ 9I + in 9X equipped with the locally convex topology $~Γ generated by Γ. Then the set
Γ = {pε^(M))\p(p(h}t-h) ^ p(h^ V Λ e 9Γ^"r} is the greatest set of C* -semi-norms on
91 for which we have: 9X + 'SΓ/' = 9l+^r. Γ is a closed directed subset of yΓ(9I) and we
havef = f.

Proof. We have :Γ= Π Γh. So Γ is a closed directed subset of ,/F(9I). The rest of
Λegp^r

the proof follows from the Lemma 6. D

We know (Part I, Section 6, Proposition 2) that, if Γ1 and Γ2 are two sets of C*-
semi-norms on 91 such that &~Γί is finer than &~Γ2, the canonical continuous *-
homomorphism πΓ2Γl : ̂ /(9I, ΓJ-* j/(9I, Γ2) has a restriction to 23(91, ΓJ which is a
surjective *-homomorphism of the C*-algebra S(9Ϊ, Γx) on the C*-algebra
93(91, Γ2) (πΓ2Γl(95(8I,Γ1)) = »(8ί,Γ2)). Let us simply denote by πr (instead of
πr, yΓ(9I) the canonical *-homomorphism of j/(9I, J^(9I)) in j/(9I, Γ); VΓC^Γ(9I).
Then, since πr(23(91))= ® (91, Γ) (remembering that the C*-algebra associated with 91,
23(91), is defined by 95(91, ̂ (91)) = 95(2Ϊ)), it follows that 95(91, Γ) is *-isomorphic
with the factor C*-algebra 93(9I)/πf1(0)n 93(91). In the following we shall identify
23(91, Γ) and 95(9I)/πf ̂ n 23(91) under this isomorphism writing therefore:

95(91,^) = 35(91, Γ2) if πf ι

1(0)nS(9ί) = πf2

1(0)n 23(91)

where

and Γ

Let Γ be a set of C*-semi-norms on 91 and let yr :9I-» j^(9I, Γ) be the canonical
continuous *-homomorphism of 91 equipped with ̂ Γ in the associated complete
Hausdorff topological *-algebra j/(9ί, Γ). In the Part I (Section 6), we have defined
f(h)e j/(9ϊ, Γ) for any continuous functions / on IR and for any hermitian element h
of j/(9I,Γ); furthermore, if ^(R) is the *-algebra of complex continuous functions
on Unequipped with the topology of compact convergence, β-*f(h) is a continuous *-
homomorphism of (̂IR) in j/(9I, Γ). It will be convenient in the following to denote
the spectrum of γr(x) in j/(9I,Γ) by Spr(x), for any xe9ϊ Spr(x) will denote its
closure in (C (in IR if x = x*).



Generalization of the Classical Moment Problem 161

Theorem 2. Let Γ1 and Γ2 be two sets of C*'-semi-norms on 21; the following
conditions are equivalent:

a) the Γ1 -strongly positive linear forms on 2X and the Γ2-strongly positive linear
forms on 21 are identical,

b) the ^~Γ ̂ -continuous positive linear forms on 21 are Γ2-strongly positive and the
^7^continuous positive linear forms on 21 are Γ ^strongly positive,

c) the 3~Γ ̂ -closure of 21+ coincides with its ^~Γ2-closure (in 21),
d) Γ\ and Γ2 are identical (in
e) S(8I>Γ1) = g(9I>Γ2) (i.e. πr-

1(
ί) SpΓι(/z) = SpΓ2(/z) /or any hermitian element h of 21.

Furthermore, under these conditions, for any linear form φ on 21, a positive linear
form ω on 23(21, Γ t) = 23(21, Γ2) is a solution of the m(Γ ^-problem (resp. m(Γ ±)-
problem) for φ if and only if it is a solution of the m(Γ2)-problem (resp. m(Γ2)-
problem) for φ.

Proof. a)=> b) since, for any Γ C Λ^(2l), a ̂ -continuous positive linear form on 21 is
positive on the ^-closure of 21+ which means that it is Γ-strongly positive.

b)=>c) since ̂ Γι and 3~Γ2 are locally convex topology on 2ί and since 21+ is a
convex subset of 2X[2I + tίΓr is the polar of the set of all the J^-continuous positive
linear form and the set of all the Γ-strongly positive linear forms is the polar of
2ί + ̂ r in the algebraic dual of 21; VΓc^(2l)] [10].

c) =>a) by the very definition of strong positivity
c) od) is trivial (see the Lemma 6);
d) =>e) is equivalent with 23(21, f) = 5(21, Γ);VΓC^ (81).

