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Abstract. In a conformal invariant quantum field theory (in 4 space time
dimensions) Wilson operator product expansions converge on the vacuum,
because they are closely related to conformal partial wave expansions.

1. Introduction

Let φι(x), φ\y) two local quantum fields. According to Wilson [1], their product
should admit an asymptotic expansion at short distances of the form

\ x)Ω = Σ Cίjk(x)φ\0)Ω. (1.1a)\
k

Herein φk are local fields, and Cιjk(x) are singular c-number functions. In a scale
invariant theory they are homogeneous functions of x. The expansion is pre-
sumably valid for all states Ω in the field theoretic domain Θ which is created out of
the vacuum by polynomials in smeared field operators. We shall however only
consider the special case

Q = vacuum. (1.1b)

Studies in perturbation theory [2] indicate that expansion (1.1) is then valid as an
asymptotic expansion to arbitrary accuracy for matrix elements (Ψ, φί(x)φj(y)Ω\ Ψ
in Θ. This means that the error in a truncated expansion can be made smaller than
any given power of x at sufficiently small distances ||x|| by taking into account
sufficiently many terms. (For more precise formulation cp. e.g. Appendix A of [3].)

Asymptotic expansions need not converge. For instance the asymptotic
expansion near y = 0 o f the function f(y) = exp (— ί/y) o f one positive real variable y
in powers of y vanishes identically and does therefore not converge to the function/.

Among the fields φk there are derivatives of other local fields. In general there
appears dμφ etc. together with any nonderivative field φ. In a conformal invariant
theory, non-derivative fields φ can be recognized by their conformal transfor-
mation law [4], viz. [</>(0),Kμ]=0, Kμ = generators of special conformal transfor-
mations.
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From the work of Ferrara et al. one knows [4] that conformal symmetry
imposes strong restrictions on the coefficients Cijk in (1.1): The terms involving non-
derivative fields determine all the others. Using this, the terms involving derivatives
of one and the same nonderivative local field can be formally summed. Here we will
prove more:

Theorem 1. Consider conformal invariant quantum field theory (in four space
time dimensions) and suppose that vacuum expansions (1.1) are valid as asymp-
totic expansions in homogeneous functions of x to arbitrary accuracy for
{Ψ, φι(^x)φj(—jx)Ω), Ψ in $). Then φιφjΩ admits a convergent expansion,

φ\x)φKy)Ω = Σ ί dzφ\z)Ω@ki\z xy). (1.2)

are generalized c-number functions. Summation is over nonderivative fields φk

only and integration is over Minkowski space. Convergence is strong convergence in
Hilbert space after smearing with test functions f(xy).

The result is valid for non-derivative fields φ\ φj of any dimensions di9 dj
transforming according to arbitrary finite dimensional irreducible representations
Zί? Ij of the Lorentz group M~SL(2(C). Multispinor-indices have been suppressed.

The functions &kίj are to a large extent determined by conformal symmetry. Let
L/«SU(2) the rotation subgroup of M and denote by M\ UΛ the sets of all finite
dimensional irreducible representations of M resp. U. Write χι = [? ί ?dj etc. We
shall show that functions &ijk are linear combinations of a finite number of
kinematically determined kernels ^{zχ^xχ^χ^}. Given χt, χp and χk they are
labelled by

/ e Λ O e t Γ such that sd and lcli®lpsclk. (1.3)

<g> stands for the Kronecker product; and C means "is contained in". If no pair (s, I)
satisfying (1.3) exists, then φk cannot appear1 in the operator product expansion of

Example. φ\ φj scalar. Then /~/j=id, the trivial 1-dimensional representation. So
/ = id, s = id and lk must be a completely symmetric tensor representation; 3Skij is
then unique up to normalization.

The proof of the theorem has two ingredients:
1. The Hilbert space of physical states carries a unitary representation U of the

conformal group G* = universal covering of SO(4,2). It was shown by Lϋscher and
the author that this is true even if one only assumes weak conformal in variance,
i.e. in variance of Euclidean Green functions under SOe(5,1) or its 2-fold spin
covering [5].

2. All unitary irreducible representations of G* with positive energy are finite
component field representations in the terminology of [6]. This result was proven
by the author in [7].

Using these facts one can derive partial wave expansions on G*, i.e. decompose
J dxdyf(xy)φi(x)φj(y)Ω into states which transform irreducibly. Because of the

1 For massless free fields φk(x) there are further restrictions beyond this, cp. end of Section 7



Conformal Invariant Quantum Field Theory 157

Plancherel theorem, partial wave expansions are strongly convergent. They are here
at the same time asymptotic expansions. Comparing with (1.1a) one finds that they
can be rewritten in the form (1.2).

An independent proof of the theorem for theories in 2 space time dimensions
was given by Liischer [8]. He uses different methods employing a semigroup.
Interesting further results on 2-dimensional models were obtained by Rίihl and
Yunn [9].

We conjectured in [10] that the assertion of Theorem 1 would also hold true in
realistic theories with mass and without conformal symmetry.

Let us mention that one can also give a dynamical derivation of the vacuum
expansions (1.1) themselves in conformal invariant quantum field theory (QFT).
This is discussed elsewhere [11]. It is not, however, a derivation from QFT axioms
and conformal symmetry alone: One also needs Lagrangean integral equations to
identify composite fields, and meromorphy of Euclidean conformal partial waves in
dimension must be assumed to get a discrete expansion in the first place.

Finally, the following corollaries of Theorem 1 may be of interest.

Let Pμ, Kμ the generators of translations and special conformal transfor-
mations, respectively, and

H = \ (P° + K°) the "conformal Hamiltonian".

Assume that the hypothesis of Theorem 1 hold for arbitrary products of fields
φ\ φK Let /test functions and φk(f) = \dxf(x)φk{x) smeared fields.

Then we have

Corollary 2. The Hubert space ffl of physical states is spanned by states of the form
φk(f)Ω, φk(f) smeared fields, Ω = vacuum.

Corollary 3. The conformal Hamiltonian H has a purely discrete spectrum with
eigenvalues ω = 0 (vacuum) and

ω = dk + m, ra = 0,1,2,...,

dk dimensions of nonderivative fields in the theory.

Corollary 2 is obtained by recalling that finite products </>ll(/i).. -φlN(fN) of fields
generate a dense set of states out of the vacuum according to the principles of QFT.
Then one applies Theorem 1 repeatedly.

Corollary 3 follows from Corollary 2 because states φk(f)Ω for given k span an
irreducible representation space of G*, with spectrum of H determined in Ref. [5] to
be of the form ω = dk + m, dk = dim φk. Because only a denumerable number of fields
appears in the operator product expansions by hypothesis, the corollary follows.

2. Harmonic Analysis

We wish to decompose φi(x)φj(y)Ω into states which transform irreducibly under
G*. It will suffice to consider scalar products (Ψ, φi(x)φj(y)Ω) with states Ψ in the
dense domain Θ.
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For simplicity of writing consider first a theory of one hermitean scalar field
φ(x\ and φι = φj = φ. The Wightman functions are

W(x1...xN) = (Ω,φ(x1)...φ(xN)Ω). (2.1)

Let ^ = ̂ N^iv th e s P a c e °f finite sequences of Schwartz test functions / 0 ,
/ i ( x i ) /iv(xi •••%)• The subspace Sf 2 consists of a sequence with only one
nonvanishing term / 2(xi,x 2) The field theoretic domain Q) consists of vectors

n/) = Σf dx1...dxJιίx1...xάφ{x1)...φ(xι)Ω fe&. (2.2)

According to the reconstruction theorem, the dense domain 2 in the Hubert
space J f of physical states may be identified with a space of continuous linear
functionals F:/ί-><F,/> on Sf> i.e. sequences F = (Fn)n = 01f of generalized
functions Fne&%. We shall write F(x1...xn) in place of JF^x^ .xJ and use
functional notation,

The identification is such that FeS> if and only if F= Wf for an / in if, with

Wf(Xi...xn) =Σίdyι...dyJ(yk...y1)W(yι...ykx1...xn). (2.3a)
k

The scalar product on 2f becomes

f2> (23b)

Since the Hubert space J^ carries a unitary representation U of G* it can be
decomposed

JT = j dμ(χ) J f * = J Jμ(χ) J dv(ρ) J f « . (2.4a)

μ a measure on the set G*"= {χ} of all unitary irreducible representations (UIR's) of
G*. Jf7χ consists of a direct sum or integral2 of irreducible representation spaces
Jf *ρ which carry equivalent UIR's χ.

