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The Critical Behavior of φ*
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Abstract. The eigenvalues, eigenfunctions, and Schwinger functions of the
ordinary differential operator

are studied as λ-* oo. It is shown that the scaling limit of the Schwinger functions
equals the scaling limit of a one dimensional Ising model. Critical exponents of
H(λ,m) are shown to equal critical exponents of the Ising model, while critical
exponents of the renormalized theory are shown to agree with those of a
harmonic oscillator.
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1. Introduction

The purpose of this paper is to explain the behavior of the eigenvalues,
eigenfunctions, and Schwinger (or correlation) functions of the ordinary differential
operator

(m2-λm-1)q2} (1.1)
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in the limit as λ becomes infinite. This problem is a simple, but characteristic,
member of a large class of singular perturbation problems which arise naturally in
mathematical physics (see e.g. [1—3]). The operator (1.1) represents the quantum
mechanical Hamiltonian for a particle subject to the force — 4λq3 — 2(m2 — λm~ l)q.

The Schwinger functions of (1.1) describe the equilibrium statistical mechanics
of an elastic string subject to the same non-linear restoring force. The limit as λ
tends to infinity is studied because, as will be explained in Sections II and III, λ — oo
is a critical point for each value of w>0.

The most interesting reason for studying the critical behavior (λ-+ oo) of (1.1) is
that it provides a clear illustration of two forms of the principle of universality. The
first form, which says that critical exponents are independent of the detailed nature
of the interaction (see Kadanoff [4]), will be illustrated in Section 7 where the
exponents v, ζ, γ, and η of (1.1) are calculated and shown to agree with the exponents
of a one dimensional Ising model. The renormalized Schwinger functions
associated with (1.1) are defined in Section 5, and the critical exponents of the
renormalized theory are shown to agree with those of a free theory (i.e., a harmonic
oscillator). The second form of universality maintains that the scaling limit of the
renormalized Schwinger functions for φ$ equals the scaling limit of the correlation
functions of the Ising model in d dimensions (d^4) (see Glimm and Jaffe [3, 5, 6]).
This conjecture will be explained and proved for φ\ in Section 5.

For a discussion of the scaling limit conjecture for d dimensional euclidean
quantum fields (d:g3) and its relation to the construction of four dimensional
quantum fields see Glimm and Jaffe [3, 5, 6].

2. Definitions

Let ffl be the Hubert space L2(Rl\ let q be multiplication by x and p be the operator
-id/dx.

The φ\ theory is the study of the operator

H1(λ,m) = ̂ {p2 + λq4 + (m2-λm-1)q2}. (2.1)

In this paper λ and m will always stand for real numbers for which λ > 0 and m Φ 0.
The following are well known properties otHl(λ,m) (see Jaffe [7] and Simon

[2]):
pj Hl(λ,m) is essentially self-adjoint on C Q ( R I } and is self-adjoint on

p2) Hl(λ,m) has a compact resolvent.
p3) The eigenvalues of Hl(λ, m) are non-degenerate.
p4) The eigen functions alternate parity, and the one that corresponds to the

smallest eigenvalue is even.
Let εj(/l,m) be the smallest eigenvalue of Hl(λ, m). Define the renormalized

operator H = H(λ,m) by

H(λ, m) = Hl(λ, m) - ε J(λ, m). (2.2)

Let the eigenvalues and eigen functions of H(λ, m) be denoted by Sj = £j(λί m) and Ωj

= Ωj(λ,m) for7 = 0, 1, 2,..., where 0 = ε0<ε1 <ε2<.... Ω° is called the ground or
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vacuum state, and ε1(/ί? m) is called the physical mass or mass gap. ε1(A, m) will also
be denoted by mp(λ, m).

Since H is self-adjoint and H ̂  0, it generates a contraction semi-group e ~ τίl for
τ ̂ 0. The eigen functions Ωj are contained in the Schwartz space y £f is invariant
under p, g and e~τίl (see Jaffe [7]).