Let us prove this equality which is equivalent to πf/(0)n33(2l,Γ) = {0};
VΓc^Γ(2X). Any continuous linear form on j/(2I, Γ) is a finite combination of
positive continuous linear forms on j/(2I,Γ) and, on the other hand,
33(2ί,f)c^(2ί,f) implies that the continuous linear forms on ^(2I,f) (their
restrictions to 23 (2ί, Γ)) separates the points of $(21, f) [j3/(2I, f) is a Hausdorff
locally convex space]. It follows that, in order to prove our statement, it is sufficient
to show that for any continuous positive linear form ψ on j/(2ί, Γ) there is a positive
linear form ω on 33(2ί,Γ) for which we have: ψ(x) = ω(πrf(x)), Vxe2J.(2I,Γ).

But let φ be the defined by φ(y):=ψ (y/(y)), V y e 21 φ is Γ-strongly positive [by d)
<^>b)] since it is ^Y-continuous. So there is a solution ω of the m(Γ)-problem for φ
and, since the representation of 21 associated with φ is bounded, ω is unique (by the
Theorem 1, for instance) and we have: ψ(f(yf(h)) = ω(f(γr(h))), V/e^(0)(IR) and
V h e 2ί *. This implies ψ(x) = ω (πrf (x)), V x e 95 (91, f) [indeed / (γr (h)) = πrf (f (yt (ft)))
and 95(9I,Γ) is generated by the f(yr(h)\ /e^(0)(R), ft = ft*e9ϊ].

e)=> f) because if e) is satisfied then f ( y Γ ί ( h ) ) = Q is equivalent to /(y jΓ2(ft)) = 0,
V/z = /z*e2I and V/e^(0)(R); so the greatest closed subset S^ClR such that
/e^(0)(IR) and f ( S h ) = 0 imply f ( γ Γ ί ( h ) ) = Q is also the greatest closed subset of IR
such that /e^(0)(IR) and /(Sh) = 0 imply /(yΓ2(ft)) = 0. This means

SpΓl(A) = SpΓ2(ft) = SΛ because we have: 95(9l,Γ)c Π ^W and πp(23(2l,Γ))

= 95p(9l) (see in Part I) and Spr(ft)= (J Sp(πp(yr(ft)).
peΓ



162 M. Dubois-Violettί

f) => c) because /ze2i + trr is equivalent to SpΓ(/z)clR+ (see Part I, Section, Lemnic
3).

This achieves the proof of the equivalence of the conditions a) — f).
The conditions a), e), and f) clearly imply that any solution ω of the m(Γ l}

problem for a linear form φ on 21 is also a solution of the m(Γ2)-problem anc
conversely. Jt remains to show that the same it true for the m-problem. It is clearl}
sufficient to show that any solution ω of the m(Γ)-problem for a linear form φ on 21
is also a solution of the m(Γ)-problem for (/>(VTc,/F(2I)). The closures of {0} in 21
for 2Γf and for ̂ Γ obviously coincide so we may suppose without restriction thai
^/_and 3~τ are Hausdorff topologies on 21 (replace 21 by 9I/{0} where {0} - {0}^
= {0}*^). Using the definition of the m-problem (Part I, Section 7, Definition 4'), we

imply h-bε^+(^f\ However h-bejtf+(Ά,Γ) is equivalent toιp(h-b)^0 foi
all positive continuous linear form ψ on j/(2I, Γ). But then, if tp is positive and £Γ f
continuous, we know that ψΓ93(2ϊ,Γ) ( = 93(2I,Γ)) is the unique solution of the
m(Γ)-problem for ψ ί 21 [by the same argument as in d) => e)]. It follows that V/ze 21
and 6 = fr*e33(2X,Γ) such that /ι-feej/+(2ί,Γ) we have ψ(h-b}^Q for an>
continuous positive linear form ip on ^/(2I,Γ) so we have h — foej/+(2I,Γ). D

Definition 1. Two sets /\ and Γ2 satisfying the equivalent conditions a) — f) of the
last theorem will be said to have the same support and we write
Supp(Γ1) = Supp(Γ2). This is obviously an equivalence relation on ^3(yK(2Γ)) and
the corresponding factor space will be called the set of supports. If Γί CΓ2 C^(2I^
we say that the support of Γί is contained in the support of Γ2 and we write:
Supp(Γ1)cSupp(Γ2) (this is an order relation).