In particular, states Wf in 2 may be so decomposed

Wf = \dμ{χ)Fχ = \dμ{χ)\dv{ρ)F™\ Fχ in jf* etc. (2.4b)

Since an irreducible representation space of G* must be contained in ^f as a
whole, the spectrum condition allows only UIR's with positive energy. All such have
been classified in [7]. First there is of course the trivial 1-dimensional repre-
sentation. The others can be labelled by χ = [/,(5], leM" a finite dimensional
irreducible representation of M^SL(2C) ("Lorentz spin") and (5^<5min(Z) real
("dimension"), cp. Proposition 6 below. The UIR χ may be realized in a space ^ χ of

2 In actual fact the measure v is discrete, cp. Corollary 3 and its proof
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(generalized) functions on Minkowski space with values in the finite dimensional
representation space V1 of the Lorentz group M. Functions φ in ^ χ satisfy a
spectrum condition, i.e. their Fourier transform is supported in sptr.(χ)g V+9 the
closed forward cone. The action of Tχ(g) of geG* on functions φ in $F χ will be
reviewed later on. Consider "intertwining maps"

χ such that U(g)m = @χTχ(g) for g in G*. (2.5a)

They are linear combinations of isometric intertwining maps

with f |φ) | 2 dv(ρ)< oo. (2.5b)

&χρ are maps from ^ to J4?χρ which preserve the norm and commute with the
action of the group.

Every vector Fχρ in j f χ ρ may be written in the form Fχρ = &χρφχρ where @χρ is
an intertwining map as were just introduced, and φχρe^χ. J ^ ρ is unique and φχρ is
uniquely determined by Fχβ.

It suffices to consider states Ψ(f) such that (Ψ(f\Ω) = 0. The trivial
1-dimensional representation of G* will then not appear in the decomposition,
because the vacuum Ω is the only Lorentz invariant state.

The decomposition (2.4b) becomes

Wf = \ dμ{χ) J dv(ρ)mρφχρ with φχρe ^χ . (2.4c)

Since J ^ is a function space, &χρφχρ = j dx J**ρ(x) φ x ρ (x), and <%tχQ(x) takes values in
^f *ρ C Jf. We restrict Wf to a continuous linear functional Wf(x1x2) on 5^2. Let us
introduce kernels έ%ρ(xχ;x1x2) = (έ%χρ(x\φ(x1)φ(x2)Ω). Decomposition (2.4c) gives
then

(Ψ(f)9 <Kxt)<l>(x2)Q) = Wf(Xlx2) = ί dμ(χ) ί dv(ρ) f Jxφ^ρ(x)*^ρ(xχ xxx2). (2.6')

The kernels are singular functions with values in V1. Often, physicists write indices:
ρ (sum over multispin or indices α).

One may associate kernels ^(xχ;x 1 x 2 ) with arbitrary intertwining maps
in the same way as for J>*ρ. They are related by (2.5b) viz.

xxx2) = J dv(ρ)α(ρ)<fρ(xχ x r x 2 ) , (2.5c)

where α(ρ) is an arbitrary v-square-integrable function of ρ. Correspondingly, we
shall use J* as a generic name for arbitrary linear combinations (2.5c) of kernels &ρ.

Since functions φ in £Fχ satisfy a spectrum condition, kernels J*(xχ;...) are
nonunique as functions of x. In particular, the Fourier transform

is only relevant for pesptv.(χ)QV+.
We shall count kernels έ${xχ ...) only as distinct if φ\p)*&~(pχ \ χ\χ2) differ for

some φ in $FΓ

The intertwining property (2.5) imposes strong co variance condition on kernels
J*. Further restrictions come from the spectrum condition for states φ(x1)ί2. We
write };2>};i if 3 ;2~) ;iG^+ Spectrum condition and co variance imply
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Proposition 4. Let φ~(p) the Fourier transform of an arbitrary element of J ^ . Then
φ(p)*0& ipχ\X\X2) is boundary value of a holomorphic function of Zj = Xj+iyj
(j= 1,2) in the tubey2>y1 >0. Kernels & (pχ \XχX2) are linear combinations of a finite
number of kinematically determined functions &ls(pχ',x2x2) (at most one for scalar
φ = φi = φj) which can be labelled as in (1.3). Moreover, they can be analytically
continued in p to entire analytic functions of p, viz. \dxdyf(xy)&~(pχ\xy) is
holomorphic in p for all test functions f with compact support.

Proof of Proposition 4 will be given in the following sections; explicit
expressions for gβ~ will be given in Section 8.

Let us return to expansion (2.6') We retain the assumption that φ(xx), φ(x2) are
scalar fields so that only one linearly independent kernel exists (cf. Proposition 4).
Thus all kernels are proportional and the integration over ρ may be performed with
the result

(Ψ(f), φ(xί)φ(x2)Ω)= Wf(Xlx2)=$ dμ(χ) J dxφ*(x)*Λ(xχ; x,x2) (2.6)

with φχ(x)oc$dv(ρ)φχρ{x)e^χ.
It remains to be shown that
i) the measure μ(χ) is discrete so that

Φ(xi)Φ(x2)Ω) = Σ ί dxφx«(x)*@(xχk ;xxx2); (2.8)
k

where φk is a nonderivative field appearing in the Wilson expansion (1.1) with
dimension dk and Lorentz spin lk if χk = \lk, dk~\. Later on we write @ik for &( χk,...).

We shall use the hypothesis that Wilson expansion (1.1) is valid as an asymptotic
expansion at x = 0. We will derive from (2.6) an asymptotic expansion at x = 0 in
homogeneous functions of x. As asymptotic expansions in homogeneous functions
are unique, (2.8) can then be deduced by comparison.

By Proposition 4, kernels ^(pχ\X\X2) are entire functions of p. They may
therefore be expanded in an everywhere convergent power series

#Tpχ Λx-$x)= Σ Cϊr(x)pβl...pβr; β = (βi-βr) (2.9)
r = 0

For reasons of dilatational invariance one has for real λ>0,

f{x) for, χ = V,δld = dimφ (2.10)

(or, more generally Id = dt + dp dUj = dim φiJ).
We will insert power series expansion (2.9) in (2.6).

(Ψ(f), φ$x)φ{-±x)Ω) = J dμ(χ) J dp Σ Cf(x)pβl... pβrφ~*{p)*. (2.11)
r

Suppose that in (2.6) / is a sequence of test functions whose Fourier transforms
have compact support. Vectors Ψ(f) with such / are still dense in the Hubert space
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Jf7 of physical states. Because of momentum conservation, the Fourier transforms
φ~χ(p) of φχ(x) will then also have compact support, and so φχ(x) are infinitely
differentiable at x = 0 (even entire in x). Because of homogeneity (2.10), expansion
(2.11) implies the following asymptotic expansion

= Σ ί dμ(χWCy(x)Vβl...Fβrφψr, (2.11')
r

where it is understood that summation and integrations Σ j dμ(χ) are rearranged in

order of increasing δ + r. (χ = [/, ^]). r

Expansion (2.1 Γ) can reproduce Wilson expansion (1.1) only if (2.8) holds true. It
follows from (2.6) and (2.8) that expansion (1.2) is true on a dense set of vectors Ψ(f)
as described before (2.1Γ). Being a partial wave expansion it is then generally true
and strongly convergent as stated in our theorem.

At the same time we see from (2.9), (2.1 Γ) how the coefficients in the Wilson
expansion (1.1) are obtained by power series expansion from the kernels
&~{pχ;x1x2).

We have written our formulae for a scalar field φ = φι = φj. They remain true
generally when interpreted correctly i.e. appropriate indices should be supplied
and attention must be paid to the existence of several linearly independent kernels
0s(xχ;xιx2). In particular, Equation (2.8i) should be read as

(Ψ(f\φi(xί)φJ(χ2)Ω) =
k l,s

while (2.8ii) becomes

φXklse^χ φχkls(x)* = Σ aιf(Ψ(f\ φj(x)Ω)
j

with complex coefficients aιf and Σj running over fields φj with sρin/fc and
dimension dk only. If no degeneracies in spin and dimension occur then the sum is
redundant.

The analysis of the kernels 36 will be done in full generality in the following
sections.

It only remains to prove Proposition 4. The sequel of this paper will be devoted to
this problem. At the same time, we will obtain explicit expressions for the kernels
3$~(pχ;x1x2\ cp. Section 8.

One could try to determine the kernels ^~by imposing infinitesimal conformal
invariance. In fact this program was already carried out be Ferrara et al. [4] for the
scalar case even before global conformal invariance was understood, and
Proposition 4 is implicit in their work for this case. For general spin the infinitesimal
method becomes too complicated. We shall therefore resort to global methods
which are more powerful. [In applications one wants to apply Theorem 1
repeatedly (as e.g. in Corollary 2) and fields of arbitrary Lorentz spin may then
appear.]
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3. The Conformal Group G*

The group G* is an infinite sheeted covering of SOe(4,2). Its geometry was ex-
amined in [7]. The following picture emerges.

G* contains the quantum mechanical (q.m.) Lorentz group M^SL(2(C) and
therefore also its two-element-center Γx whose representation distinguishes be-
tween bosons and fermions. Γ1 is also contained in the center of G* but does not
exhaust it. The group G*/Γί may be pictured as a group of transformations of
superworld M. That is, G* can act on M, but the action of Γ1 is trivial. Points η of M
may be parametrized

η = (τ, ε), — oo < τ < oo ε = (ε1ε2ε3, ε5) a unit 4-vector

viz. (ε1)2 + (ε2)2H*3)2H*s)2 = l (3-1)

The action of G* on M is specified by the action of various subgroups.
A subgroup K* of G* acts on M by rotations of ε and translations bσ of τ to σ + τ.

