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Abstract. In this paper we examine the influence of a general initial state of stress
upon the propagation of infinitesimal (or weak) discontinuities in nonlinear
relativistic elasticity. This influence, which materializes in alterations in the
wave speeds, the general nonseparability in longitudinal and transverse waves,
and the growth of the amplitude of infinitesimal discontinuities so as to form
shock fronts, is first studied on the basis of a model of relativistic elasticity called
hypoelasticity of zeroth order. The analytical treatment, however, is manage-
able only for the case of principal wave fronts for which the spatial direction of
propagation coincides with a principal direction of the initial state of stress and,
consequently, the wave fronts separate into longitudinal and transverse ones.
Such notions as those of apparent elasticity moduli appear naturally in the
analysis. Then a model of thermodynamical relativistic elasticity, referred to as
neo-Hookean elasticity, is shown to be representable, insofar as wave-front
propagation is concerned, by a special model of hypoelasticity of first order. The
qualitative results obtained before concerning the influence of initial stresses are
shown to apply equally to this description.

1. Introduction

The interest of relativistic elasticity for the study of the deformation of massive
stellar objects on the one hand [1—4], and for a coherent approach to the
vibrations of elastic detectors of gravitational waves on the other hand [5, 6], has
been emphasized in recent years. The recent history of relativistic elasticity offers
two avenues of development, one initiated by Synge [7], and the other that makes
use of thermodynamical arguments and is illustrated, for instance, by the already
quoted papers. In formulating his pioneering theory of relativistic elasticity, Synge
sought to avoid the definition of an initially stress-free state which, because of the
ever operating gravitational field, cannot exist. However, recent developments in
relativistic continuum mechanics have placed in evidence some shortcomings of his
formulation (no relation to thermodynamics, noninvariance of the constitutive
equations with respect to the observers, i.e., "nonobjectivity"). Furthermore, it
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appears that in Synge's work and in those of the authors who took over his
formulation (cf. [8,9]) no influence whatsoever of an initial state of stress shows up
in the properties of wave-front propagation (e.g., propagation speeds independent
of initial stresses). Therefore, the purpose of the present study is threefold: First, to
recall what should be a "correct" formulation of relativistic elasticity in the tradition
of Synge, thus a formulation of so-called relativistic hypoelastίdty (cf. [10]) next, to
reconciliate such a formulation with thermodynamical arguments; finally, to
exhibit the alterations brought by a general initial state of stress in the propagation
process of so-called infinitesimal discontinuities (alteration in the wave speeds,
existence of three different speeds in general and the separation of wave fronts in
one longitudinal and two transverse wave fronts with different propagation speeds
in the case where the direction of propagation coincides with a proper direction of
the initial state of stress, the growth of infinitesimal discontinuities so as to form a
shock). The study of infinitesimal discontinuities makes a systematic use (i) of the
elegant formalism due to Lichnerowicz [11] and (ii) of canonical space-time
decompositions and of spatial decompositions along the propagation direction of
the wave front, and onto the two-dimensional hyperplane orthogonal to it, which
allows us to keep the covariant formalism as long as possible. The present
relativistic study has many points in common with the now classical study of
infinitesimal perturbations superimposed on a finite state of stress in classical
continuum mechanics (see, e.g., [12]).

The notation used, the statement of the general field equations and of general
classes of constitutive equations, and the definition of weak discontinuity fronts in
the relativistic framework are given in Section 2. Section 3 is devoted to the study of
the simplest case, namely, that of the propagation of infinitesimal discontinuities in
relativistic hypoelastic bodies of zeroth order. The wave-front speeds are de-
termined exactly in the case of so-called principal wave fronts, for which the spatial
direction of propagation coincides with a proper direction of the initial state of
stress. There follows a short discussion for the general case where this simplifying
assumption does not hold good. Then the distorsion of signals for principal
longitudinal wave fronts is exhibited by using Lichnerowicz's qualitative method
[11]. In Sections 4 and 5 it is shown that relativistic neo-Hookean elasticity can be
reduced to the scheme of relativistic hypoelasticity of the first order insofar as wave
propagation superimposed on an initial state of stress is concerned. Indeed, both a
direct treatment in terms of strains and a treatment using an appropriate stress-
strain relation of the hypoelastic type as intermediary yield the same conclusions as
to the wave-front speeds. By way of conclusion, in Section 6, we remark upon the
limitations inherent in the present approach which, therefore, should be sup-
plemented with an exact thermodynamical treatment.

2. Notation, General Equations

2.1. Space-Time, Differentiation

Let M = (V4,gaβ) be a space-time of general relativity equipped with a normal
hyperbolic metric gΛβ (α, β = 1, 2, 3,4 index 4 time-like Lorentzian signature +, -f,
+ , —). The field of world velocity ua, such that gyβu*uβ = — 1 (c=l for notational



Discontinuities in Relativistic Elastic Solids 235

convenience) defines the invariant derivative D = u*V^ It also defines the field of
spatial projectors Paβ = gxβ + uauβ, such that Paβu

β = 0 and Pα

α = 3. The latter in turn
serves to write down the local canonical space-time decomposition of any tensor
field defined on M. In particular, the spatial projection of such a tensor field
obtained by applying the spatial projector is noted (...)ι Geometrical objects A
which satisfy A=(A)λ are said to be spatial (or PU: orthogonal to u [13]). In
particular, the transverse or spatial covariant derivative is defined by

if 3 (2.1)
The spatial rate of strain is defined by

and a simple computation allows us to check that

= 2d,β (2-3)

on account of Ricci's lemma and of the definition of the Lie derivative along the

field uα, noted £, for a covariant spatial tensor field. E.g., if Aaβ is spatial,
u

1 1
— (Π A } -4- A 17 iiΊ 4- A V uγ (Ί ά\

.La/? — \ α/?/_L yβ α ay β * \ /

Setting daβ = Q defines a so-called Herglotz-Born rigid-body motion (in differential
form Killing's theorem).