Remark 4. Let h be an arbitrary hermitian element of 2l(/ze2Γf) and let (C[Y] be the
*-algebra of complex polynomials with respect to the indeterminate X. Then we
may associate to any set Γ of C*-semi-norms on 21 the set Γ(h) of C*-semi-norms on

defined by:

{pJpΛ(P(3f)) = p(P(Λ)),VP(2f)6C[3f];p6Γ}. (i;

It is not hard to see [use condition f) in the last theorem] that Supp(ΓJ
= Supp(Γ2) is equivalent to Supp(/\ (h)) = Supp(Γ2(/z)), V / z e 2ί4, and that, for the *-
algebras of polynomials, the above definition is consistant with the definition given
in the Section 5 of Part I. It follows that the set of supports may be identified with a
set of closed subsets of IR^ [Supp(Γ1)cSupp(Γ2) if and only if the corresponding
inclusion holds in IR9Ϊ^].

4. Homomorphisms and Tensor Algebras

We already pointed out in Part I that the tensor algebras over involutive vector
spaces are of particular interest since every *-algebra with unit is (in a non unique
way however) the quotient of such a tensor algebra by a ^-invariant two-sided ideal.
An immediate consequence of the last theorem and of the Theorem 2 of Part I
(Section 4) is the following proposition.
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Proposition 2. Let E be an involutive vector space, let E' be a ^-invariant subspace of
the dual space of E which separates the points of E and let ΓE, be as in the Theorem 2
of Part I. Then ΓE, is the set of all the C*-semi-norms on the tensor algebra T(E).

So we have 95(T(E)) = 93(T(E), ΓE.) etc
Generally when one considers a *-algebra with unit as a factor space of some

tensor algebra over an involutive vector space, this means that one is interested on a
real vector space of hermitian elements in this algebra which is generating. This is,
for instance, typically the case in quantum field theory when one considers the field
operator smeared with real test functions. This suggests to generalize the definitions
of the quasi-localizable C*-algebra (Definition 6, Part I, Section 9) by the following
one.

Definition 2. Let £ be a real vector space and let T(E + iE) be the tensor algebra over
the complexified vector space E + iE of £ equipped with its canonical structure of *-
algebra with unit. We define the C*-algebra associated with E, 930(£), to be the C*-
subalgebra of 93(T(£ + iE)) generated by {f(h)ε 93(T(E + iE))\ he E and /e^(0)(R)}.

It should be clear from this definition and from the Proposition 2 that the quasi-
localizable C*-algebra 23 (M) is the C*-algebra 950(^(M;1R)) associated with the
space<£F(M;IR) of the real C°°-function with compact supports on M.

In order to complete the discussion, we must describe the in variance of the m-
problem under *-homomorphisms.

Proposition 3. Let α1 2 : 912->9I1 be a homomorphism of *-algebras with units (α12(i)
= 1), let Γ^resp. Γ 2 ) be a set of C*-semi-norms on yiί(resp. 9I2) and let us assume
thatpeΓl impliesp°ocΐ2EΓ2(i.e.θίl2 iscontinuousfrom(W2,^f.2)in('Ά1,&~Γί)). Then
there is a unique *-homomorphism βα i 2: S(9ί2,Γ2)—> 23(91 ,̂ ΓJ such that we have:

&12σ(Λ))=/(α12(A))*,VΛe9lί and V/e<ίί(0)(IR).

// φ is a Γ ^strongly positive linear form on <Ά1 and if ω is a solution of the m(Γ1)-
problem for φ, then φ°a12isa Γ2-strongly positive linear form on 9ί2 and ω°βai2 is a
solution of the m(Γ2)-problem for </>°α1 2.

If α 2 3 : 9I3-»9Ϊ2 is another homomorphism of *-algebras with units and if Γ3 is a
set of C*-semi-norms on 913 such that, for any pεΓ2, p°α2 3 is in Γ3 then \/peΓl9p°
α i2° α 23 is m ^3 and we have:

// α is the identity mapping of 912 onto itself, βa is the identity mapping of
23(9ί2,Γ2)onίo itself.

Proof. Let α 1 2 : 9ί2-> 911 be as in the proposition. Then α12 is continuous if 911 is
equipped with 5Γ

Γι and if 9ί2 is equipped with &~f2 therefore there is a unique
continuous ^-homomorphism ά 1 2 : j</(9ί2,Γ2)-^^/(9ί1,Γ1) for which ά 1 2(yf 2(Ό)
= γΓl(ocΐ2(h)), where y^2:912->J/(9I2, Γ2) and γΓί: 911 ->j/(9ί 15 Γ t) are the canonical
mappings and where h runs over the set 9ί2 of all the hermitian elements of 9Ϊ2.