K*~]Rx SU(2) x SU(2), also K* contains the center Γ = Γ 1 ζ ^ Z 2 x Z of G*. Γ2 is
generated by an element yΛ which acts on M as

y\χ9 ε) = (τ + π, - ε) viz. f=^ exp ίπH = ̂ feπ . (3.2)

H is the generator of τ-translation, and β& rotation (sic) of ε into —ε. Its square M1

= e. K*/Γ is the maximal compact subgroup of G*/Γ.
A fundamental domain F in M with respect to the discrete subgroup Γ2 is a

submanifold such that

= 0 for e + yeΓ2 , [JyF = M.
yer2

A fundamental domain F = M* may be chosen as

. (3.3a)

Its interior may be identified with Minkowski space M4 = {xμ} through the
reparametrization

x°= S m τ

 5 ; x ' = ^ - 3 (i = l,2,3). (3.3b)
cosτ+ε 5 cosτ + ε5

Translations n~in iV~ Lorentz transformation m in M and dilatations α in ̂ 4 act
in the costumary way on points of M 4 c M c

4 parametrized by xμ (see below). Their
action on translates γM 4 of M 4 is then also determined because n~may = yn~ma, y
being in the center of G*. It extends by continuity to all of M = u y M 4 (union over

The action of G* on M is completely specified by the action of its subgroups
K, JV~ M, and A, for every g in G* may be written in the form

g = kman~, keK* etc. (3.4)

[This decomposition is nonunique. Let l/ = K*nM^SU(2) the rotation
subgroup of M. Then kman~= k'nίa'rΓ if and only if fe'' = ku,m'=u~ίm with u in U,
and a = a\ n~=n~'^\
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Let N = $N~$~i, it is called subgroup of special conformal transformations.
The point η0 = (0, ε*)5 ε

Λ=(0,1) is left invariant by MAN, and M is a homogeneous
space M~G*/MAN. MAN is isomorphic to a Poincare group since

0tm@-χ=m~eM, dtadi~1=a~1 for maeMA . (3.4')

The fundamental domain M 4 may also be made into a homogeneous space
MΪ~M/Γ2~G*/P with P = Γ2MAN. The action of subgroups Γ2, JV, Λί, A, ΛΓ on
cosets x = n~PeM4 is the usual one: The center Γ = Γ2Γί acts trivially, and 3

M: Lorentz transformations m: xμ->A(m)μ,xv = (rnx)μ.

4 : dilatations α: xμπ>|α|χμ, | α | > 0 .
iV~: translations^: xμi-»xμ + j ; μ , y*real.

AT: spec. conf. transf. nθy: xμπ>σ(x, y)~ * (xμ — yμx2)

j^real, σ(x,y) = l-2x y + x2y2.

θxμ

^ : x μ ί->- τ - ? 0 = time reflection . (3.5)

If n~eN~ then ^Πy^~1=nyeN .

Elements meMc^SL(2(C) may be identified with unimodular two by two
matrices; Λ(m) is then given by the fundamental formula of spinor calculus. Let

3

JC = X ° 1 + Γ̂ x V then Λ(m) is determined by m through
1

= x1 with x / μ = Λ(m)μxv . (3.6)

Translations act transitively on M 4 and M 4 is almost all of M*~G*/P.
Therefore the set N~P fills up all but a lower dimensional submanifold of G*.
Elements in JVT will be called regular. Every regular element g of G* may be written
in a unique way as

g = rΓyman with n~eN~, yeΓ2, meM, aeA and neiV . (3.7)

Haar measure of G* factorizes as dg = drΓdmdadn in this parametrization. In the
following it is understood that restriction to regular elements of G* is made
whenever this is necessary in order that the formulae make sense.

Let x' and p(x,g)eP = Γ2MAN determined by x,g through the unique
decomposition

g~1n2 = n^,p{x,g)~1. Then x' = g~1x (3.8)

viz. x' is determined by the action (3.5) of G* on cosets xeG*/P. From (3.8) one
deduces the cocycle condition

lχ>92) ( 3 9 )

Special cases: For rΓymaeN~Γ2MA one has

Our metric is # μ v = diag. (+ ) ; x y = gμvx
μy\ x 2 = x - x e t c .
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p(x,n~yma) = yma independent of x. (3.10)

The next lemma gives an explicit expression for p(x, g).

Lemma 5. Let p(x,g) as defined in (3.8), and MeG* the reciprocal radius transfor-
mation defined after (3.2). Then p{x, $) is MA-coυariant in the sense that

~ for beMA, b~

It is explicitly given by

p(x,@) = ymxaxnz with y = y"N, N = signx,

\ax\ = \x2\, mx = i N - 1 x |x 2 | - 1 / 2 , zμ=-xμ/x2.

Herein x = x°t+ £ xk<jk> and signx= ± 1 for xe V± and 0 otherwise.
The quantity p(x,g) for general regular geG* is expressible in terms of p(x,£%).

Write g = n~yman, n~eN~, yeΓ2 etc. Then

p(x,g-ι)=p(x,n~1){yma)~1 and p(x,n~γ) = p{x,0ί)p(βnx,0ί) .

The quantity p(x,&) was computed in [7, Eqs. (6.20) and (6.21)]. The other
assertions of Lemma 5 follow from the cocycle condition (3.9) and (3.10), noting that
<Mnx& = nx,bnx = n~bxb for be MA. In particular, it follows from the last relation
that b~0tn~x = Mn~hxb, and so by Definition (3.8), b~n@xp(x7&)~1=n~mxb~p(x,&)~1

= n~mxp{bx,$)~1b. This shows M^-covariance of p(x,&). D

Having completed the outline of the group G*'s geometry, we now turn to its
unitary irreducible representations with positive energy.

Let χ =[/5<5], δ real and leM" a finite dimensional irreducible representation of
M by matrices Dι (m) in a vector space V1. We equip V1 with a scalar product, written
u*f, of vectors u,v in V1 which is such that

D\m)~1=D\m)* for m~=mm0l-γ =θmθ~\ meM.

We define a finite dimensional representation of P = Γ2MAN in V1 by

Dχ(yman) = \a\~ceiπNcD\m) with c = δ-29 for y = y ^ . (3.12)

As usual, aeA is dilatation by |α|, cp. (3.5), etc.
Let Sχ the space of infinitely differentiable functions on G* with values in V1 and

having covariance property

) = \a\2Dχ(p)*f(g) for p = ymaneΓ2MAN. (3.13)

becomes a representation space for G* by imposing the transformation law

=/to"V). (3.14)

Because of covariance property (3.13) and decomposition (3.7) of group elements,
functions / in Sχ are uniquely specified by their restriction f{x) = f{n~) to iV~.
Transformation law (3.14) becomes in this language

x g)rf{g-'x) (3.15)

with \a\ from p(x, g) = yman. We are dealing with an induced representation on G*/P.
(P is called a parabolic subgroup, it is not the minimal one.)
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A scalar product on Sχ is constructed with the help of an intertwining map (or
operator)

Δ\:gχ^<Fχ9 (3.16)

where !Fχ is a space of generalized functions on G* with values in V1 having
covariance property

) = \a\2Dχ(p)~1φ{g) for geG*, p = ymaneΓ2MAN . (3.17)

is made into a representation space for G* by the transformation law

φig-'g'). (3.18)

Generalized functions ψ in <Fχ are determined by their restriction φ(x) = φ(n~) to ΛΓ.

The transformation law becomes

(Tχ(g)φ)(x)= \a\2D*{p{χ, g)~ ί)φ{g-1χ) (3-19)

with notation as in (3.15). The intertwining map A\ is required to commute with the
action of the group

A\ Tχ(g)f = Tχ(g)Δlf for finδχ.

It is given explicitly by

φ(x) = (Δl f)(x) = n + (χ) (dn'f{nxMn')
N

= \dx'Δ\{x-x')f{x')

with

-δ~h-hDι(ix). (3.20)

Here (j1 J2) is the highest weight of the representation leMv of M, and Dι is the
extension to GL(2C) of I through Dι{ρm) = ρ2jl + 2J2Dι(m\ ρ e C. Equations (3.20) were
derived in [7].

The Fourier transform of the intertwining kernel (= conformal invariant 2-
point function) (3.20) is

2 + δ+ji+j> (3.20')

with a new normalization factor n+(χ). zl\{p) vanishes for momenta p outside the
closed forward cone. The massless scalar 2-point function is obtained as a limit, j x

= ; 2 = 0 , δ-+l, viz. Γ(c+iy1θ(p)(p2y-*θ(p)δ(p2) as c - > - l .
In Ref. [7] a complete classification of all UIR's of G* with positive energy was

given. The result will be quoted as our

Proposition 6. The UIR's of G* with positive energy can be labelled by χ = [/, <5], / a
finite dimensional irreducible representation o/M^SL(2(C) and δ^δmin(l) real If
(jί,j2) ^ the highest weight of I (viz. 2/1? 2j2 nonnegative integers) then δmin(l)=jί +j2

+ 2 if J Ί + O , j2^Q, and δmin(ΐ)=j1+j2 + l otherwise, except for the trivial 1-
dimensional representation which has δ=j1=j2=O. The nontrivίal UIR's χ can be
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realized in the representation spaces Sχ equipped with scalar product

{fiJ2) = \dxιdx2f1(x1)*-Δχ

+{x1-x2)f2{x2)

with intertwining kernel (3.20).
Representations withj1 =0orj2 =0and δ = δmin are zero mass representations, the

others have continuous mass spectrum, sptr.(χ) = F + .