2.2. Field Equations

In supplement to Einstein's field equations that relate linearly the Einstein tensor
and the total energy-momentum tensor, we have

(a) the equation of continuity:

i7α(ρlί

α) = 0 (2.5)

or

£>ρ + ρd*y = 0 ; (2.6)

(b) the "conservation" of energy-momentum (consequence of Bianchi's iden-
tity):

p fxβ — o (27)

(c) the "conservation" of moment of energy-momentum in absence of spin:
rτ~'[oc/?] — _!_ (T""Όcβ Ttβ<y-\ Γ\ /O QNι
J :rz ^ \ i — JL I — w . I ̂ . O I

The scalar field ρ represents the mass per unit of proper volume. Then, in absence of
heat conduction, electromagnetic fields and spin, Tα/? admits the following
simplified canonical space-time decomposition:

β-t«β, (2.9)
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where the spatial tensor taβ is the relativistic stress tensor and ω has the expression

ω = l+ε, (2.10)

where the first contribution represents the rest energy and ε is the internal energy
per unit of proper mass.

Taking account of (2.5), using the fact that taβ is symmetrical as a consequence of
(2.8), we contract (2.7) with UΛ to obtain the energy equation

ρDs-fd^O. (2.11)

Applying the spatial projector to (2.8), noting that Du* = (Dua)L, and using the
definition (2.1), we obtain the Euler-Cauchy equations of motion in the form

ρf*βDu'ί-P*yrpt*
ί = 0. (2.12)

These represent only three independent scalar equations in virtue of the spatial
character. The spatial symmetrical tensor of mixed components

ρ-*fβ (2.13)

will be referred to as the tensorίal index of the material continuum1.

2.3. Constitutive Equations

We shall consider the following general class of constitutive equations for
relativistic (so-called) hypoelastic solids : The relativistic stress tensor taβ and the rate
of strain tensor daβ are related by an equation of the general type ([10], cf. pp. 140-
145):

(βt\ = Se\Λ\t\. (2.14)

Here ̂  is a time-like differential operator and S£ is a spatial symmetric covariant
operator which acts linearly on d, which is continuously differentiate in the
neighborhood of d = 0, and is jointly isotropic in d and t2. The condition of
isotropy and the fact that ^ must define a so-called objective time-like derivative
follow necessarily if it is posited that constitutive equations of the rate-type form
(2.14) be form-invariant under change of observer, or, in other words, be either
objective in agreement with the axiom set forth in Ref. [15], or Theologically
invariant according to the terminology of Oldroyd [16].

1 This generalizes the notion of index, a thermodynamical function introduced by Lichnerowicz [14],
to general continua (i.e., continua whose stress tensor is not necessarily spherical). For perfect fluids we
have f p = — pP*β, where p is the thermodynamical pressure, and the definition (2.13) reduces to fa

β =fPa

β

where

is the scalar index used by Lichnerowicz in relativistic hydrodynamics
2 This notion of isotropy is not to be mistaken for that of isotropy as applied to four- vectors of zero
magnitude in space-time. Here isotropy is understood in the classical sense, meaning isotropy in E3, i.e.,
invariance under SO (3). The necessary and sufficient condition for isotropy is established by writing
(2.14) in nonholonomic components on a spatial triad (completed by u to form a space-time tetrad) — a
special case is the use of Fermi coordinates. This invariance can be formulated in the language of spinors
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Several remarks are in order concerning constitutive equations of the type (2.14).
Firstly, equations such as (2.14) have an incremental character (suited for
computations on computers) and need initial conditions, in particular, the
knowledge of initial stresses, to be integrated. Without such initial conditions,
Equation (2.14) define only a class of continua. Secondly, having the nature of rate-
type equations, they do not involve strains per se. The definition of such strains in a
general relativistic framework is thus avoided. These are two arguments that
favored the introduction of an equation of a simple type related to (2.14) by Synge in
1959 [7], although Synge's proposal appears too simple in the light of recent
developments in the relativistic mechanics of continua. Next, thermodynamical
considerations apparently do not enter the establishment of equations of this kind.
However, in special circumstances, i.e., for a very special expression of ε, it can be
shown that Equations (2.14) are none other than the differentiated form of
thermodynamical constitutive equations which relate the relativistic stress tensor
and a finite-strain tensor (see below, Section 4). In spite of the shortcoming just
mentioned concerning the (general) lack of thermodynamical justification for
equations of the type (2.14), we note that, from a pragmatic viewpoint, such
equations will yield, conveniently and at once, compatibility conditions between the
infinitesimal discontinuities in the stresses and the four-velocity. Such conditions
will involve the initial stresses if ί is continuous (see herebelow). A hypoelastic body
with constitutive equations (2.14) is necessarily not viscous3. Finally, the definition
(2.14) must be given a more precise form. For instance, on account of the properties
of objectivity, linearity and isotropy, a possible expression, of which the right-hand
side does not depend on ί, is

\β = &tfvdμv, (2.15)

where a superimposed asterisk denotes the connective time derivative defined by

+V^' (2 16)
and the components ^'aβ

μv of the linear operator S£ have the expression

.μp.v
α *β •>

where λ and μ are two scalars characteristic of the material, which are linear in ρ.
That is, we can introduce λ and μ such that

λ = ρλ, μ = ρμ (£λ = £μ = θ). (2.18)

Hypoelastic continua with constitutive equations (2.15)-(2.18) are called hy-
poelastic bodies of zeroth order. If, however, the right-hand side of (2. 14) is affine in ί,
then it can be shown that the expression of g aβ

μv reads

μv + 2(μ + μ'tyPfP

)] , (2. 19)

3 This follows from the invariance of (2.14) under scaling of the proper time, ftence there cannot be
relaxation times in (2.14)
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where, λ, Γ, μ, μ', α, /?, and y are seven scalars characteristic of the material.
Hypoelastic continua with constitutive equations (2.15), (2.16), and (2.19) are called
hypoelastίc bodies of first order4.