Here we use the notation f(h) to denote the element f(γΓϊ(h)) of 23(2ί2,Γ2) where h = h*ε<&2,
lR) and yΓ2 is the canonical mapping of 212 in ^/(512,Γ2). (The same convention is applied for
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Then, the restriction ά1 2 Γ93QO(2I2,Γ2) *
s easily seen to be a *-homomorphism of

SΛΛjmSαoί^ΓiKorwto
fceSl* and /^(oQR)- Il; follows that the restriction βαi2 of ά12 to 93(2X2,Γ2) is a *-
homomorphism of 33(2I2,Γ2) in 93(21^ T^) and we have canonically: 23(2I2,Γ2)
= 93(2ί2,Γ2) and f ( y Γ 2 ( h ) ) = f ( γ f 2 ( h ) ) ( = f ( h ) with our conventions) for any Λe2l^
and /e^(0)(lR). So /?αi2 satisfies the condition of the proposition and is clearly
unique under this condition since 93(2I2,Γ2) is generated by
{/(/7)e»(2ί2,Γ2)|/z = /z*e2I2 and /e^(0)(IR)} (as C*-algebra). The rest of the proof
of this proposition is completely straightforward (use the Theorem 2). D

Corollary 3. Let α 1 2 : 2I2-»2I1 be a homomorphism of *-algebras with units. Then
there is a unique * -homomorphism 93(α12): 93 (2l2)-> 93(21!) for which we have:
%>(aί2)(f(h)}=f(aί2(h))yh = h*Eyί2 and /e#(0)(IR). If 1^ is the identity mapping of
the *-algebra with unit 21 onto itself, ^3(1^) = !^^. If α 2 3: 2I3-»2I2 is another
homomorphism of *-algebras with units, then we have: 93(α12)°93(α23) = 93(α12°α23).

Proposition 4. Let u:E-+F be a real-linear mapping of the real vector space E in the
real vector space F. Then, there is a unique * -homomorphism %$0(u): 930(E)— »930(,F)
forwhichwehave:&Q(u)(f(e))=f(u(eW
real-linear mapping, we have: 930(ι;ow) = 930(ι;)o930(w). Furthermore we have:

Proof. Again the uniqueness of 930(w) immediately follows from the definition of
330(E) (Definition 2 above).

Let ύ: T(E + iE)->T(F + iF) be the unique homomorphism of ^-algebras with
units which extends u (with obvious identifications). Then it is easy to see that the
restriction 950(M) = 95(M)r950(

£) of S(w):»(T(E + ΐE))^8(Γ(F + iF)) mapps the
C*-subalgebra 930(£) of 95(T(£ + i£)) in the C*-subalgebra 330(F) of 95(T(F + iF))
and satisfies the condition of the Proposition 4. The rest of the proof is
immediate. D

Remark 5. a) The Proposition 4 implies, in particular that there is a canonical group
homomorphism of the group Aut(E) of all the real-linear inversible mapping of £
on itself in the group Aut(330(E)) of all the ^-automorphisms of 950(£). This must be
compared with the Proposition 5 of Part I.

b) Corollary 3 (resp. Proposition 4) implies that 23 (resp. 93 0) is a co variant
functor of the category of *-algebras with units (resp. of the real vector spaces) in the
category of C*-algebras.

c) It would be of some interest to be able to define 93(21) and 930(£) as solutions
of universal problems (this could bring some light, for instance, on the connexion of
the m-problem with the m-problem).

5. Application to Essentially Self-adjoint Quantum Fields

It will be convenient in this section to call hermitian scalar field a linear mapping A
of the real vector space ^(M, IR) of the real C°°-functions with compact supports on
the Minkowski space M = IRS+1 in the real vector space of the symmetric operators
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on a dense domain D in a Hubert space § such that the following conditions are
satisfied:

a) A(Λ)βCAVΛe0(M,R),
b) there is a unit vector ΩeD such that D is the linear hull of A(h^...A(hN)Q

when (ht) runs over the finite families in ^(M,IR).
Let A be a hermitian scalar field in the above sense, then of course

Σλί1..Λnhiί® ®hίn^ΣλilmtΛnA(hiι)...A(hit) defines a ^-representation of the
tensor algebra T(@(M)) over the space 3>(M) of complex C°°-functions with
compact supports on M. This ^-representation is a cyclic representation with cyclic
vector Ω and if φΩ denote the vector state on T(^(M)) corresponding to Ω, we have
canonically:

ξ> = ξ>φa,D = Dφo,Ω = Ωφa and

Theorem 3. Let A be hermitian scalar field and let φΩ be the corresponding state on
T(@(M)) (as above). Suppose that for any real test function he@(M] the field
operator A(h) is essentially self-adjoint. Then, the m-problem for φΩ is determined on
the quasi-localizable C*-algebra 23(M) and we have: &(fι(hl)...fn(hn))
= («!/!(I^))..JB(ITO)ΩλVn^O,V/1>...)/Beίf(0)(R)>Vft1,...Λe®(M,lR) and/or
any solution ώ of the m-problem for φΩ. Let ω be the unique positive linear form on
$5 (M) obtained by restriction of an arbitrary solution ώ of the m-problem for φΩ and
let (πω, §ω, Ωω) be the corresponding G.N.S. triplet. Then, we have canonically:
$„=& Ωω = Ω and πω(/(A))=/(3(ft));V/eίf(0)(IR) and V Λe®(M,R) (where
A(h) = A(h)* is the closure of A(h)).

So πω(S3(M)) generates the bounded observables of the field.

This theorem has not to be proved since it is a specific case of the Theorem 1
(supplemented by the fact that by the Proposition 2 and the Definition 2, the C*-
algebra 33 (M) is identical with 930(0(M,R)).

Remark 6. a) The Part b) of the Theorem 6 in Part I follows from the Part a) of that
theorem and from the above Theorem 3. However, even if A is a nice local
Wightman field which is essentially self-adjoint on its usual domain, we do not
know in general if its spectral projections generate local rings. In other words, the
corresponding representation of the localizable algebra may fail to be local.

b) In the above definition of a hermitian scalar field, the field may be not local
and since translation invariance does not enter, it may happen that Ω has not the
meaning of a vacuum.

c) Notice also that no continuity with respect to the test functions is assumed.

Lemma 8. Let (A, §, Ω) be a hermitian scalar field and let (Aa, §α, Ώα)αe/ be a net of
hermitian scalar fields such that we have: \im(Ωa\A0ί(hί)...AaL(hn)Ω0)
= (Ω\A(hί)...A (hn) Ω) for any finite family hv,...,hnin3) (M). Let ωα be, for each α e /,
the restriction to 23 (M) of an arbitrary solution of the m-problem for φΩχ. Then there
is a weakly convergent subnet of (ωα) and the limit ω of such a subnet is the restriction
£0 33(M) of a solution of the m-problem for φΩ. If the m-problem for φΩ is determined
on 53 (M), then (ωα) is weakly convergent.
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Proof. Let (ωαO be a weakly convergent subnet of (ωα) and let ω be its weak limit
[such (ωα,) exist since the set of all the states on a C*- algebra is weakly compact]. Let
(ώα>) be the corresponding solutions of the m-problems for the φΩχ> (ώα/) is net of
states on 93(T(^(M))) so (again by compacity) there is a weakly convergent subnet
(ώα«) of (ώα/). By the Lemma 4, its limit ώ is solution of the m-problem for φΩ and, on
the other hand, we clearly have ω = ώΓS(M). D

Remark 7. Roughly speaking, this means that one cannot miss the right result if one
starts with an approximation (AΛ, §α, Ωα) then constructs ωα as above and obtains ω
by compactness in the weak dual of the quasi-localizable C*-algebra 23 (M). Indeed,
(A, §, Ω) can be reconstructed from ω because by Corollary 2 we have § = ξ>φn C §ω,
Ω = ί2ω, and by Lemmas 1 and 2 we have A(h) = π&(h)tπ&(T(@(M)))Ω where ώ is
any state on S(T(^(M))) extending ω. ,4 does not depend on the choice of the
extension ώ of ω.

6. Example: A Class of Jaffe Cut-off Fields [6]5

We want to discuss the case of interacting cut-off hamiltonian field theory. In order
to be explicit, we shall concentrate on λφ4 theory and on a specific cut-off
introduced by Jaffe in his thesis [6] it must however be clear from the work of Jaffe
that the arguments used here may be generalized to any polynomial interaction of
degree d^2 which is bounded from below and to other types of cut-off which
incorporate both an ultra-violet cut-off and a spatial cut-off.

We work in space-time M = R1+s = {(ί, r)|ίeIR,reIRs} and we shall deal with a
cut-off which consists to replace the interaction picture time zero field φ(0, r) and its
conjugate momentum π(0, r) by two very regular objects on space (reIRs) φN(0, r)
= φN(r) and πN(0, r) = πN(r) which describe a system with N degrees of freedom (for
each integer N^ 1).