Remark. An equivalent UIR. χ is realized in the space $Fχ = Δ\$χ. If φγ —A\ fl9

fx e Sχ then the scalar product (φl9 φ2) = j dxf^x)* φ2(x). Generalized functions φ
in J ^ satisfy a spectrum condition since the intertwining kernel Δ\{p) does, cp.
(3.20').

In the following, we shall often not distinguish in notation between the test
function space Sχ and the Hubert space constructed from it. If we use functional
notation for the elements of this Hubert space, it is always understood that an
arbitrary representative out of the equivalence class of functions modulo zero norm
vectors is to be chosen.

4. Implications of the Spectrum Condition

Let us use the intertwining map Δ\ to introduce

V(xχ;x1x2) = μx'Δl(x-xγ@(x'χ;x1x2). (4.1)

Because UIR's of G* acting in 3Fχ and Sχ are equivalent and intertwined by A\, the
con formal partial wave expansion (2.6') may be written in the equivalent form

(Ψ(f\ φixJφiXiW) = W7(*i*2) = ί dμ{χ) J dv{ρ) f dxξ**{x)* V*{xχ ;Xlx2) (4.2)

with r

As in Section 2 we write J1, V for arbitrary linear combinations of kernels MQ, VQ

[cp. Eq. (2.5c)] so that V(xχ\xγx2) is the kernel of an arbitrary intertwining map

The kernels & are determined by V through (4.1) to within the arbitrariness
discussed in Section 2. We shall first determine V and then recover J* from the result.

Let us first state implications of the spectrum condition for V.

Lemma 7. The kernels V(xχ x1x2) ore limits of generalized functions V(xχ z1z2) of x
which are holomorphic in the complex parameters z1=x1 + iyv z2=x2-\-iy2 in the
tube y2>yi>Q' The limit is taken by letting y^y^O through the tube.

Proof It is well known that φ(xί)φ(x2)Ω is boundary value of states Ψ(z1z2)eJlf?

which are holomorphic in zί=x1 + iyί9 z2 = x2 + iy2 in the tube. (This result is
reviewed in [5].) Let EXQ the projection operator on the subspace 3tfXQ in
decomposition (2.4a) of Jf. By construction of expansion (4.2) we have

{E*°Ψ(f)9 Ψ{zlZ2)) = J dxξ*°{x)*V°(xχ zγz2)

in which \dxξXQ(xfVQ(xχ\zγz2) is a holomorphic function of z1? z2 in the tube and
has j dxξXQ(x)*VQ(xχ x xx 2) as a limit. If ξoe$χ is an arbitrary vector, then, because
Sχ carries an irreducible unitary representation, vectors of the ϊorm § dgf(g)T(g)ξ0
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with / an infinitely differentiable function with compact support on G* form a
dense set of vectors in the UIR-Hilbert space Sχ. Therefore ξχ(x) may be considered
as an arbitrary element of Sχ. But iχ contains all Schwartz test functions with values
in V1; therefore V(xχ;z1z2) is a generalized function of x and has the indicated
holomorphy property. D

It follows from Lemma 7 that it will suffice to determine V(xχ;xίx2) for
relatively spacelike points xl9 x2 on Minkowski space.

Lemma 7 cannot be carried over without further ado to &(xχ;x1x2) because
these kernels are nonunique as functions of x. However, it does imply the first
assertion of Proposition 4 because every element of J ^ is of the form φ = Δ\ ξ with

5. Relatively Spacelike Pairs of Points

Our further analysis is based on the fact that the conformal group G* acts
transitively on pairs of relatively spacelike points on superworld M. This will now
be explained.

The manifold M admits a G*-invariant causal ordering [5]. Two points ηx

= (τ1,ε1) and η2 = {τ2,ε2) are relatively spacelike if and only if

lτ2 ~~ τ i I < Arccosε1 ε 2 . (5.1)

Arccosx is the principal value of arccos x which lies between O...π.

Lemma 8. a) G* acts transitively on relatively spacelike pairs of points on M.
b) ηvη2ίn M are relatively spacelike if and only if there exists ke K*C G* such

that kηί9 kη2 are relatively spacelike points on Minkowski space M 4 C M (cp. Eqs.
(3.3)Λ

c) The little group4 in G* of a pair of relatively spacelike points on M is isomorphic
to MA. The manifold of relatively spacelike pairs of points on M may therefore be
identified with the homogeneous space G*/MA.

Proof Let η0 the origin of M 4 C M and η^ =&η0. We call η^ the unique point at
spatial infinity of Minkowski space. Explicitly ηoo=(0,ε"), ε"=(0, —1).

The little group of η0 is MAN and the little group of η^ therefore MAN~

a) Let (ηi,η2) relatively spacelike. Since G* acts transitively on M there is g such
that η2=gηoo- By G*-invariance of causal ordering, η'1=g~ίηί is then relatively
spacelike to η^. By (5.1) and (3.3a) this means that η\ must belong to Minkowski
space M 4 . The little group MAN~oϊηoo acts transitively on M 4 . There is therefore p
in MAN~ such that n\=pη0. Since p leaves η^ invariant we have then {rjι,η2)
= (0P*7o> dPVoo)- Since every pair of relatively spacelike points may be written in this
way, with gpeG*, we have proven transitivity.

b) The if part follows from G*-invariance of the causal ordering. Conversely,
choose η3 in M 4 and relatively spacelike to η0. By transitivity a) there is g in G* such
that (η1,η2) = (gη0,gη3). Decompose g = kman~ as in (3.4). Then (η^η5) = (man~η0,
man~η3) are relatively spacelike points in M 4 since the Poincare group carries M 4

into itself, and (η1,η2) = (kη4,kη5).

4 Little group = subgroup of stability
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c) The little group of the pair (η0, η^) is MANnMAN~=MA. The assertion of
c) follows from this and a). D

6. Global Transformation Law

According to the discussion in Section 2, physical states in the dense domain Θ may
be thought of as continuous linear functionals F = Wf on the test function space ίf.
They can be restricted to the subspace 9*2 which consists of Schwartz test functions
h(x1x2) with support containing only relatively spacelike pairs of points on Min-
kowski space. These pairs may at the same time be thought of as relatively space-
like pairs of points in the fundamental domain M* in superworld M.

The space ^ 2 ~ i s n ° t globally G*-invariant. We shall imbed it in a space J^~of
test functions o n M x M with compact support containing only relatively spacelike
pairs of points. The space J>~ is G*-invariant, i.e. it admits an action

Tig)\S~^f~ (ginG*)

of the group G*. Afterwards we will extend functionals F — Wf from £P 2~\o J^~by a
process of analytic continuation (cp. Sec. 8 of [5]). In doing so a physical state Ψ(h)
is associated to every h in J~. The global G*-transformation law of these special
states can be stated explicitly, so that we may thereafter deal with an explicitly
known action of G* in a concrete function space in place of an abstract unitary
representation of G* in an abstract Hubert space of physical states.

Let us deal with general spin right away. Let χt = [/ί9 dJ and Xj = [lj, dj] specified
by Lorentz transformation law and dimension of the fields φι and φj whose
operator product (1.1a) we want to expand. We denote by V\Vj the finite
dimensional vector spaces in which act the representations lt and lj of M. It is
understood that they are equipped with a scalar product which is such that
D\θmθy1=Dι(m)*.

The space 6^2cons^s of test functions h(x1x2) with values in the tensor product

Ψ(h)= μx1dx2haβ{x1x2)φi

a(x1)φit{x2)Ω for he^2. (6.1)

Indices α, β label an orthonormal basis in V1 resp. V3\ summation over repeated
indices α, β is understood.

Let P° = MAN so that superworld M = G*/P°. Let us restrict the repre-
sentations Dχ (3.12) of P = P°Γ2 to P°. Consider the finite dimensional repre-
sentation π of P° x P° in F 1® Vj by matrices

π(Pi, p2) = IWίpIX

where δP(man) = |α | 4 , pί9 p2e P° . (6.2)

The space J~ consists of all infinitely differentiable cross sections on the

homogeneous vector bundle E = (M xM)x(Vi®Vj) with compact support con-
π

taining in its interior only relatively spacelike pairs of points on M (notation of
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[13]). In other words, J>~ consists of infinitely differentiable functions on G* x G*
with values in Ψ (x) Vj having covariance property

(f=l,2). (6.3)
The action T(g) of G* is

(T(g)h)(gvg2) = h(g-1g1,g-1g2). (6.4)

Evidently such functions h are completely specified if they are known for one
representative {g1,g2) out of every coset (ηvη2)eMxM = (G* x G*)/(P° xP°).
Therefore, if a representative of every coset is fixed in some way, cross sections h
may also be considered as vector-valued functions o n M x M . The support of h is
the closure of the (open) set of all pairs (ηί,η2)eM x M such that Hg^g^ + O for
(#i> 02)GOh> tfi)- -^~is made up of cross sections h with support properties as stated
above.