2.4. Discontinuity Fronts [11, 19]

Let W(xa) = Q be the equation of a discontinuity front — a time-like hypersurface —
which propagates in F4 and which separates the region 88 of F4 swept out by the
matter in motion in two subregions ^+ and £$~ at each time. We set

la = daW, L = (P«βlJβY'2, (2.20)

and

λ^L^P'/lβ, (P*λΛλβ = l ) , (2.21)

so that

la = L(λa-Wua) (2.22)

if

Λ,α is a unit spatial covariant vector field. °U is the (nondimensional) speed of the
discontinuity front measured relatively to the moving matter. la being oriented from
the "minus" side to the "plus" side of W, we note \_A\=A + — A~, where A + and A ~
are the uniform limits of A in approaching Won its two faces. Let A be continuous
across W δ being the Dirac distribution with support W, the infinitesimal discon-
tinuity of A, noted δA, is given by [11]

\ = lΛδA <2.24)

Then

(2.25)

if wα is continuous across W.
The canonical decomposition, along λΛ and onto the two-dimensional space

tangent to the spatial part of W and orthogonal to λ, of any spatial tensor field is
obtained by using the two-dimensional (spatial) projector

S«β = P«β ~ Wβ = Sβ« , SΛβV = Sαχ = 0 , Sα

α = 2 . (2.26)

For instance, let δua and ί)£α/? be the infinitesimal discontinuities in the four-velocity
and the relativistic stress tensor. Then we have the decompositions

δu* = δul + λΛδu9 (2.27)

and

± = δτ«β + δτaλβ + δτβλ" + δτλ*λβ , (2.28)

4 Comments on the physical validity of models of classical continua having constitutive equations
which are the nonrelativistic versions of Equation (2.15) are to be found in Eringen [17], p. 331, and
Truesdell and Noll [18], p. 405
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where

= λΛδu",

(2.29)

Remark that δua is purely spatial and bu\ is essentially a two-dimensional
geometrical object, but expressed in a fully covariant form on M. Similarly to
Equation (2.28), if taβ is a second order symmetric spatial tensor field which is
continuous across W, we have the following canonical decomposition at any event
point xeW:

fβ = f*β + 2f(«λβ] + fλ*λβ . (2.30)

If ε, ρ, and fβ are continuous across W, then an analogous decomposition holds true
for the tensorial index :

β. (2.31)

It is a simple matter to check that

Fα/, = ωSβ/,-ρ-%, F β =-ρ- l Γ β , F = ω-ρ-1T, (2.32)

the metric used to raise and lower indices being assumed continuous across W. In
fact, we shall consider the following hypotheses :

HI : ua, ρ, ε, taβ are continuous across W;
H2: space-time derivatives of these fields suffer discontinuities across W;
jFjΓ3 : the wave front W is not a gravitational wave front. The wave equation of

such a wave front would be gaβlalβ = Q or, using (2.22), %2 = 1
H4 : the wave front W is not material i.e., is not generated by the trajectories of

the matter. Hence ^φO from here on5.
The last two conditions and relativistic causality limit the range of % to the open

interval ]0, 1[.
Wave fronts W for which (<5wΦθ, <5w" =0) are called longitudinal wave fronts

whereas wave fronts for which (<5w = 0, δu^ φO) will be referred to as transverse wave
fronts. Wave fronts for which δu and δu*L differ from zero simultaneously are called
general or mixed wave fronts.

3. Infinitesimal Discontinuities in Relativistic Hypoelastic Bodies
of Zeroth Order

3.1. Equations Governing the Discontinuities

Consider the system of field equations formed by Equations (2.6), (2.11), (2.12), and
(115)-(2.18). That is,

(3.1)

(3.2)

(3.3)

5 Using a thermodynamical background shows that ^ = 0 corresponds to entropy wave fronts (cf.
Section 4)
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and

φί«A + tyβW + t«P^ + fβ,Fχ = W,PΛβ + 2μdΛβ . (3.4)

Under the hypotheses set forth in the foregoing paragraph, with ^U φ 0, we deduce
from these equations the following discontinuity-governing equations :

δρ=-ρ<%-ίδu, (3.5)

uβ + λβδua), (3.6)

± = 0 , (3.7)

= λPaβδu + μ(λaδuβ + λβδua) - λatβμδu»

-taμλβδu»-taβδu. (3.8)

Equation (3.8) is the compatibility condition which relates (δtΛβ)L and δu*.
Applying the decomposition procedure along λ and orthogonally to λ to

Equations (3.7) on account of (2.27), (2.28), (2.30), and (2.32), we obtain

(3.9)

and

δτ« = ρ<%(F*βδu{ + Faδu) . (3.10)

Similarly, Equation (3.8) yields

Q, (3.11)

Q, (3.12)

and

(%δτaβ + (Taβ-λS«β)δu = Q. (3.13)

The latter can be rewritten as

δτ«β = W~ i(λS*β-TΛβ)δu. (3.14)

By the same token Equation (3.6) takes on the form

δε = (ρ^Γ1(TΛδua + fδu). (3.15)

Let 0$ and

(3.16)

be a solution of the system of field equations. Then Equations (3.5), (3.15), (3.9),
(3.10) and (3.14) provide, at each event point xe W, the values of the infinitesimal
discontinuities δρ, δε, δτ, δτa, and δτ*β as functions of 9Jί0 and of the wave speed ,̂
and as linear expressions in the strength of the wave front. This strength is
represented by both the scalar δu and the essentially two-dimensional vector field
bu\, and is given by initial conditions concerning the wave front. We can write
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formally

<5β = /(β)[(«5«,0);«,aR0]) (3.17)

(δe, δτ, δτ«) = /(ε, t, ̂  [_(δu, <5«1) Φ, SR0] , (3.18)

δτ ^^Kδu.O Φ.SDlo]. (3.19)

Obviously, the infinitesimal discontinuities £ρ and δτaβ are zero only for pure
transverse waves while nonzero δε, δτ, and δτ* exist for all types of wave front under
general conditions of initial stresses.

On account of the remark just made it remains to exploit Equations (3.11) and
(3.12) on account of Equations (3.9) and (3.10). Eliminating δτ and δτ* between these
equations, we arrive at the following system of coupled equations (linear in the
wave- front strength)

+ 2 f *}δu = 0 , (3.20)

(). (3.21)

We postpone the study of this general system until § 3.3, to study first a special case
of propagation for which the polarization vector λα is along a preferred spatial
direction.