So let us consider in the Hubert space ξ>N = L2(1RN) the 2N operators (pn9qn)
defined on the dense domain D^^IR^) by:

dΦ
..,qN) and Φ(ql9 ...,.,n ί,...,

^. As it is well known, D^ is a dense stable domain for these operators on which
they are essentially self-adjoint.

Let (eJweN denote a fixed orthonormal basis of the Hubert space L2(RS) which
consists of real valued function in ^(IRS) (for instance the Hermite functions). For
each positive integer N9 we define φN and πN by :

φN(r) = φN(V,r) = nΣ en(r)qn πN(r) = %(0, r) = *£ en(r)pn. (2)
n=ί n=l

For any real tempered distribution Te^IR5)', [11], the operators

= <T,eyq and <T,πy= <T9eyP

are essentially self-adjoint on D^ and map D^ into itself.

5 Jaffe suggested to us several simplifications for the content of this section. The author thanks him for
these suggestions
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The sense in which (φN, πN) is a cut-off versus for the canonical pair (φ, π) must
be clear so for a formal interaction picture hamiltonian, we define the correspond-
ing cut-off hamiltonian to be the operator in ξ)N = L2(JRN) obtained by substitution
of (φN, πN) to (φ, π) in the corresponding formal expression. We shall concentrate on
λφ4 theory and, since from perturbation theory for s = 3 we expect some mass and
coupling constant renormalizations, we shall allow a dependence on N for these
parameters. Therefore we define HN on D^ by:

I+^^W4-^^W2}-£W.(3)

/ " " / 0 ' 2X

Using the formula (2), we obtain: \AN= ]Γ ——

HN = ̂  Σ
2. n=ί

where

J qnqm ~

(4)

HN is a symmetric operator6 on D^ and HND^CD^ the closure of H^ will again be
denoted by HN. The "free part"

H(N} = ί dsr£[π2

N + (rφN)2 + m2φ2^} (its closure) (5)

is a well-known operator which is a semi-bounded (from below) self-adjoint
operator with a pure discrete spectrum and lowest eigenvalue of multiplicity one.
We shall denote the corresponding normalized eigenvector by Ω(£} and refer to it as
the Fock vacuum. We have : Ω(°} e D^ = ̂ (R*). Let ΔE(£] be the difference between
the lowest eigenvalue distinct from those corresponding to Ώ(^ and this last one, we
have:

and lim AE{^ = m = mί(AE(^). (6)
N^oo N

In what follows we shall suppose that either λN > 0, or λN = 0 and δmM = 0. Under
this assumption V(q^ ...,qN) is a polynomial of degree 4 or 2 in the qn which is
bounded from below and we have the following result [6].

Jaffa's Theorem. HN is self-adjoint, bounded from below, has a pure discrete spectrum
and its minimum eigenvalue has multiplicity one. The resolvant of HN is compact and
the eίgenf unctions of HN belong to D^ = ̂ (ΊR.N) and form a total set in ξ>N = L2(ΊRN).
D1

N is stable by <2/ίί/2V,VfelR (eitHNDχCD^}. Furthermore the cyclic subspace D(£}

generated from Ω(£} by the polynomials in pn, qm is a core for HN.

In what follows, we shall suppose that λN ̂  0, δmM, and EN are chosen in such a
way that the minimum eigenvalue of HN is zero (the corresponding normalized

6 It is of course understood that the parameters m, λN9 δmN, and EN are real
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eigenvector, called the vacuum, will be denoted by ΩN] and that the next smallest
eigenvalue EίN is equal to ΔE(^}:

lim EίN = m\ . (7)

Notice that this is a renormalization prescription for the mass of the theory and that
it does not determine λN (here we do not impose conditions for the coupling
constant renormalization).

Now let us define φN(t, r) = φN(x) on D^ by :

*φN(t,r) = eίtH»φN(0,r)e-ίtH», (8)

φN(h} = $dtdsrh(t,r)φN(t,r). (9)

In order to obtain self-adjointness for the space-time smeared field operator, we
follow Glimm and Jaffe [15, 16] (see also [17]).

Lemma 9. There exist positive constants aN, bN, and CN for which we have :

+ cNt)Φ) and

VΦeDi and V(ί,r)eM.

Proof. From the definition (8) it follows that it is sufficient to prove this inequality
for £ = 0, and from (2) it follows that it is sufficient to show that they hold when
φ(t, r) is replaced by qn(l ^n^N). But then, the first follows from (4) and the fact
that we have \qn\ ̂  VN(qί ...qn) + c'N for some positive c'N and the second from the fact

2
that we have q^VN(q1,...,qN) + b'N if /1NΦO and, if AN = 0, q2

n^ -^ VN(q1,...,qN)

+ b'N for some b'N > 0. Π

Lemma 10. Let h be an arbitrary real test function of Q)(M\ Then φN(h) is essentially
self-adjoint on any core for HN.