Consider the subspace of J~ which consists of cross sections which vanish
outside Minkowski space M 4 x M 4 cMxM.lt may be identified with the space ίf2~
as follows: Every gteG* with gtP°eM4 C M may be written as g{ = n~x.pt with p. εP°,
π~ = translation by x. Therefore by (6.3)

% i , 02) = π(Pi> P2Γ r M ^ 1 ? fQ"

for ^ n x > n ; P ° e M 4 . (6.5)

and h(xu x2) in in ̂ ~ 2 and determines /ι(^1? g2) everywhere on G* x G* so long as /ι is
in the subspace.

Let he 5 ^ and ?P(Λ) defined by (6.1). It follows from the results of [5] that the
Hubert space of physical states carries a unitary representation U of G* whose
action on states Ψ(h) is such that

U(g)Ψ(h) = Ψ(T(g)h) (6.6)

provided geG* and he&Z a r e s u c n t n a t a ^ s o T(g)heSf2, i.e. ^ does not carry any
point in the support of h outside Minkowski space. It follows from Lemma 8b and
compact support of h that every in h in ,/~may be written as a finite sum of the form

h = Σ ngjhi with h^Sςand gteG*. (6.7)
i

We may then define

(6.8)

with Ψ{hj) defined by (6.1). We must show that this is consistent, i.e. independent of
the choice of gt and ht in (6.7). Suppose that h = Σ Tig'^ is another decomposition of
h with ht in <9̂ 2~and gte G*. By making finer splittings and reordering we may achieve
that both sums have equally many terms, and

Ttoί)Λί = 71(̂ i)Λi for all i. (6.9)

But

= u{g[) t ; to ; " ' g
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We used in turn Definition (6.8), hypothesis (6.9), Equation (6.6), the group law, and
Definition (6.8) again. By summing over i we have

which proves consistency.
We have shown that Definition (6.8) is meaningful. It is then automatically

consistent with (6.1) and, moreover, transformation law (6.6) holds generally true
for arbitrary h in ,/~and g in G*. Equation (6.6) is the promised explicit form of the
global transformation law.

It follows that the functionals Wf on ^ e x t e n d to continuous linear functional
on ./~ by virtue of the definition

(Wf,hy=(Ψ(f)9Ψ(h)) for feSf, heΓ,

and

(U(g)Ψ(f\ Ψ(h)) = <U(g)Wf9 h) = {Wf9 Tig'^h) . (6.10)

The con formal partial wave expansion of these expressions is obtained by
decomposing the states Ψ(h) as described in Section 2. We write it in terms of
elements of Sχ as in Section 4.

<Wf,h> = J dμix) J dv(ρ) J dxξ**(x)*V*<(x;h)=Sdμ{χ) J dv(ρ)F*«K*« ft]

with ξχQeδχ9 for heJ~. (6.11a)

If h is in e$^'c«/~it is determined by a function h(xίx2) of relatively spacelike pairs
(xl9x2) of points on Minkowski space through (6.5), and so

for he5f~cS~ (6.11b)

Here and everywhere we use vector notation: h(x1,x2) takes values in Vι®V\ the
kernel VQ(xχ x1x2) is a linear map from F' ® Vj to 0 , ξ(x) takes values in V1, and we
write v^v1 for the scalar product of two vectors v1,v2 in V1.

We write F χ for an arbitrary linear combination of Vχρ as usual. The
intertwining property (G*-invariance) of Vχ reads because of (6.10)

Vx[Tχ(g)ξ,T(g)h-] = Vxiζ,h-] . (6.12)

This must hold for arbitrary ξχ in SΓ because of irreducibility of the UIR-space Sv

cp. the proof of Lemma 7. Thus VXJ[ , •] are G*-invariant sesquilinear forms on
S'χX J>~. They determine the kernels V(xχ x1x2) for relatively spacelike Minkowski
space arguments xi,x2 through (6.11b).

7. G*-Invariant Sesquilinear Forms on Sχ x J~

We wish to determine the most general sesquilinear form Vχ\_-, •] on Sχ x <$~which
is G*-invariant in the sense of (6.12) and such that the kernel V{xχ xιx2) determined
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by it admits analytic continuation as required by Lemma 7. This problem can be
solved by a standard method of the theory of induced representations, viz. Bruhat
theory of intertwining maps [14].

First we give an alternative description of the space J~. It will exhibit the
representation acting in </~as an induced representation on G*/MA. Let us define a
representation L of MA by operators L(ma) acting in the vector space Vι®Vj,

L{ma)~1 =Dχi(ma)*®Dχj(m~a~ *)* , τn~= ^m^'1. (7.1)

Lemma 9. There is a bίjective intertwining map Q from J~to the space of all infinitely

differentiable cross sections on the homogeneous vector bundle (G*/MA) x (Vi®Vj)
L

with base G*/MA and fibre V1® Vj.

Explicitly, QJ~ consists of infinitely differentiable functions hγ on G* with
values in V1 ® Vj having covariance property

hί(gma) = L(ma)~1hί(g) for maeMA . (7.2)

It is made into a representation space for G* by imposing the transformation law

(7.3)

The map Q is explicitly given by

for heJ\ (7.4)

Evidently it commutes with the action of the group, T(g)Q = QT(g) by (6.4).
Covariance property (7.2) of Qh follows from (6.3) since &ma&~1=m~a~1 by (3.4;).
0t was defined after (3.2). To prove the lemma it only remains to be shown that Qh
determines h. This follows from the fact (Lemma 8) that G* acts transitively on
relatively spacelike pairs of points on superworld M. As g ranges over G*, the pair
{gη0,gMη0) = {gη0,gηao) ranges over all relatively spacelike pairs of points on
superworld M, cp. the proof of Lemma 8. Therefore the set of pairs (g, g&) contains
a representative out of every coset (ηί,η2)eMx M = (G* x G*)/(P° xP°). This
suffices to determine h by the discussion following (6.4). •

Because of Lemma 9 we may consider F*[ , ] as a G*-invariant sesquilinear
form on Sχ x (λ/~. This will be helpful.

Elements heQJ>~ admit an integral representation

h(g)= J dmaL(ma)h'{gma) for heQJ~ (7.5)
MA

with h! an infinitely differentiable vector valued function with compact support on
G* dma is (right- and left) invariant Haar measure on MA. This integral
representation makes covariance property (7.2) manifest.

According to (3.13),/e iχ may also be considered as functions on G* with values
in V1 and admitting an integral representation

f(g) = j dpδP(pΓ*DX{p- ιYf\gp). (7.6)
p
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Here/' is an infinitely differentiable function on G* with values in V1 and compact
support, and dp is left-invariant Haar measure on P = Γ2MAN. Integration over P
includes a summation over Γ 2. The measure dp is not right-invariant instead dipp^)
= δp(pί)dp with modulus function [15]

δP(p) = \a\* for p = γrnaneΓ2MAN. (7.7)

Integral representation (7.6) fulfills the covariance condition (3.13) for arbitrary/'.
For the sesquilinear form F*[ , ] we may then make the general Ansatz

Vχίf,Q~1hl= J dgdg'f'(g)*t{g,g'm) for heQj\fetx (7.8)
G**G*

and h\ / ' related to /i, / by (7.5), (7.6), with a kernel t(g, g') which maps V1 ® Vj\->Vι.
The kernel t(g, g') is a generalized function on G* x G*, but we will use functional
notation as physicists always do.

Expression (7.8) must depend on h! only through h. If h"(g) = L(b)hf(gb) with
be MA then h" and h' determine the same h. Therefore we must require

t{g,g'b)L{bYl = t{g,g') for beMA. (7.9a)

Similarly, f"(g) = δP(p)*Dχ(p~1)*f'(gp) and f'(g) determine the same / Since
Vχlf, h] should depend on / ' only through / we get the consistency condition

δP{p)-*D*{p)t(gp9sn = t{g9g') for peP. (7.9b)

From transformation law (7.3) and integral representation (7.5) we have

(7Tfo)A)foO = % - V ) = ί dbLφMg-'g'b) for heQJ~.
MA

Similarly from (3.14) and (7.6)

g'v) for feβx.
p

Therefore, G*-invariance (6.12) reads

V*lTx(9l)f, T{gί)K\ =$dgdg'f'(g;'g)*t{g,g')h\g-ig)= V*[f,K].

This requires

g,g') = t{g,g') for all gxeG*. (7.9c)

It remains to determine the general solution of Equations (7.9a)-(7.9c).
The general solution of (7.9c) is

%,Λ=ίV"V) (7.10)

with a (generalized) function ί* on G* whose values are maps: P (
Covariance conditions (7.9a) and (7.9b) read then

for beMAypeP. (7.11)
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Let us abbreviate MA = H and let P = Γ2MAN as before. We define a left action of
H x P on G* by

(b,p)°g = bgp~1 for peP,beH = MA.

Evidently this satisfies the group law (p1,bί)°(p2,b2)
og = (p1p2,b1b2)°g. The

manifold G* dec omposes therefore into orbits under H x P, and H x P acts
transitively on each orbit. Let us determine the orbits.