3.2. Principal Wave Fronts

In general taβ admits three distinct eigenvectors dfk), fe= 1, 2, 3, with corresponding
eigenvalues ί(/c) in such a way that (no summation on fc)

t<xβd(k) = t(k)d(k)aι d(k}a = Paβd(k}, (3.22)

and

P*βd(k}«d(k]β = 1, P«βd(k)ad(l}β = δkl. (3.23)

We call principal wave fronts those wave fronts for which λ coincides with one of
the eigenvectors d(k}, for instance, d(1). Let ί(i) = ί|| be the corresponding stress
eigenvalue. It then follows from (2.30)—(2.32) that

fα-FαΞθ, (3,24)

and

f = ί,,, F = ω-ρ~1ί,,. (3.25)

In this case Equations (3.20) and (3.21) uncouple and read

(ρ^2F% + f"β - μS%)K = 0, (3.26)

and

- (λ + 2μ - 3 Tf]δu = 0. (3.27)
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If δu is not zero, i.e., for longitudinal principal wave fronts, (3.27) implies that the
wave speed % = WL1 is given by

<%2

L1=(λ + 2μ-3tu)/ρ(l+ε-ρ-\). (3.28)

Relativistic causality implies, with the choice ̂ L1 > 0, that λ, μ, ρ, ε, and t\\ satisfy the
constraint ^L1 < 1. Of course, ̂ L1 depends on $R0. Then, with δu°[ = 0, Equations
(3.17) through (3.19) provide the infinitesimal discontinuities (δρ, <5ε, <5τ, δτa, δτaβ) in
the form

δρ= -ρ^^δu, δε = (ρWLlΓ
ίt\\δu, (3.29)

δτ = ρ<%Lί(l+ε-ρ~\)δu, δτ« = 0, (3.30)

and

δτ*β = ̂ ^(λS^ - T«β}δu . (3.31)

In the nonrelativistic limit and for an initially unstressed body, Equation (3.28)
reduces to the well-known Lame value ̂  = (λ + 2μ)/ρ.

If δu*L φO, then Equation (3.26) implies that the 2 x 2 determinant of the factor of
δuβ

L be zero, i.e.,

det |ρ^2F« + f«-μS« =0. (3.32)
2 x 2

This can be solved easily if we consider a local chart in which coordinate axes of the
two-dimensional hyperplane H(λ) orthogonal to λ are directed along the remaining
two eigenvectors of £α/J, i.e., along d(2) and d(3) with corresponding eigenvalues ί(2)

and ί(3) for taβ, and Sα/? = diag (+!, + !). Then Equation (3.32) yields two different
speeds for transverse wave fronts as, on account of relativistic causality,

T? — / ^ \ - ? 7-τ . .
ρ(l+ε)-ί(2)

 Γ3 ρ(l+β)-ί(3)

For (5^ = 0 and on account of (3.24) the only nonzero infinitesimal discontinuity is
that given by (3.10), i.e.,

In the nonrelativistic limit and for an initially unstressed body, both wave speeds
(3.33) coalesce to the well-known Lame value ^^ = μ/ρ.

Other special cases can be considered. For instance, the case where taβ

corresponds to a uniaxial state of stress is a degenerate case for which ί(2) and ί(3) are
equal to the same value ί±. Then tΛβ has the expression

*Λβ = * A, + *\\Wβ = ̂ PΛβ + (* || - ίiK^ . (3-34)

Then the remaining two eigendirections are arbitrary in H(λ} insofar as they remain
orthogonal to each other (this results from the in variance of taβ by rotation about λ).
Equation (3.33) then reduce to the single equation

tj. (3.35)
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The completely degenerate case is that for which tΛβ is spherical and corresponds to
a state of hydrostatic pressure :

t*β=-Pop*β=-PoSΛβ-pQλΛλβ. (3.36)

The last equation shows that it is always possible to consider this case as a special
case of principal- wave- front propagation. Then T = — p0, T*β = — p0S*β, and Faβ

= fos*β with /o = 1 + e + (Po/0) Remark that /0 = 1 + 0(c ~ 2). Thus,

*! = μ/β/o , ^T2 ̂  ̂ rs = (λ + 2μ)/ρ/0 , (3.37)

where

are apparent elasticities6. This notion of apparent elasticity modulus in an initially
pressurized body is common in classical seismology (cf. [20], p. 253).

The results just obtained bring about the following comments. In hypoelastic
bodies described by the constitutive Equations (2.15) — (2.18), a wave front
travelling down a principal axis of stress is always either longitudinal or transverse.
For a general initial state of stress, the two wave speeds corresponding to transverse
wave fronts are different. Transverse wave fronts with amplitude parallel to the axis
of lesser transverse stress travel at greater absolute speed than the others. These two
kinds of transverse waves travel at the same absolute speed if and only if the
corresponding eigenstresses are equal. In this case, any transverse amplitude is
admissible. These comments parallel those made by Truesdell [22] in his study of
wave fronts in classical nonlinear isotropic elasticity. Finally, relativistic causality
imposes constraints not only on the moduli λ and μ, but rather on combinations of
λ, μ and of initial values of energy, density and stresses. This shows that in the case of
initially stressed relativistic elastic bodies, the hyperbolicity is much more difficult
to study than recent studies tend to demonstrate (cf. [8, 9]). Such a study is required,
but will not be attacked here.

Two final remarks concern the general result (3.33)andproveoneof the above-
made comments. Firstly, forming ^U 2

Ύ2 — ̂ 3, we get

Remark that each term in the denominator of this expression is greater than zero
since each of these terms has the form ρ[l +0(c~2)]. Hence, if, in our units, ρ(l -fε)
> μ, then ί(3) > ί(2) implies m \2 > % ̂ 3 Q.E.D. In the nonrelativistic limit, the above
expression takes the form

L ( 2 )

4 μ
where c? = μ = μ/ρ is the standard Lame value.