These properties allow us to define the Schwinger functions S(n) for n = 1, 2, ...
and t1^t2^... <;tπ by

= <Ω0

>^- | t2- ί l lV~ | ί3~ ί2 |H^-^" | ίn" ίn" l |H<?Ω°>. (2.3)

A consequence of the Feynman-Kac formula (see for example [8]) is that the
Schwinger functions are the moments of a measure dμλίtn(q) on ^'(jR1); i.e.,

The measure dμλ^m(q) is given formally by

%,mte) ̂  e~V(q} Π Wί ^"F(€) Π dq(t) , (2.5)
ί / ί

where
GO

λm-^q^dt. (2.6)

We see that (2.5) is the Gibbs measure (with the kinetic energy integrated out) of an
elastic string subject to a nonlinear restoring force. Thus the Schwinger functions
are correlation functions of a string in thermodynamic equilibrium. The correlation
length of the string, ξ(λ, m), defined by

|ί2-ίι|->oo

is equal to mp(λ, m)~1. Values of λ and m which give rise to an infinite correlation
length (i.e. zero mass) are called critical points, and will be denoted by λc and mc.

At first glance the φ* theory appears to be a poor choice in which to look for a
critical point because for m φ O and /ί<oo, Ω° is non-degenerate implying that
mp(λ9 m) Φ 0. However a theorem of Kac and Thompson [9] implies that λ = oo is a
critical point for each value of m>0. In fact their result implies the following
theorem:

Theorem 20ί0 // m>0 and g = λ/m3, then for g sufficiently large there exist positive
constants A and B (independent of g) for which

mp(λ,m)^A(g~i)l/2me-Bgί/2. (2.8)

Proof. Combine Kac and Thompson [9], p. 259, Equation (2.8) with the scaling
(3.21) of Section 3.

2o2o For each m>05 λc= oo is a critical point for the φ^ theory.

Proof. From (2.8) it follows that

lim mp(λ,m) = Q. (2.9)
λ->oo
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The rest of this paper is devoted to studying the critical (i.e. Λ,-»oo) behavior of
all the eigenfunctions, eigenvalues, and Schwinger functions of φ\.

3. The Scaling Group

We introduce two scale transformations of the Hamiltonian (2.2). These scalings
will be called the Ising model and harmonic oscillator scalings. The Ising scaling will
be used to establish the approach of the Schwinger functions to the Ising model's
correlation functions as the critical point is approached, while the harmonic
oscillator scaling will be used to establish the approach of the spectrum of H to a
(doubled) harmonic oscillator's spectrum.

For each real number α>0, the scaling transformation UΛ is the unitary
operator

l/αyφc)ΞEα1/2ι/Xαx) (3.1)

for all ψ(x)eJ^. It follows that

α-1/2v(α"1^Uβl//, = l/β/ϊ,

^ ^ , = [/* = i/;1

so that the UΛ form a 1-parameter group, called the scaling group.
The following are direct consequences of (3.1) and (3.2):

UaqU%=aq, (3.3)

1/^17* =α-1p, (3.4)

UΛH(λ, m)C7* = oΓ 2H(a,6λ9 α2m), (3.5)

,m) = Ωj(u6λ9u
2m) for j-0,1,2,... (3.6)

) = α-2ε/α6;i,α2m) for 7 = 0,1,2,..., (3.7)

S(n\tl,...,tnιλ,m) = anS(n\a-2t1,...,a-2tn;(x6λ,a2m). (3.8)

It is seen from (3.5) that the parameter g = λ/πr>, called "charge", is dimension-
less. Scaling with the choice α = m~ 1 / 2 yields

[7βΩ°μ,m) = Ω%M) = β°(0), (3.9)

mp(λ, m) = mmp(g, 1) = mmp(g), (3.10)

^(ί1,...,^;A,m)-m-w/2S("Vι?...,mίn;^,l), (3.11)

where ΩQ(g) and mp(g) are, respectively, the vacuum and mass of the Hamiltonian

H(ff) = /ίte,l) = l/2[>2+M

4 + (l-^2]-εJte,l). (3.12)

The "critical charge" gc is now defined by

mp(gc) = Q (3.13)

which, from Theorem 2.1, implies gc = GO.
This scaling shows that all theories with the same charge are equivalent. Thus, in

order to understand the approach to the critical point, it is sufficient to study the
behavior of H(g) as g-»oo.
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In order to study the spectrum of H(g), we rescale (3.12) using

α = (0-l)-1/4. (3.14)

Let v = g(g—1)~3/2; then v-»0as g-^gc = co. The scaling (3.14) reduces the study of
H(g) as g^ co to the study of the "anharmonic oscillator" Hamiltonian

as v— >0. We note that Hv also possesses properties PJ — P4). Its eigenvalues and
corresponding eigenfunctions are denoted by E° <E* <E2 < ... and Ω°, Ωj, Ω2, ...,
respectively, and

l/α^,l) = ί2ί, (3.16)