Consider the action of H x P on cosets in M 4 = G*/P and their elements. P acts
transitively within each coset therefore the problem reduces to determining the
orbits in M 4 under H. Let us parametrize the finite points of M 4 by Minkowskian
coordinates x = (xμ) as in (3.3b). There are then three open orbits consisting
respectively of positive timelike x, negative timelike x, and spacelike x. In addition
there are several lower dimensional orbits. (They consist of the point x = 0, pos.
lightlike x, negative lightlike x, the unique point at spatial infinity of M 4 , and the
remaining points at infinity, respectively.)

Correspondingly, the open orbits on G* consist of

G% = {g = n~xp with peP, x pos. timelike}

G*_ = {g = n~xp with peP, x neg. timelike}

Gt = {g = n~xp with peP, x spacelike}

and in addition there are several lower dimensional orbits.
Suppose that f(g) is known on one of the open orbits, say GJ. It is clear that

V(xχ;x1x2) will then be determined on an open set of arguments. Analyticity
properties (Lemma 7) can then be used to determine it everywhere.

Let us choose a standard xΛμ = (1,000). Correspondingly we select rf^ as a
standard point in G%. Let us determine the little group of vΓ^ in H x P. The rotation
group U CM consists oϊueM such that uχΛ=χΛ. Suppose bn~xφ~ 1 = rΓ^. Consider
this equation mod(P). It follows that bxΛ = xΛ. This requires be U. On the other hand
fen^p"1 =n~bx*bp~ί. Therefore we must have p = b. In conclusion

for beH^peP if and only if (b,p) = (u,u)9ue U. (7.12)

Thus the little group of rC^ in H x P is isomorphic to the rotation group U.
Let geG%. Then it can be written in the form

g = bn~xφ~1=n~xbp~i with beH,peP,x = bx" for geG%. (7.13)

Co variance condition (7.11) says that

t*(bn~xφ-1) = δP(p)-ϊDχ(p)rL(by1 with r = t*(n~J. (7.14)

For consistency, Γ must be [/-invariant

r = Dχ(u)fL(u) ~γ = D\u)t\Dli{u) ® Dιiu)~] " 1 for M e 17. (7.15)

In other words, Γ is a [/-invariant map V1® Vj\->Vι. Next we will classify all such
maps.

Finite dimensional irreducible representations of Mc^SL(2(C)^Spin(3,1) are
constructed by analytic continuation (Weyls unitary trick) from UIR's of Spin(4),
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the twofold covering of SO(4). The Clebsch-Gordanology of both groups is
therefore the same, and they contain U as a common subgroup.

Let us decompose Vi®Vj into irreducibles under M, V1 ® Vj = Σ Vι\ with
Clebsch Gordon maps 5

C{lilj\V):Vi®V5\-+V1'. (7.16)

Let us decompose representations I and ΐ of M into irreducible representations
se EΓ of U9

Vι= Σ yls etc. (7.17)
selΓ
scl

We identify Vls = Vι's = Ws. Consider the projection operators π{ls) and their
adjoints, viz. U-invariant imbeddings π*(ls\

π(ls):Vι\-*Ws; π*(Γs):Ws^V1' . (7.18)

The most general U-invariant map from Vi®Vj\-^Vι is a linear combination

^ k l j ; I) (7.19)
I's

sum over l'eM\ se Ό" such that ΐ C lt ® lp scl,scΐ with complex coefficients cVs. M"
is the set of all finite dimensional irreducible representations of M.

With this we have found the most general form of t(g,g') for g'~1geG%. The
result is given by Equations (7.10), (7.14) with (7.13), and (7.19). The sesquilinear
form F x [/, K] on Sχ x ,/~is then determined by (7.8) for/, h having suitable support
properties. It remains to recover the corresponding kernels V(xχ;x1x2) and
continue them analytically.

Let he ̂ 2 C*/ Then on the one hand h is determined by a function h(xίx2) of
Minkowski space arguments xi,x2 by (6.5) and, on the other hand, it is also
determined by Qh(g) according to Lemma 9. Let us find the connection.

First we observe that

n~x2P2=n~x1Pi® f o r Pi=nay9p2=p(y^ly=χ2-χi ( 7 2°)

in the notation of (3.8), and px,p2 are inP° for spacelike y by Lemma 5. It follows
from covariance (6.3)

A(XiX2) = h{n~Xi, n\2) = π ( p l 9 p2)h(n~Xipί, n\2p2)

= π(pl9 p2)h{n~Xlpl9 n~Xίp@) = π(p 1 ? p2)Qh{n\nMy)

and Qh(g) vanishes unless g = n~xnmymoά(MA) for some x1 and spacelike y. In
particular it vanishes if g = n~nmay with γ + e, yeΓ2 etc.

5 Remember that we write V1 for Vι\ the vector space which carries the irreducible representation /,-
ofM
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If we write g = n~nyma, then Haar measure dg = drCdndmda and dn~x = dx, dnMy

=d@y=(-y2y*dy.lfQh(g)= J dbL(b)h'{gb) then
MA

Kg, nnyb)L(b)h'(nnyb)
y

= j drfdn t(g, n~n)Qh{n~ή),

because of the above mentioned support property. Thus finally

#'%, gr'MsO = ί ί ( - y2)" 4dydxt(g, n^xnMy)π(p1,p2)" ^(xj x2)

with xx = x, x 2 = x + y, p x = n@r p2 = p(y, 9ί\
Similarly, let/e ̂  and write f{n~x) = /(x). Splitting ^ = n~p with pe JP the measure

factorizes, dg = dn~dp, as we have just said. Some integrations in (7.8) can therefore
be carried out with the help of (7.6) and covariance condition (7.9b). As a result

/(Z)*ί>^(x2-χ^-χ>(Pl?P2)~1

for fe$r he<99

2~ Thus by comparison with (6.11b)

(7.21)

with pί=niXX2ί,p2=p(x2l9 M);xij = xi-xj.

It only remains to insert the previously derived expression for ί*.
Evidently, V( ) is translationally invariant, i.e. depends only on coordinate

differences. We may therefore put x1 =0.
According to definition (3.8)

with z1 =ri^z=0ί(βz — My) and p = p(z,n^y)b provided bx" = z\beMA.

A suitable b in MA exists if y, z are such that z' is positive timelike. We have
z'2 = (βz — My)~2 = (z — y)2/z2y2. Since y is spacelike by hypothesis, we may put
y° = 0 without loss of generality. We see that z' will be positive timelike if

z pos. timelike, z — y spacelike or vice versa; y spacelike. (7.23)

We restrict our attention to this case. It corresponds with the previous assumption

that the argument of ί* is in the orbit G%.

According to Definitions (7.1), (6.2)

L{b) = π(b,b~) with

b=mb@-ι=ma~ι for b = maeMA,πi=θmθ~1 . (7.24)

Expression (7.14) for £*(•) yields then

V(zχ Oy) = (y2)-%(PΓ -DX(p)Γπ(Plb, p2bT' (7.25)

with same b, p, pί9 p2 as before in (7.21), (7.22). This is valid for z, y as described in
(7.23).
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Expression (7.22) for p can be simplified. We use Lemma 5 repeatedly.
p = p(z, nmy)b = p(z, 0i)p(βz\ 0t)b = p(z, 0i)b~pty~-13tτ!, 01) = p(z, m)b~p( - x\ 01).

But p( - x", 01) = y"~λ mod(iV) y" = generator of Γ 2. Writing p(z, 0t)=ymzazn as
in Lemma 5 we obtain

p = γ"r~1mzazb~(modN) = fr~ιmzm~aza

with r = signz; \a\2=z'2=(z — y)2/z2y2; \az\ = \z2\. Similarly

Pi = n®y Pi = myay(modN) with \ay\ =-y2. (7.26)

We will now introduce an M-covariant version of Γ in order to switch Dχ(p)
through Γin (7.25). According to spinor calculus, irreducible representations / of TV
may be labelled by their highest weight (j1j2)l Λ> Ji half-integer. Completely
symmetric tensor representations of rank j are labelled i^Uhί) m this way.

Lemma 10. Given three finite dimensional irreducible representations /, li? lj of M,
define

Σ = max. rank of any completely symmetric tensor representation of M contained
in the tensor product l®lt®lj.

Consider linear maps t(x): Vlχ (x) FίjV> V1 such that
1) t(x) is a homogeneous polynomial of x of degree Σ.

2) t(x) are M-covariant in the sense that

D\m)t{x)[pli{m)®Dιim)Y1^t{mx) for meM.

All such are obtained from U-invariant maps Γ as were classified in (7.19) by setting

t(x) = \xψΣDι(m)tXDιim)
for positive timelike x = \x2\^mx".

Conversely let t(x) defined by (*)for positive timelike x. Then it can be analytically
continued to all x and satisfies 1) and 2).