Secondly, we may say that purely transverse principal wave fronts are rotational
wave fronts whereas purely longitudinal principal wave fronts are dilatational wave

This correction to the Lame moduli is lacking in Carter's work [21]
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fronts. The last statement is obvious from Equation (3.29)^ If δu<Q, the wave is
compressive and is a rarefaction wave if δu>Q. As to the statement concerning
transverse wave fronts, it is sufficient, in order to prove it, to examine the
infinitesimal discontinuity of the vorticity spatial four- vector field. The latter is
defined by

* / -L \Oμ— — ̂ v]^^(\7 u }u — lMμ/?α u ι,
*£ — 2Ί \yβUa)Uv — 2Ί VβUah

where ημβ* = ( — g)~ ΐ/2sμβavuv, εμβav being the four-dimensional alternation symbol.
On account of the continuity of gΛβ and ua across J/Fand of the decomposition (2.27),
we have

— Lnμ
— 2ΐl

Hence,

This means that δΩ is orthogonal to δuL in f/(λ) and that δΩ is zero if and only if δι/L

= 0. This completes the proof of the statement.

3.3. Mixed Wave Fronts

The brief study made in § 3.2 suggests to introduce the following notation to look
upon the general case of coupled Equations (3.20) and (3.21) when λΛ is not an
eigenvector of tΛβ :

(3.38)

Latβ = QLβa, 61.̂  = 0, (3.39)

ρW2F« + 2 T α , <fλΛ = 0 . (3.40)

Equations (3.20) and (3.21) read thus

61./M+ <fδu = 09 (3.41)

u = Q. (3.42)

The situation described by these equations can be compared with that met in
crystal-like structures (e.g., in [23]). However, the anisotropy, hence the general
coupling of the three elastic waves, here is due to the presence of a general initial
state of stress. The wave fronts loose their purely transverse or longitudinal
character or, in other words, the separation between transverse and longitudinal
wave fronts cannot be achieved, eventhough, in certain circumstances, some wave
fronts can be called quasi-transverse7 or quasi-longitudinal (cf. [23], Chapter 3)
waves.

7 In agreement with the discussion of § 3.2, this situation occurs when one of the eigenvectors of taβ is
contained within a cone of axis λ and of very accute angle of order ε, if ε is an infmitesimally small. This
defines some notion of neighborhood and of quasi-longitudinality and quasi-transversality. If this is the
case, then the values determined in the general case of § 3.2 are valid at the order ε for °U (however, the
transition ε—>0 may be singular).
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Let e(j},j = 2, 3, be two unit vectors of H(λ) such that their co variant components
satisfy the relations

P %)Λ = 0, *ϋ)X = 0, S"W<3W,=0. (3-43)

(/) is a labelling and the tensorial indices are raised and lowered with the help ofSaβ.
Along with λ und w, these vectors form a tetrad in curved space-time, whereas e(j)

and λ form a spatial triad. Let δu^ be nonholonomic components of δuL on {e^ \j
-2,3}. Then

δul= £ δu^9 (3.44)
7=2,3

and Equations (3.41) and (3.42) can be written as

Σ Q±kjδuu)+ qkδu = V, (fc = 2,3), (3.45)
7 = 2,3

Σ ^Wu + βjl^O, (3.46)
7-2,3

where

(3 47)
Equations (3.45) and (3.46) form a system of three equations linear in the unknowns
δu and δu^γ This can be solved for these discontinuities if and only if the
corresponding determinant is zero. This yields a cubic equation in ρ^2 according to
the definitions (3.38)-(3.40). That is,

β||(Ql22βl33-βΪ23) = ί3ei22 + dβl33-2g2ί3ei23 (3.48)

For a principal wave the right-hand side of this equation vanishes and we recover
the case of § 3.2. Otherwise, one must deal with the general Equation (3.48). Let us
put it in a form more common in classical problems of acoustics. Define a third-
rank matrix of components AKL = ALK, K, L — 2, 3, 1, in such a way that (T
= transpose)

Q
^T (3.49)

^where the definitions (3.47) have been used. Setting

δu = {δuL L = 2, 3, 1} = (δu(2^ δu(^, δu) — a column vector—, Equations (3.45) and
(3.46) can be rewritten as

ΓΓ (tfί2 9JI ) p%2δ ~\δu = 0 ^ = 231 (3 50)

where

is ChristoffeΓs acoustic tensor. The reality of the roots ^ of the compatibility
condition

det \ΓKL-ρW2δKL\= det \AKL\=Q, (3.52)
3 x 3 3 x 3
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which is none other than Equation (3.48) written in a different manner, requires that

ΓKLNKNL>0 (3.53)

for any vector field N of 1R3. This condition is not automatically satisfied as a
consequence of thermodynamical arguments as is usual in elastodynamics, for ΓKL

depends on 9JΪ0. In the general case (3.52), Equation (3.53) leads to the condition that
all principal minors of AKL be positive. Then, in general, there exist three wave
fronts that propagate along the same direction but with different speeds and
mutually orthogonal polarizations. It can be conjectured that, like in crystal
structures, that wave front whose polarization direction is "closest" to the direction
of A propagates faster than the other two wave fronts. Thus, for quasi-longitudinal
and quasi-transverse waves we shall have 0<^QΓ2<^QT3<^QL<1. For arbit-
rarily given 9JΪ0 and propagation direction, the checking of the condition (3.53) and
the evaluation of the characteristic speeds, and the computation of the rate of
growth or decay of the corresponding amplitudes along the rays can be performed
only by means of computers, which is not here our purpose. However, a qualitative
study of this propagation can be achieved, with the sole help of analytical tools, for
principal waves.