Proof. The second inequality of Lemma 9 implies that we have:

(10)

It follows that the domain dom(φN(h)) of the closure φN(h) of φN(h) contains the

completion of D^ for the norm Φι->
1/2

Φ
1/2

I I Φ H 2 which [in fact it

is dom(HN

1/2)~] clearly contains the domain dom^^) of the positive self-adjoint
operator HN. So we have:

dom(φN(h))Ddom(HN], (11)

and the same argument as above shows that for any core C for HN, dom(φN(h) IC)
contains dom(HN) and therefore that we have (φN(h)[C) = φN(h).

In order to achieve the proof of Lemma 10, it is sufficient to show that φN(h) is
self-adjoint. Let us first remark that the following identity holds on D^

φN(h') = iίHN,φN(h)-], with h'(t,r) = (t,r) (60(M)). (12)
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It follows that we have:

±i{(HNΦ\φN(h)Φ)-(φN(h)Φ\HNΦ)}=±(Φ\φ^

for any ΦeD^ (by Lemma 9) and therefore for any Φedom^^) by the above
argument. The self-adjointness of φN(h) is then a consequence of the following
theorem which may be found in the book of Paris [12] (Theorem 12-1, p. 79 see
also in [17] the [Jaffe's] Theorem 2.2).

Theorem. Let Q be a symmetric operator and H a positive self-adjoint operator.
Assume that

i) dom(H)Cdom(Q)
ana for some constant c and all Φ in dom(ff),

ii) ±i{(HΦ\QΦ)-(QΦ\HΦ}^c(Φ\HΦ).
Then Q is essentially self-adjoint.

So applying this theorem wiihQ = φN(h\ H = HN + cN'ί and c= \\h'\\Lι we obtain
the desired result. D

This lemma implies in particular that φ(h) is essentially self-adjoint on D(£\
Let us define the domain DN to be the linear hull of the vectors

φN(hί)...φN(hN)ΩN when (fe l 5 ...,hn) runs over the finite families in @(M). Clearly
DNCDΪ» HNDNCDN, QXp(itHN)DNCDN^te1R.

There is a choice of the phase such that ΩN(ql9...qN) is strictly positive,
V(g 1 ? . . . g^elR^; furthermore, ΩNe#?(]RN) = Dχ decreases faster (strictly faster if
/1N>0) than a gaussian at infinity. It follows that Ω^dNq is the solution of a
determined moment problem and therefore, the polynomials P(q1 , . . .qN) are dense in
L2(JRN, ΩχdNq) which implies that the functions P(qί9 ...qN)ΩN(q1, ...,qN) are dense
in ξ>N = L2(JRN). On the other hand, it is easily seen that the closure of DN in §N

contains these functions; so DN is dense. Since DN is dense, contained in άom(HN)
and invariant by eltίίN, we have the following lemma.

Lemma 11. DN is a core for HN.

Lemma 1 1 implies that (φN, §N, ΩN) is an essentially self-adjoint scalar field (with
our conventions), so we may apply to it the Theorem 3. But since we expect for s = 3
some "wave function" renormalization, we shall allow a dependence on N of the
normalization of the field operator. So we define the field AN by :

A^h) = Z- 1/2ίφN(h) - (ΩN I φN(h)ΩNK , (13)

for hε@(M) and where ΩN is the ground state of HN; ZN being a strictly positive
constant which may be fixed, for instance by the following procedure. Let A(Q} be the
usual free field of mass m (hermitian scalar free field), let /e5^(IRs+1) be such that
AN(f)ΩNή=Q and such that the support of its Fourier transform / interset the
physical spectrum of A(Q} only on the mass shell of A(0\ then choose ZN in such a
way that \\AN(f)ΩN\\ = ||v4(0)(/)ί2(0)||, where Ω(0) is the usual vacuum in the Fock
space of the free field of mass m (AN(t, r) being well defined on D^ by AN(t, r)
= Zχ1/2[φN(t,r) — (ΩN\φN(t,r)ΩN)J). In any case (i.e. for any choice of ZN>0) we
may summarize the situation by the following statement.
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Theorem 4. The cut-off field AN = (AN,ξ>N, ΩN) satisfies the assumptions of
Theorem 3.