ε jto,l) = to-l)1/2(£ί-£v°)s (3.17)

and

= m-n/\g-lΓn/4<Ω0

v,qe--^-tq...qe-^-t»-^lqΩ0

vy, (3.18)

where

H = m(g-iYί2(Hv~E°v), (3.19)

The operator H will be called the "Ising model scaled" Hamiltonian. In order to
express H in a more useful form, introduce

Mv = jEί-E? (3.20)

then

mp(λ< m) = mmp(g) = m(g - 1)1/2MV (3.21)

and

H = mp(λ, m)M~ \HV - E°v) . (3.22)

In what follows the anharmonic oscillator Hv will be used to study the critical
behavior of the eigenvalues and eigenfunctions of H(g\ and the Ising model scaled
Hamiltonian H will be used to study the critical behavior of the Schwinger
functions.

The behavior of the eigenvalues and eigenfunctions of the anharmonic oscillator Hv

as v—>0 is easy to understand because the function v(q2 — l/2v)2 approaches a
potential for two independent harmonic oscillators (see Fig. 1). More precisely,
expanding Hv in a Taylor series about its minima±(2v)~1 / 2,

(4.1)
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where for any α such that Orgαrgl/6,

sup \δV\ = 0(v3α) as v->0. (4.2)
| | « | -(2v)-ι/2 |< v «-ι/6

Because the identical wells become widely separated by a high barrier, one
expects "asymptotic eigenvalue degeneracy" i.e.,

\im\E2j-E2j+1\ = 0 for j = 0,1, 2,.... (4.3)
v->0

Because the wells become quadratic (~2q2) at their minima, one expects the
eigenvalues of Hv to approach those of ^-[p2 + 2g2] i.e.,

lim£2j' = 2-1 / 2(2j+l) for j = 0,l,2, .... (4.4)
v-+0

The way that the behavior of E{ and Ωj

v, in the limit v-»0, is rigorously established is
to approximate the operator Hv by operators H^ and H[2} whose eigenvalues and
eigenfunctions are known. Here /f(

v

α) is said to approximate Hv as v->0 if for some

z, independent of v, lim IK/ί. + z)'1 -(H^ + ̂ Γ1!! -0.
v^O

An obvious choice of an operator with which to approximate Hv is

-(2v)-1/2)2]. (4.5)

The eigenfunctions and eigenvalues of (4.5) are given in terms of parabolic
cylinder functions and their zeros (see Merzbacher [17]). However, the analysis of
the parabolic cylinder functions can be avoided by first approximating Hv by
and then approximating H(

V

1} by H(

V

2) where

1)2]1. (4-6)

H{2} has doubly degenerate eigenvalues

^ = 2-
1 / 2(2j+l) + (4v)-1((2v)2 + l)1 / 2-l). (4.7)

The corresponding eigenfunctions are denoted ιpj

v'
e and ψj

v'°, so that

H(2 V; e = λ{ιp{> \ H(2 V j ° = λiψϊ ° . (4. 8)

ιpj

v'
e is even,ιpv'° ^s °dd, and both can be expressed simply in terms of generalized

Laguerre polynomials times exponentials [11 — 13, 18, 19].

The approximation of Hv by H(2} will yield the following theorem whose proof is
given in [19]. Recall that E{ and Q{ are the eigenvalues and eigenfunctions of Hv.

Theorem 4.1. In the above notation,

(a) limE2j= lim£^+1

A

(b) lim
v-»Ό

Qj

synopsis of

lj —

the

Ψve =

proof

lim
v-+0 Ω2^

of Theorem

l-^Q

4.

-0.

1 is given in Appendix 1.

We thank Francesco Zirilli for helpful discussions and, in particular, for suggesting the choice of
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Ύ2D

Fig. 1. The function v(q2 — l/2v)2 approaches a potential for two independent harmonic oscillators

5. The Scaling Limit

A formal interchange of the limits 0-»oo, and ε( = lattice spacing)-»0 in the lattice
approximation to S(n} suggests the following "scaling limit" conjecture (see Glimm
and Jaffe [3, 5, 6]):

(5.1)lim S (

r jn=lim/ ( n ).
g-+gc ε->0

mp = 1 ξ— 1

The left side of the equation is the infinite scaling limit of the φ% theory, and the right
side is the infinite scaling limit of the n-point correlation functions of the Ising
model in d dimensions. The conjecture states that for d^4 the two limits exist and
are equal. Here,

o(n) _2r-n/2o(n) (52)

where Z3 is the "field strength renormalization" which is defined to be the strength
of the one particle pole in the Fourier transform of S(2).