3.4. Propagation along Rays

The study of the dίstorsion, growth or decay, that signals — i.e., infinitesimal
discontinuities — suffer requires establishing an equation which governs the
amplitude of a typical infinitesimal discontinuity along the corresponding ray or
bichar act eristic. Given the difficulty met for more complicated cases — e.g., for
transverse wave fronts and for a propagation along an arbitrary direction — , we
limit the present study to the case of longitudinal principal wave fronts in an initially
stressed relativistic elastic body. Of course, the notion of "principalness" in general
is purely local. However, it may be global (i.e., for a whole body) in certain
circumstances encountered in astrophysics as, for instance, in the case of a body
whose natural (i.e., in absence of stresses) shape is a sphere, and that takes the shape
of an ellipsoid when acted upon by an initial state of stresses. Then longitudinal
principal waves travelling down the principal axes of the ellipsoid remain principal
waves in the course of their propagation. In the case of interest here, the wave
equation is given by the vanishing of the factor of δu in Equation (3.27). This wave
equation can also be written in the form (since L φ 0)

(3.54)

where

= Hβa. (3.55)

The characteristics of the wave Equation (3.54) are the hypersur faces tangent to the
second-degree cone Σ defined by duality from the symmetrical (nonspatial) tensor
Haβ. The contact generatrix of Σ with the cone is defined by

H^. (3.56)



Discontinuities in Relativistic Elastic Solids 247

The rays or bicharacteristics associated with, and generated by, the wave are the
trajectories on Σ of the vector field Nβ. They are isotropic geodesies [cf. Eq. (3.54)]
with respect to the normal hyperbolic (since ^L<1) metric defined by Haβ. The
operator of differentiation along the rays is obviously given by

(3.57)

1

on account of (3.55) and (3.56) and of the definitions of D and VΛ.
In order to obtain the propagation equation we take the covariant derivative Vμ

of Equations (3.1) through (3.4). That is,

(Vμι?WaS + «%Paρ + (f»FX + ρF/X = 0 , (3.58)

P7ε)

uβ = Q, (3.59)

(^pαy) ?βtyβ - Pa:yvμ Pβt
7β = o, (3.60)

and

(3.61)

We use the hypotheses set forth in § 2.4. Moreover, following Lichnerowicz ([11],
pp. 100 and 108), we know that there exist generalized functions W\ ε, and ρ such
that

ρ, (3.62)

W1^«^ (3.63)

and

(3.64)

Consider Equation (3.58) on both sides of the wave front W and substract the two
resulting expressions. We have thus

(3.65)

But

]. (3.66)
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The right-hand side of the last equation is linear in both δρ and δua, hence is linear in
δua on account of Equation (3.5), thus linear in δu for a longitudinal principal wave
front. The same comment applies to the last contribution in the left-hand side of
(3.65). This equation can be written thus

M<x^[^/i^a^] ~f~£?^[PμPywy]l =0(<5w), (3.67)

where =0(δu) means modulo terms proportional to δu.
Consider now Equation (3.59) and apply the same procedure. After inner

product of the resulting jump relation with uμ, we obtain

Quyuμδ\VμVyz\ - ίαV<5[Fμ^wJ ̂ Q(δu, δε, δt). (3.68)

The right-hand side of this equation can be replaced by 0(δu) on account of
Equations (3.6) and (3.9) through (3.13)—written down for longitudinal principal
waves.

Next, consider Equation (3.60). We get thus

:Q(δu,δt). (3.69)

The right-hand side of this equation can be replaced by 0(δu) on account of
Equations (3.9) through (3.13)—written down for longitudinal principal waves.
Finally, consider Equation (3.61). By the same reasoning and after rearranging the
indices, we obtain

+ ί δ ^ i +

^Q(δu,δu2), (3.70)

where =Q(δu, δu2) means modulo terms proportional to δu and to (δu)2. Remark
that the factor of (δu)2 comes from the nonlinearity of the right-hand side of
Equation (3.4) which results from the spatial character (hence the use of the spatial
projector which is quadratic in the four- velocity). Now contract Equation (3.69)
with uμ and eliminate uμδl\7μVβt

γβ1 from the resulting equation with the help of
Equation (3.70). Rearranging the indices, we have thus

Uyuμ - λPaμPβ

y - μ(P«yPβ

μ + Pa

βP
yμ)

+ ta

βP
μy + tβ

μPay + taμPyβ} δlVμVyu
βl

Q(δu,δu2). (3.71)

Now use an expression of the type (3.63) to express ^[F^i/] and consider the case
of longitudinal principal waves for which δuβ = LPβεlεδu. The term in ΰβ disappears
on account of Equation (3.54). The terms in PJβ are proportional to δu and involves
the initial stresses and the initial solution W0. They are thus incorporated in the
right-hand side and it remains, on account of the symmetry of Haβ,

Haβlarβδu ^ 0(<5w, δu2) . (3.72)

This is, on account of (3.56) and (3.57), and using a symbolic notation,

DRδu - A(&Y2), mQ)δu - B(<%L, W^δu2 = 0 , (3.73)
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where ^2} means the geometry of the wave front at the second order, e.g., the
curvature which intervenes via VJβ (cf. [19]). A and B are two scalar coefficients
which vary along the rays for nonuniform initial states and of which the sign plays a
fundamental role. In particular, if $R0 is such that, initially, Vau

β' = 0, then B = 0 and
it can be shown using the results of [19] that A reduces to the mean curvature Ω of
the spatial part of W. Then Equation (3.73) takes the form DRδu = Ωδu. For a
spherical front Ω = (—1/R) with JR>0 and if, furthermore, the wave front is
compressive, i.e., <5w<0, then the above reduced equation shows that, since fy, is
constant, the ^surfaces at different times form a system of parallel surfaces, and
the wave is damped out. However, for the general case described by the propagation
Equation (3.73), if λ, μ, and 9Jt0 are such that B<Q, then, for a compressive wave,
Equation (3.73) shows that a compressive wave terminates into a "shock"8 while it is
damped out if J5>0. The converse is true for a rarefaction wave. Of course, the
requirement that only a compressive wave can terminate into a shock imposes a
supplementary restriction on the material constants and on the initial state. The
above result (3.73), which constitutes the fundamental property of rays associated
with longitudinal principal wave fronts, clearly is of great importance for
astrophysical problems involving discontinuities in massive stellar objects of which
the interior can be considered as elastic in accord with our definition of relativistic
elasticity.

To conclude this section, it can be remarked that Equation (3.67) can be used to
show that the infinitesimal discontinuity δρ propagates in accordance with an
equation similar to (3.73). As to Equation (3.68), it yields ε as a function of ̂ L and of
the geometry 3? ,̂ as a linear expression in δu, and an expression which involves
Vaδu and is linear in the initial value of the stresses. In absence of such stresses, we
have therefore: ε^0(δu).