Therefore, the m-problem for φΩκ is determined on the quasi-localizable
C*-algebra 33 (M). Let π^ be the corresponding unique representation of S(M) in
§N for which πN(f(h))=f(AN(h)}e£>(ξ>N\Vh = h*e@(M} andV/e^(0)(lR); we define
the state ωN on 33 (M) associated to the above theory by:

ωN(x) = (ΩN πN(x)ΩN), V X E »(M) . (14)

Clearly (by G.N.S. construction + Lemmas 1 and 2) the knowledge of ω^ is
equivalent to the knowledge o f the whole theory (ξ>N, H^, AN etc. . . . ). What has been
gained in this translation is that the space of states on S(M) equipped as usual with
the weak topology is compact (remembering that this topology is reasonably
physically relevant [19]). So from the sequence ωN, one may extract a convergent
subnet. Let 6 be the set of the limits of these convergent subnet. The natural
question is then the following one: Is there a choice of the sequence (λN,ZN) for
which 6 contains at least an interesting point! Clearly an interesting point would be
a state ω on S(M) such that, if (πω> §ω, Ωω) is the associated G.N.S. triplet and ̂ b

denote the set of the non-empty open bounded subsets of M, the family
(πω(23($))'%eJFb

7 of von Neumann algebras satisfies the assumptions of the theory
of Araki and Haag [13, 14] adapted to the situation where one kind of neutral
scalar particle of mass m is present with vacuum Ωω. Of course, for the trivial choice
λN = 0 [which implies δmN == 0 with our convention formula (7)] and ZN = l VΊV, the
Wightman distributions of the cut-off fields converge to the Wightman distributions
of the free scalar neutral field of mass m which is an essentially self-adjoint
hermitian scalar field so, by Theorem 3 and Lemma 8, ω^ converge weakly to the
vacuum expectation values of the bounded observables of the free field. In the case
λN>Q(VN), it will be very difficult (and this is out of the scope of this paper) to
recover the locality and the Poincare invariance when one removes the cut-off.
However, since the cut-off fields are time-translation invariant and satisfy the
spectrum condition in the time direction with a fixed gap m and a unique (ΩN), one
may expect that the same holds for the "limits" (in the above sense).

7. Conclusion

Suppose that ω is a state on 23(M) which is obtained, by weak compactness
argument, from states corresponding to cut-off field theories as in the previous
section. If we try to interpret ω as a vacuum state of some "limit" theory, a first
difficulty arises because the G.N.S. Hubert space §ω may not be separable.

In quantum field theory [20,21], the separability of the Hubert space is a
consequence of the continuity properties of the corresponding ^-representation of
the tensor algebra over the space of the test functions (using either the separability
or the nuclearity of this topological *-algebra). At this point, it is worth noticing that
all the constructions and the results of this work are purely algebraic. Furthermore

93(0) being defined as in Part I, Section 9a); 93(0) is a C*-subalgebra of 23(M),V0e J b̂
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Theorem 2 and Proposition 2 (above) show that the continuous positive linear
forms on the tensor algebra over the test functions which correspond to bounded
representations already separate the quasi-localizable C*-algebra. So continuity
will not reduce this C*-algebra, and at the "C*-algebraic level" one must use a non-
separable C*-algebra in order to deal with "sufficiently many" field theories. The
only way to escape is to remark that since continuity selects a subspace of the
algebraic dual of the space of test functions we may expect that correspondingly one
can find solutions for the associated m-problems in a (separating) subspace of the
topological dual space of the quasi-localizable C*-algebra such that the quasi-
localizable C*-algebra be separable for the corresponding weak topology. It must
be clear that similar considerations apply when we are interested in the m-problem
for continuous strongly positive linear forms on locally convex ^-algebras.

For instance if £ is some locally convex space with topological dual E' and if φ is
a strongly positive linear form on the symmetric tensor algebra S(E) over E
( = "polynomials" on £'), then a solution of the m-problem for φ will not define a
measure on E' but merely a measure on the algebraic dual space E* of E [22].

One sees that, in order to develop a step further our non-commutative
generalization of the moment problem, we have to generalize the part of that
problem corresponding to infinite dimensional measures on topological vector
spaces. This will be done in a forthcoming paper.

Acknowledgements. The author is indebted to H. J. Borchers, H. Epstein, and J. Yngvason for numerous
stimulating discussions and suggestions. It is a pleasure to thank them for their kind interest. We also
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Note. Soon after the publication of the Parti of this work [1], we realised that the condition of quasi-
analicity of the vacuum discussed there had already been introduced by Gachok,V.P.: Nuovo Cimento
45 A, 158 (1966).
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