We shall relegate the proof of this lemma to Appendix A.
Since representations Dχ of MAN are trivial on N we have

) = Dχ(mzazb~) for zeV+, with

by Lemma 5. Moreover (mzazb~x")μ = (zf2)~ ίA(mz)
μ

v\az\(θz')v, whence

,~ „ (z-y)2*2 {z z-y

y2

Now we are ready to use Lemma 10 to switch Dχ(p) through Γ in (7.25). At the same
time we insert the definitions of δP(p) and π( , ). They give δP{p) = \aza~ί\4',
π(pίb,p2bTί=Dχi(ma)*®Dχj{myaym~a-1)*'\ay\

2. Altogether
y y ' I y>

Izl \c^~C i

z2 (z-y)2] m z X m z m m my
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with |y| = |y2 |1 / 2 etc. We use Lemma 5 again to evaluate the argument of Dlj. One
has mx* = ί and so m = mmx~mm:Cm~=-mz,m~=m~mz_mym~. Thus mzm~m~1m~~1

==i m m~~ m~~ == m
Irreducible representations I of M~SL(2(C) are extended to GL(2(C) in a

standard way. Suppose I has highest weight (jίj2)9 then one defines

\l\=Ji+J2'> D\ρm) = Q2^D\m) for meSL(2C), ρ e C . (7.28)

With this notation, Equation (7.27) becomes

z-y\)

\z~y) i
This is valid for z positive timelike, y and z — y spacelike. An expression for arbitrary
arguments is obtained by using the spectrum condition, viz. Lemma 7. We note that
expression (7.29) is real analytic in its domain of validity. This guarantees
uniqueness of analytic continuation to the whole domain of holomorphy given in
Lemma 7. As a result we have the following Proposition 11. Of course kernels
V(xχ xιx2) depend also on spin and dimension χi = \lb dj, χ } = [lj9 djj] of the fields
φi(x^), Φj(x2) whose product we want to expand. We shall therefore indicate this
dependence by writing V(xχ XιXiX2Xj) = V(xχ x1x2).

Proposition 11. Let V(x3χ;x1χίx2χ2)a 3-point function which satisfies the spectrum
condition (Lemma 7) and which is conformal invariant in the sense explained earlier,
with transformation law specified by Zi = [/1,2 + c 1 ], X2 = \l2,2

JrC2\ χ = [ί,2 + c].
[In this, cγ,c2,c are real, lvl2,l fίnitedίmensional irreducible representations of
M~SL(2<E)acting in vector spaces Vh, Vh, V1.] Then

V 3 1
*32)] (7.30)

— c2, and t(x) are linear maps: V11 (x) Vh H> V1 which satisfy the hypothesis of Lemma
id. \l\ etc. and Σ are defined in (7.28) and Lemma 10 if lx®l2®l does not contain a
completely symmetric tensor-representation of M, then a conformal invariant 3-poίnt
function does not exist. An iε-prescription is understood,

(7.31)

3

x = x°t+ Yjx
kσk, σk Pauli matrices.

1

Expression (7.30) is a well defined distribution for arbitrary c, cl9 c2.

Corollary 12. Let V(xχk;x1χίxχ2) a conformal invariant 3-point function which
satisfies the spectrum conditions for a 3-point Wightman function. Then it can be
analytically continued to the permuted extended tube and satisfies all the Wightman
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axioms for a 3-poίnt Wightman function (Ω,φk(x)*φi(x1)φj(x2)Ω) of three possibly
distinct local fields (with Lorentz spin and dimension χk = [lk,dk\ etc.).

When two of the fields are identical, the Wightman 3-point function has further
symmetry properties. These are not automatically ensured by (7.30).

Remark. The kernels V(xχ x1χίx2Xz)are n o t Clebsch Gordan kernels for the tensor
product χί®χ2 of UIR's of G*. Indeed, states φx(x1)φ2(x2)Ω transform in general
according to a unitary representation of G* which is not a Kronecker product, cp.
epilogue of Ref. [5]. In particular it restricts to a nontrivial representation of the
center of G*, while for a Kronecker product of irreducible representations every
element of the center would have to be represented by a multiple of the identity.

We add some remarks on zero mass representations. Most of the UIR's χ of G*
with positive energy have continuous mass spectrum, but there are also zero mass
representations (cp. [7] and Proposition 6). A priori they could appear in the
conformal partial wave expansion (4.2) and then also in the light cone expansion
(1.2). We shall now argue that this only happens in exceptional cases6.

Let us first discuss the meaning of this. Suppose φ(x) is a local field and Π\φ{x)Ω
= 0. Then also Dφ(x) = 0 because a local field can never anihilate the vacuum.
Therefore φ(x) is a free zero mass field. Appearance of zero mass representations in
the conformal partial wave expansion would therefore mean that there appear
massless free fields in the operator product expansion. This can happen. [Example:
The expansion of the product of a massless free field φ(x) with its stress energy
tensor must contain φ(x) again.] But it happens only in special cases. The reason lies
in the nonexistence of a suitable 3-point function. Considered as functions of x,
3-point functions V(xχ;xιχίx2χ2) must be in the representation space J^ . As such
they must satisfy a spectrum condition. For continuous mass representations it says
that the Fourier transform V\pχ x1χ1x2χ2) has support concentrated in the closed
forward light cone, peV+. Because of the iε-prescription, expression (7.30) satisfies
this condition.

If x is a zero mass representation, however, elements of J ^ satisfy certain
differential equations, in particular their Fourier transform is concentrated at p2

= 0. Expression (7.30) does not meet this condition in general. Consider for instance
the scalar case lx = 12 = id, c = — 1: The Fourier transform F°~is given by Equation
(8.4) below for this case [Caution: the limit c-> — 1 must be taken with care in order
not to lose contributions concentrated at p2 =0, cp. after (3.20')]. We see that F°~
cannot vanish identically for p in the interior of the forward light cone unless the
argument of one of the Γ-functions in front is a nonpositive integer, i.e. cx — c2 is an
odd integer. More careful inspection reveals that V°~(p, — \\x1c1x2c7) is concen-
trated at p2 =0 if and only if c1 — c2 = ± 1.

8. Recovery of Kernels &~(pχ;xιX2)

We introduce the Fourier transform of 3-ρoint functions with respect to the first
argument

(8.1)

This observation originates in a remark made by Castell some years ago [17]
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The kernels ββ~ are obtained from them by Equation (4.1), viz.

= Ax+(p)@~(pχ;xίχίx2χ2) >

where A\ (p) is the Fourier transform of the 2-point function (intertwining kernel)
(3.20). As we discussed earlier (in Sec. 2), kernels έ% are nonunique and determined
only to the extent that (8.2) determines them.

We consider the scalar case first. We introduce a special notation for this case

V°(xc x1c1x2c2) = V(xχ x 1 χ 1 x 2 χ 2 )

@°{xc x1c1x2c2) = M(xχ x a 1*2X2) etc.

with

where id stands for the trivial 1-dimensional representation of M.
From Proposition 11 we obtain [same Notation (7.31)]

Ί dxeipxl-(z(u)-x)2-u(l-u)x2

ί2-ίε(z(u)0-xo)Tc~2

with Z(M) = M X 1 + ( 1 — M)X2. The second equation was obtained by inserting the
standard integral representation

1

J du uv

0

The Fourier transform of the generalized function [ —x2 + α2 + iεx°]"A is well
known for α 2 > 0 , and so we obtain, for x 2

2 < 0

V°Λ'{pc\x1c1x2c2)

Jp[uxί+(l-u)x2]

•(ΪP2ϊl2Jc(ί-u(l-u)x2

12p
2γ'2). (8.4)

J c is the Bessel function; θ(p)=l for p e F + and 0 otherwise. The w-integral is
regularized by analytic continuation in c [16]. Validity of (8.4) for arbitrary x1,x2



180 G. Mack

follows by uniqueness of analytic continuation. Dividing by Λχ(p) we obtain finally

&°~(pc;x1c1x2c2)

i(ci-c2)/ u \

.tdu[JLΛ
•(4p2Γc/2Jc(l-u(l-u)x2

12p
2y2)

for peV+, with iε-prescription (7.31) (8.5)

with a constant n'+ (c) which is determined by the normalization of the scalar 2-point
function, cp. Equation (3.20').

We see by inspection that ^°~has the holomorphy properties in p which were
stated in Proposition 4. It is equal to ( — x\2 + iεx°12f times an entire holomorphic
function in xl9 x2 and p, and so it is a generalized function in 3f' (notation of [16]) of
x 1 and x2 which is holomorphic in the parameter p.

Let us now turn to the general case. The first two assertions of Proposition 4 are
clear from Equation (8.2), Lemma 7 and Proposition 11, viz. the classification of
3-point functions V. It remains to demonstrate holomorphy in p. This can be
simplified very much by remembering once more the arguments of Section 7.

Let /ι(x1x2) an arbitrary Schwartz test function with values in the dual of

j ^i) ( 8 6 )

The kernels ffl have the following properties which define them [Eq. (8.2) is a
consequence, cp. Sec. 4].

1. As functions of x1 and x2 kernels J*(xχ xix1x2Xi) transform in the same way
as Vixχ XiXiXrf^. [I.e. they are both restrictions of cross sections on the same
homogeneous vector bundle over M x M, at least for xf2<0, cp. Sec. 6.]

2. As functions of x, kernels &{xχ xίχίx2X2) transform like elements of $χ. The
smeared kernels &l (x) are in the Hubert space &r viz.