40 Hypoelasticiίy Deduced from Neo-Hookean Elasticity

4.1. Strains

Two basic ingredients are missing in the theory of elasticity sketched out in § 2.3: the
notion of strain and a thermodynamical argument. These are related to one another
as will be shown shortly. Let GKL = GLK, (K,L=l, 2, 3), be the time-invariant local
reference metric on the material three-dimensional manifold M^. A material body is
an open, bounded, simply connected region of ,̂ 3. Then let B be Pfaffian forms (cf.
[25])—whose components Bκ

a, K — 1,2,3, are spatial four-vector fields on V4—that
describe the, in general, anelastic deformation of the body. The image of GKL by B
defines a symmetric spatial covariant tensor field on V4:

G β = GKLB*BL, = Gfa, G.X=0. (4.1)

For a purely elastic deformation, we have [25]

B^ = dXK/dx\ (4.2)

Compare Whitham [24], p. 133
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κ = ̂ κ(xa) represents the canonical differentiable projection @>: F4->^3. We
have DXK = Q in virtue of the independence of Xκ on the proper time. GKL being

time-invariant, it is then deduced that £Gα/? = 0 (see, e.g., [5]). The relativistic
u

Euler strain tensor being defined by

«« = ±(P*f-Gaf) = Sf,, ^X=0, (4.3)

we deduce from (2.3) that

£<^ = V (4-4)
U

42. Thermodynamical Argument

It can be shown that exact constitutive equations for a nonlinear elastic material in

relativistic motion are given in function of the internal energy density ε(<fα/5, η) by
[26]

>aβ U{0 β)γ

and

Λ 3ε
(4.6)

where 77 and θ are the entropy per unit of proper mass and the proper
thermodynamical temperature, respectively. Equation (4.5) is the relativistic version
of Murnaghan's formulation of classical nonlinear elasticity (cf. [27]).
Furthermore, the condition of objectivity referred to in § 3.2 imposes that ε be an

isotropic function of its tensorial argument $ aβ, hence depend on $ 'αj8 only via its

three principal invariants /(Λ = tr <f7', j=l, 2, 3, where tr = trace. Then Equation
(2.11) can be replaced by the condition of adίabaticity

ρθDη=0. (4.7)

If Saβ satisfies the condition
1 / 2«l, (4.8)

then we say that the relativistic deformation is infinitesimally small, and we can

replace Equation (4.5) and the general function ε ( I ( j ) , η ) by the following approxi-
mations :

(4.9)

and

ε = iΐ/(

2

1) + μ/(2)-κ/(1)f/ + θ0»j+^2, (4.10)

where, λ, μ, k, 7, and Θ0 are pure constants. It follows from (4.9) and (4.6) that

] , (4- 1 1)
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and

(4.12)

Thermodynamical considerations require that (compare [28], p. 28)

μ>0, Λ = 3λ + 2μ>Q, y>0, Θ0^0, }
ι r (4.13)

#>0, y>(k2/Λ). J

K is positive or negative depending on whether the solid expands or contracts on
heating.

We call Neo-Hookean bodies relativistic elastic bodies whose constitutive
equations are given by Equations (4.10) through (4.12). In accord with previous
comments (cf. [5], Appendix), stress-strain relations of the type (4.11) are said to be
quasi-linear for, although they are explicitly linear in ^αj8, they also involve the
strains via the factor ρ. Furthermore, Equation (4.11) have the following important
property. Take the invariant derivative D of both sides of Equation (4.11), project
spatially the resulting equation while taking account of the fact that (DPaβ),L=0,
and reintroduce Lie derivatives on account of Equations (4.4) and (2.4). Then, with
the notation (2.16), we have

tμ

μ-W)dap. (4.14)

?aβ is expressed by inverting (4.11) on account of the fact that Pα

α = 3. That is,

* _ 1 L M>y-2ρμ^\
(4.15)

*uμι \ /L i '
and

(4.16)

Substituting these two results in Equation (4.14), we are led to

(4.17)

Of course, Equation (4.7) implies that Dη = 0. Then Equation (4.17) is of the same
type as a constitutive equation for a hypoelastic body of first order, that is,
Equation (2.15), with ^'aβ

μv given by (2.19) and with the following substitutions:

λ-+λ[l — (2κη/Λ)~], ρλ'-+λ2/μA, μ-+μ[l—(2κη/Λ)~], }

ρμ'-J/Λ, ρα->(-?/rΛ -̂̂  --̂  ' ^18^

The property just placed in evidence shows that two directions can be followed for
studying infinitesimal discontinuities in relativistic elastic bodies whose constitutive
equations are derivable from the potential (4.10) and within the framework of
infinitesimally small deformations. The first one is a direct treatment, in which case
Equation (4.4) will be used as the compatibility condition whereas the constitutive
Equation (4.11) must be substituted for in the motion Equation (2.12). This is briefly
examined in the next paragraph. The second direction makes use directly of
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Equation (3.7), in which case it is Equation (4.17) that is used as a compatibility
condition. This second possibility is none other than a special case of the treatment
of infinitesimal discontinuities in hypoelastic solids of the first order. This will be
examined in Section 5. In both cases, however, the following two remarks hold true.
Firstly, ε and its derivatives being assumed continuous across the wave front W,
Equation (4.7) implies that

<%δη = Q. (4.19)

Thus δη^Q implies ^ = 0, and material wave fronts (% = Q) can also be called
entropy wave fronts. Secondly, on account of Equation (4.11), the principal
directions of both tΛβ and $aβ coincide9, the corresponding eigenvalues being related
in a simple manner.

4.3. Direct Treatment of Infinitesimal Discontinuities in Neo-Hookean Elasticity

We indicate only the great lines of the derivations. Substituting (4.11) into Equation
(3.3), we obtain

\ / I \ / I \ / I \

=0.