To calculate Z3 observe that

S(2\pιλ,m}= f e-"p

— OO

= {θ?.M,9

= (^,m,q

y-\τ\H(λ,m)

1
+ •

H + ip H-ί

2H ^Γ

'+PZ

Applying the spectral theorem; (5.3) equals

£ 2εμ, m)/(p2 + sμ, m)2)|<ΩA

0

?m, qΩ{%m>\'

(5.3)

(5.4)

[We remark that (5.4) is the Lehmann spectral representation for the 2-point
function in one dimension.] Thus,

= lim (5.5)

(5.6)
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Scaling (5.6) with a = m~1/2(g- 1)~1/4 yields

(5.7)

Combine (5.7) and (3.18)— (3.22); it follows that

SMn(tl9...,tn 9λ9m)

= 2-nl2mp(λ,mΓnl2\(Q^qΩly\-\Ω^qe-\i^ (5.8)

Since mp(λ, m) = mmp(g, 1 ) the physical mass may be kept fixed at one as g -* oo by
taking

m = m p( f lf,lΓ 1. (5.9)

From (3.22) and (5.9)

H = M^(HV-EQ

V) = HV. (5.10)

Here we introduce a new symbol, H = Hv, to indicate this normalization of H. H has
the eigenvalues Ej and eigenvectors Ωj

v, where

(£V

3-£V°)MV-1<.... (5.11)

The H normalization will be called the Ising normalization because as v-»0, E.-^ oo
for j ϊ>2, which implies that the transfer matrix e~^ converges to the transfer
matrix for the Ising model.

The field strength renormalization Z3 is necessary even in one dimension
because the scaling limit and critical point are infrared divergent. For d=ί9gc=ao,
and the right hand side of (5.1) is calculated in Appendix 2 yielding, for an Ising
model whose spins are±2~1 / 2,

(5.12)

|=? -^Πe-1'"-'2'-'1, for M even.
I j= i

The infinite scaling limit (5.1) has now been transformed into the following
theorem :

Theorem 5.1

Proof. For n odd, S^^O because of the invariance of S(n} under the q-^ — q
symmetry. For n even the proof of Theorem 5.1 follows from Theorem 4.1 and the
following lemma :

Lemma 5.1. For /c = l,2, ...

?ί3j> = l , (5.13)

0(v-I>/2). (5.14)
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Assuming Lemma 5.1 and Theorem 4.1, a proof of Theorem 5.1 may be given by
induction as follows. For n = 2 what must be shown is that

lim|<Qv

0^Qv

1>r2<Qv

0,^-I^Qv°> = e - W . (5.15)
v->0

If τ^O, this follows from (5.13) with k = 1. When τ Φ θ the spectral theorem implies

| < Ω ? , < z Ω ί > | 2 β - l . (5.16)
j = o

From (5.16) and the fact that the £Fs alternate parity

(5.17)

where

jodd

Because the E 3 increase as j increases

GO

\τ\Es V I/Γ)0 sι(ΊJ\\2
Σ, K"v»^v/l

jό"dd

^\(ΩQ

v,qΩly\-2e-^Ω°v,q
2ΩQ

vy. (5.19)

By the definition of E3 and Theorem 4.1,

lim £3 = lim (£v

3 - £?)/(£} - £°) = + oo . (5.20)
v-^0 v^O

By Lemma 5.1,

\\m((Ω0

v,q
2Ω0

vy)\<Ω°v,qΩly\-2 = l. (5.21)
v^O

Since τ Φ θ in this case, lim^v = 0, and Theorem 5.1 has now been established for

n = 2. The next step in the proof is to assume Theorem 5.1 true for all k less than n
(where k and n are even) and show that this assumption implies the theorem is true
for n. If ίί + 1 — tί for z = 1,2, . . . ,n— 1 then Theorem 5.1 reduces to Lemma 5.1, and so
only the case for which there is an i such that ti+ίή=ti need be considered. For
simplicity i will be assumed to be even. The case when i is odd can be established by a
similar argument. By the spectral theorem and the fact that HΩ® = 0

(5.22)
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Let A = qe-to-tίtfq...qe-\t -t'-ί&q, and

β = βe-l«."-'. + ιl*€...ge-l'"-«-ι|£€.