)* A\(pWh~(p)< oo . (8.7)

3. Kernels &(xχ;xίχ1x2χ2) are conformal invariant.

The statement of the transformation laws 1. and 2. gives meaning to 3.
Let / a function in the representation space ϊFχ^,χ~= [Γ, 2—c],c real, and define

f'(x) = / ( — x). Then / ' transforms like an element of Sv χ = [/, 2 + c\. This is seen by
comparing Equations (3.15) and (3.19) and noting that the phase factor eiπNc in
definition (3.12) can be reverted by a space time reflection Πθ. (It takes τ-> — τ, ε->
— ε in the notation of Section 3), while

D\m)*=zDι~{m)-1={--)mDι~{IIΘmθΠ)-1 .

It follows that ${xχ\ XγXγXiXi) transforms in the same way as a function of x
as V{ — xχ\ —X\X\—X2li)' They are both conformal invariant and they also
have the same transformation law as functions of x l 5 x2. This is so because
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V( — χX~'> ~ x\Xι-χiXi) transforms in the same way as a function of x l s x2 as
V(xχ; x 1X1X2X2) [f° r (χi — xi)2 <0]» since only the restriction of representation Dχ

to P° = MAN enters now [cp. Eqs. (6.2) and (6.3)] for which the phase factor eiπNc

in (3.12) is absent.
In conclusion, $8(xχ\x 1X^X2X2) has the same conformal covariance properties

as F ( - x χ ~ ; - x 1 χ 1 - x 2 χ 2 ) . .

Moreover, we see from Proposition 11 that

: = 1,2) (8.8)

with ί(x) a matrix valued polynomial which satisfies the hypothesis of Lemma 10.
This motivates the Ansatz

(8.8a)

etc.

with t(x) a matrix valued polynomial which satisfies the hypothesis of Lemma 10
(with Γ, ll9 l2 substituted for /, li9 lj). Correspondingly

= t(xj1x32 — xl2x31)$°~{pc' x1c'1x2c2) (8.8b)

where now x λ 7 = — i- x 9 ; x λ 1 = — i-—x,.
dp dp

It is clear that this defines an entire function of p because the same is true of J*°~,
and application of a differential operator of finite order cannot destroy holomor-
phy.

Therefore, Proposition 4 will be proven if we can show that Ansatz (8.8a) is
general and satisfies the conformal covariance requirements 1 — 3 supra and (8.7). It
suffices to do so for relatively spacelike x l 9 x 2 because ^\pχ\XγXχX2χ2) shares the
analyticity properties (Lemma 7) in xγ and x 2 for pesptr.χ.

Concerning generality, we only have to count. Given χ, χl9 χ2, there are
according to Equation (8.2) as many linearly independent kernels $\pχ XγX^x2χ2)
as 3-point functions F(xχ;x 1 χ 1 x 2 χ 2 ). In view of Proposition 11 it only remains to
verify that the number of linearly independent polynomials ί(x) satisfying the
hypothesis of Lemma 10 remains unchanged when Γ is substituted for /. These
polynomials ί(x) are in one to one correspondence with (7-invariant maps Γ. The
vector spaces V1 and V1 are the same, and representations Γ and / agree on U.
Therefore every (7-invariant map Γ: Vh ® Vh H> V1 is at the same time a ^/-invariant
map from Vh ® Vh to V1 and vice versa. Therefore there are a fortiori equally many
linearly independent ones.

Next we discuss finiteness condition (8.7). It follows from (7.30) that
V~(PXlχιXιχ2X2) *s a tempered distribution, and therefore, by (8.2) and (8.8b),
^~{VX\χιXιχ2Xi) ^s polynomially bounded in p for peV+. The Fourier transform
h~(PiPi) °f a nY Schwartz test function /ι(x1x2) falls off faster than any power of total
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momentum pγ + p 2 . Because of momentum conservation (translation invariance),
also &~h(p) falls then off faster than any power of p for pe V+. Since it is also oo
differentiable (even holomorphic) in p, it agrees with a test function on the support
of Δ\{p\ and therefore $dp@~l(p)* Δχ

+(p)@~x(p)<oo. This proves (8.7).

We turn to conformal covariance of Ansatz (8.8a). We need only consider the
case of relatively spacelike x1 and x2.

According to the discussion of Section 7, conformal invariant 3-point functions
are determined by matrix-valued functions t*(g) on the group G* which satisfy a
covariance condition, viz. (7.11). G* decomposes intro three open orbits G%, G* and
Gt plus some lower dimensional submanifolds. On each of the orbits ί#(g) is fixed
once it is known at one point. Conformal in variance alone does not relate the values
of t*(#) on different orbits however. We showed that t*(g) for ge G% determines the
3-point function for arguments x1,x2,x such that x — x1 is positive timelike and
x — x2 spacelike, or vice versa (xι — x2 is spacelike by hypothesis). G* is obtained
from G% by space-time reflection, and G* is the open interior of what is left. Let us
introduce step functions to match

ίl if x — xίeV±, x — x2 spacelike, or vice versa,
±y * v {0 otherwise.

ίl if

{0 o

l i f s i g n ( x - x 1 ) = s i g n ( x - x 2 χ
1 2) \θ otherwise.

signx is defined to b e ± l if xeV±, and 0 if x is spacelike. Note that x — xίeV+, x
— x2eV_ is impossible if x1 — x2 is spacelike, therefore θ+ +θ_ +θ^= 1 for all x.

It follows from the orbit structure that

[a1θ+(x;x1x2) + a2θ_{x;x1x2) + a3ΘΛx;x1x2)]V{-xχ~;--x1χi-X2X2) (8 9)

has the same conformal covariance properties as V( — xχ~,—xίχ1—x2χ2) for
arbitrary constants α1 ? α2, cι3 (f° r ^i ~xi spacelike). Moreover, in the scalar case lx

= l2 = l = id, expression (8.9) is the most general conformal invariant 3-point
function because then £#(g) at any point geG* is simply a number. It follows that
the kernel J*(xχ, x^x^x^^ is of the form (8.9) in the scalar case. But then the Ansatz
(8.8a) ensures that the same is true in general, because of identity (8.8) for F, and so
the Ansatz (8.8a) is indeed conformal invariant.

There is one technical subtlety involved here. Our discussion so far has been for
singular functions of xl9 x2, and x, that is functions which are defined everywhere
exept on some lower dimensional submanifolds. What we need is distributions,
though. So the question arises whether there exists a conformal invariant
regularization. The regularization is unique (within the limits discussed in Sect. 2) if
it exists, because £&\pχ\ ^1X1^2X2) ̂ s boundary value of an analytic function of xί

and x2 for pesptr.χ. For some range of c, it is an integrable function of xx and x2.
Elsewhere it can be defined by analytic continuation in c. Explicit expressions (8.8b)
and (8.5) show that this is possible7, at least after a change of normalization has
been effected through multiplication by w'+(c')

7 This is consistent with the remark at the end of Section 7 since 0§~{px XiZi^fo) may vanish at p2 =0
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In conclusion, we have found the kernels &~(pχk Xi%iX2Xj) — &kiKv\X\^2) which
enter into the con formal partial wave expansion of Section 2. They are given
explicitly by Equations (8.8b), (8.5), and Lemma 10, and they have the properties
listed in Proposition 4.

Acknowledgement. The author is indebted to M. Luscher, B. Schroer, and I. Todorov for discussions.

Appendix A. Proof of Lemma 10

The first part is easy. Given φc), define Γ by fΛ = φcΛ). Then V is L/-invariant by
covariance Condition ii), and formula (7.27) follows from (ii) and homogeneity. As
for the converse, we note first that definition (7.27) of t(x) for positive timelike x
makes sense, i.e. φc) depends on m only through mx" = x/\x2\1/2 because Γ is
invariant under the little group U of xΛ. It remains to show that φc) is a polynomial.

Let E = L(V\ Vu ® Vιή the vector space of all linear maps from V1 to Vlί (x) Vlj. It
carries a representation of M given by D(m)v = D\m)v[^D\m)® Dlj(mj]~x. This
representation is isomorphic to the tensor product l®li®lr Because of Fermi-
superselection rule, it is a 1-valued representation of M/Γ1c^SOe(3,l). It may
therefore be decomposed into irreducibles which are all tensor representations of
M. Thus E = ®Ek, sum over irreducible representations of M contained in / ® I. ® lp

with multiplicities. Γis a ^/-invariant vector in E, it decomposes as i" = ]£cfct;
k with

complex coefficients ck, and υk a normalized l/-invariant vector in Ek.
Such a vector exists only if Ek carries a completely symmetric tensor representation
let its rank also be denoted by fc. The components of the vectors ϊ)k(mxΛ) = D(m)vk

are called spherical functions for M. It is well known that ?)k(x) = \x2\k/2tyk(x/ ] / ? )
are polynomials. So t^ = Yjck\x2\^{Σ~k)ςί)k(x). According to WeyΓs unitary trick,
representations of M/Γx ^SO e(3,l) are obtained from representations of SO(4) by
analytic continuation. SO(4) has nontrivial center, SO(4)/Z2 ̂ SO(3) x SO(3). Now
l®li®lj either comes from a one-valued or from a two-valued representation of
SO(3) x SO(3). In the first (second) case it contains only completely symmetric
tensor representations of even (odd) rank k. In any case Σ — k is always even and
^ 0 , because Σ is the maximal value of k by definition. This shows that φc) is a
polynomial.
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