(4.20)

Taking the infinitesimal discontinuity of Equation (4.4), with ^ΦO, and of
Equation (4.20), we get

(δgΛβ)L = *U~V\_\ (λaδuβ + λβδuΛ) - <$yβλaδtf - δΛyλβδur] , (4.21)

and

ρf«βWδuβ -ρ'1 taβλβδρ - ρλλ*(δ<£μ

μ) + ρκλ«δη - 2ρμλβ(δS>aβ)λ = 0 . (4.22)

Taking account of the fact that δη=0, substituting from Equations (3.5) and (4.21)
into Equation (4.22), introducing the decomposition of δΛβ [compare (2.31)] by

#Λβ = EλΛλβ + 2E(aλβ} + Eaβ, (4.23)

using the decompositions (2.27), (2.30), and (2.32), and projecting the equation thus
deduced from (4.22) in the direction of λ and onto H(λ}, we obtain the following
system

(ρ<%2F"β - μS*β + 2μE«β)δuβ

L + (ρW2Fa + f* + 2μE«}δu = 0 , (4.24)

β + 4μEβ)δuβ

i + lρW2F +f-(λ + 2μ)(l- 2E)~\δu = 0 . (4.25)

From Equations (2.30), (4.23), and (4.11) — where we set κ = 0 without much loss of
generality — , we deduce that

Eβ = Tβ/2μ, (4.26)

£ = (2μ)-1[f-(λίyρ^)], (4.27)

£«„ = (2μΓ l\T.β~ (lίVρΛ)Sy . (4.28)

9 In fact, this property holds good also for the general relationship (4,5) and is due ultimately to the
isotropy of the energy density ε as a function
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The elements of decomposition oϊfa

β can also be expressed entirely in terms of the
relativistic stress via Equations (2.32), (4.15), and (4.16). Then we can rewrite
Equations (4.24) and (4.25) in the form of Equations (3.41) and (3.42), but with

(4.29)

(4.30)

and
y

(4.31)

We see that the differences with the case examined in Section 3 are not drastic. In
particular, we have uncoupling for principal wave fronts since, then

fa = E, = F, = 0. (4.32)

In this case a computation analogous to that made in Section 3 for a general initial
state of stresses yields the following three speeds:

for longitudinal principal waves :

{433)

for transverse principal waves:

•̂  λ (4.34)

and

The condition of reality of the wave speeds obviously imposes restrictions on the
coefficients λ and μ and on the initial state of stress. If the initial state is a state of
hydrostatic pressure p0, then a simple calculation shows that the apparent
elasticities in Equation (3.37) are now given by

l+(3λ/2μ)

The remarks made in § 3.3 are essentially unchanged on account of the form of the
system formed from the expressions (4.29) through (4.31). The same holds true of the
qualitative results of § 3.4, the formation of shocks, i.e., the growth to infinity in a
finite time of the amplitude, still being possible for adequate circumstances.

So Infinitesimal Discontinuities in Relativistic Hypoelastic Bodies of First Order

In this case the derivation of Equations (3.5)—(3.7) is left unchanged. It remains to
account for a compatibility condition which is obtained by taking the infinitesimal
discontinuity of Equation (2.15) on account of the specific expression (2.19). We
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have thus

<it(δtΛlί)± + V«μδw" + λΛtβμδu" + taβδu

= (λ + λ'fy)δuPxβ + (μ + μ't]y] (λ«δuβ + λβδux)

7ίtf(λμδux + λxδμμ) + tf(λμδuf + λβδuμ)-] , (5. 1)

with obvious definitions for λ\ μ', α, β, and γ. Decomposing this equation along λ
and onto H(λ), we obtain

1}}δu = 0, (5.2)

'?, + γf)S«β - 7 (̂1 - y)]^<

(5.3)

(5.4)

Eliminating now δτ and δτa between Equations (3.9), (3.10), (5.2), and (5.3), we are
led to the following linear system :

- [_λ + 2μ + (λf + 2μ')ty

y~\ + (3 - β - α - 4y)f}δu = 0 , (5.5)

F + [2(1 - y) - 0] f «}δu = 0 . (5.6)

For principal wave fronts, Equation (4.32) holds good and the system (5.5) and (5.6)
uncouples. Similarly to what was done in § 3.2, we obtain the following wave speeds
for a general initial state of stress:

for longitudinal principal waves :

for transverse principal waves :

®τ2 = (QF22Γllμ-t(2)(l-y-μ') + (y + μ')tll+μ't(3}'], (5.8)

and

I f we no w apply the substitutions (4. 1 8) with k = 0, then it is checked that Equations
(5.8) and (5.9) yield the results (4.33) through (4.35), which proves the equivalence of
the two approaches.
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It is a simple matter to show that the remarks made in § 3.4 and at the end of the
foregoing section concerning the possibility of the formation of shock fronts are
still valid. In fact, we can make the following general comment. If we can assume
that the coefficients that occur in the general Equation (2.15), being functions of
invariants of stresses, are further analytic, their expansion in power series is always
justified. The equations used in the above study may thus be taken to be the ones
from these obtained by retaining terms up to quadratic in the stresses. It will follow
from this that the growth equation for the amplitude for a model of a certain order
and those for models of higher order will be the same as that we have obtained in
§ 3.4. Such comments hold true also in classical hypoelasticity (cf. [29]).

The above study has shown how important is the role played by initial stresses in the
propagation of weak discontinuities and in the possible formation of shocks
therefrom in relativistic elasticity. The importance of such results for the
"seismology" of massive stellar objects in which a relativistic treatment is expected
need not be emphasized. Of course, only the case of principal wave fronts can be
studied analytically and it remains to achieve a thorough study of the hyperbolic
character of the system, but computer calculations can be performed for more
general cases. The possible occurence of shocks within a finite time interval however
shows one of the limitation of the present study. If shocks occur, then it is likely that
the condition (4.8) be no longer respected and that relatively large deformation
processes take place. If this is the case, thermodynamics will play an essential role in
the study. This means that the study of shock fronts must be based on the exact
thermodynamical constitutive Equations (4.5) and (4.6). Furthermore, the strength
of electromagnetic fields in the stellar objects of interest may endeavor the study of
true magnetoelastic weak discontinuities and shocks on the basis of the equations
derived elsewhere [I, 26, 30]. Finally, the coupling with gravitational discon-
tinuities may then play a role. These prospects form the subject matter of other
works.
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