In this notation

B*BΩ^y)112. (5.23)

Applying (5.14) to (5.23) yields

^v^^~ | ί l + 1~ ί ί |έ20(v- ί/2)0(v-("- ί)/2)

= g-|ί l + ι-ίi|£2o(v-»/2)> (5.24)

Theorem 5.1 becomes

(5.25)

By the induction hypothesis the first term approaches

i/2 w/2

n/2

= Π e'1^"'2-'-11. (5.26)
7=1

By Theorem 4.1, Lemma 5.1, and (5.24) the second term approaches zero. Hence, the
scaling limit is a consequence of Theorem 4.1, and Lemma 5.1.

6. The Proof of Lemma 5.1

In this section it will first be shown that as v-»0:

(Ω^Ω^-βvΓ1/2, (6.1)

<Ωv°,42X>~(2vΓ*. (6.2)

Here, /(v)~g(v) as v-»0 means that lim/(v)/0(v)= 1. The reason (6.1) and (6.2) are
v->0

true, despite the fact that Ω° and Ω^ are converging weakly to zero, is that most of
the mass of (Ω°)2 and (Ω^)2 is near the minima, q= ±(2v)~1/2, of the potential (q2

— (2V)"1)2. (6.1) and (6.2) will be used in finding critical exponents as well as in
proving Lemma 5.1.
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A computation in [18] shows that:

<φ^Wv

0'°>~(2vΓ1/2, (6.3)

<φ^42y?'e>~(2vΓk. (6.4)

To prove (6.1) and (6.2) use (6.3) and (6.4) with the following lemma.

Lemma 6.1

(a) lim<Ω°,ίZί
v-»0

(b) lim <ΩJ, g"Ωj>/<φ? , q2k

Ψ°v *y = 1 .
v-^0

Proof

= |<(Ω? - φ?'6), qΩί > + <φv°
 β, 9(ΩJ - tpv° °)

^[l|Ωv°-^°'ell IkΩίll + llβv?-*!! IIΩ!-</>v° 0ll]/<y^wr>. (6.5)

In order to show that \\qΩl\\ =0(v^1/2) observe that

q2<p2 + v(q2-ί/2v)2 + v'ί = 2Hv + v~1. (6.6)

From (6.6) and Theorem 4.1 we see that

v- 1=0(v- 1). (6.7)

Applying (6.3), (6.4), (6.7), and Theorem 4. 1 to (6.5) yields Lemma 6. la). The proof of
(b) is similar. Start by observing that

(6.8)

Part (b) will follow by applying (6.4) and Theorem 4.1 to (6.8), once it has been
shown that ||q2tΩ°|| =0(v^/[). This result will be the next lemma.

Lemma 6.2. For π = 0, 1,2, ...

<Ω0,q2"+ 2Ω°>=0(v- ("+ 1 )). (6.9)

Proof. Induction will be used. When n = 0, (6.6) shows that <Ω°, c?2Ω°> =0(v~ J). For
n > 0 assume that (6.9) is true for all k < n, and observe that

(6.10)
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However,

2. (6.11)

When n=l, the second term will be zero. Substituting (6.11) in (6.10) yields

However,

z2gp = i(qp + gp) = i(ςrp + pq)-l. (6. 1 3)

Hence, (6.12) equals

(6.14)

The last term in (6.14) is zero because qn~ 1Ω° is a real valued function, and if ψ is any
real valued function (ψ,(qp + pq)ψy=Q. To complete this proof just apply the
induction hypothesis to the surviving terms in (6. 14) in order to conclude from (6. 10)
that <ί2^,^2"+2Ωv°>-0(v"(π+1)). The proof of Lemma 5.1 will be completed in the
next Lemma.

Lemma 6.3. As v-»0

<Ω^^" |τιl^...^" | t2"-ll^Ωj>=0(v"π). (6.15)

Proof. When n = l

0(v-1). (6.16)

When n>l, consider the case for which τ^ ΦO for j =1,2, ...,2n— 1. Define

Aj = qe-MAq...qe-^-^q9 (6.17)

Bj = qe-^+^nq...qe-^2n-^nq9 (6.18)

ιpj = A*Ω°v9 φj = BjΩ°v. (6.19)

In this notation (6.15) may be estimated by

<Ωj9XBe-I^BnΩv

0>g||φJ|||β-^π||

^llvJIIIΦJI, . (6.20)

\\^n\\2 = <Ψn-^e-^-^q2e-^-^ιpn_^ (6.21)

which using (6.6) can be dominated by

(6.22)


