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Abstract. In the set of Cauchy data corresponding to the solutions of non-
linear classical relativistic field equations having locally finite kinetic energy
a structure of Hilbert space sectors is introduced. Each sector is invariant
under time evolution and a total energy and linear momentum functionals
can be defined as global quantities. Within this framework the existence
of conserved dynamical charges is proved and the mechanism by which a
symmetry can be spontaneously broken is ex plained.

0. Introduction

Recently there has been a revived interest in solutions of classical non-linear
field equations as a means of understanding basic properties of elementary
particles [1]. The main idea is to classify some simple stable solutions of field
equations and to analyze small perturbations around them. Examples of such
solutions are the constants which minimize the energy [2] and the solitons [3].
One hopes that essential features coming from the non-linear character of the
theory are taken care of by the structure of those special solutions. This approach
to non-linear field theory is also crucial for understanding spontaneous symmetry
breaking [2], stability problems and for explaining the occurrence of charges
which are of dynamical rather than of group-theoretical origin [4]. Moreover
the properties of classical solutions of non-linear field equations are relevant
for the quantum field theory version since they correspond to the expectation
values of quantum fields on suitable coherent states [5]. These ideas look interest-
ing and promising and deserve a systematic investigation, which seems to be
lacking in the literature.

The purpose of this paper is to provide a rigorous treatment of some non-linear
systems of partial differential equations for classical fields along the above lines.
We shall be able to answer a certain number of questions like the construction
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of Hilbert space séctors, their stability under time evolution, the existence of
dynamical charges and the occurrence of spontaneous symmetry breaking.
More specifically we will study the solutions of the following Cauchy problem

oU
O gux, t)+ 0. (%, @1(x, 1), ..., @u(x,1))=0,
("

0.1)
Vix,)eR* xR, k=1,...,n
@(x, 0)=ox(x)
0
E(x, 0= o)
which can more conventiently be rewritten as the integral equation
¢(t)) ( ) 0
=Wi(t) + | W(t—s) ds 0.2)
(w(t) Yo g =VU(x, ¢(s))
Py
@ L25% 0 1
where (UJ) ={| : land W(t)is the one parameter group generated by ( A 0) L.
P
Py

In a preceding paper [6] we have proved existence, uniqueness and regularity
theorems for Equation (0.2), under suitable conditions on the potential U (see
Section 1), in the space X of real functions having locally finite kinetic energy.

We have shown that if (ZO) € X, the integral Equation (0.2) has a unique X-valued

continuous solution (goz ;) CO(R, X), where

X=X,®X,, X0_®Lloc (R%), X,=(D Hi,:(R). 0.3)

Here we propose to continue the analysis started in [6] by investigating
some finer structure properties of the family & of all solutions (f;i ;)e CYR, X)

of Equation (0.2). In order to have a simple physical interpretation of the theory
it is convenient to partition the set & into classes in such a way that solutions
belonging to the same class have relatively finite energy. It is clear, in fact, that
initial data, for which the energy difference of the corresponding solutions is
infinite, cannot be realized in the same “physical world”. It is therefore reasonable
to introduce an equivalence relation between the elements of % in the following
way
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where

Y=Y,0Y%, Y%=@LR), Y=@H®). 0.5)
As a further physical requirement we consider those classes for which each of
its elements ((P(t)> has the property that

w(t)
qo(t)—¢(0)>
eCOMR,Y). 0.6)
[oo—v (

This amounts to restricting ourselves to the classes which are left invariant by
the time translations. Relation (0.4) together with condition (0.6) allows us to
introduce Hilbert space sectors in the set X of initial data. Two elements of X
belong to the same Hilbert sector iff the corresponding solutions are equivalent
in the sense of relation (0.4) and satisfy condition (0.6). Obviously, each Hilbert

sector is uniquely determined by any of its elements (i), and will be denoted

oy X1y o .
The above structure finds a natural justification in the following theorems
(which will be proved in Section 2 under suitable conditions on the potential U).

Theorem A. If a solution ((p(t)
¥(©)

Qo€ L(R®), k=1, ..., n, then

) of Equation (0.2) satisfies condition (0.6) and

ou i
A(pOk_ a—(x’ Dot s (POn)EH 1(]R ) s
P
Yo L’(RY), k=1,...,n.

Theorem B. If (i) € X satisfies the following conditions
. ou s
1) A(Pk_ —(x’ Disoes (p,,)eH I(IR ) )

0y,
ii) ¢,eL*(IR%)
2 s = ]-9 ) n B
iii) p,e L*(IRY)

then (:i) determines a Hilbert space sector, whose elements are all the (Z,)eX

such that (QD —¢ ) 14

7

Condition i) of Theorem B is obviously fulfilled by the static solutions of
@=const
U ( lp=0

Hilbert sectors iff Eq; (x, const)=0, k=1, ..., n, i.e. if they extremize the potential

(Goldstone’s theorem [2]).

Equation (0.1). In particular, the elements of X of the form ) determine
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Furthermore, for each Hilbert sector 7, ,, such that ¢,e L*(IR®), Vo€ L*(IR%),
k=1, ..., n, one may define a total energy functional

’

. ;o X—X
Hon3 ()~ o' )=l  [K(0'v) =Kol o[22
RS
0.7)

where

" Vo2 + B2

Kep= ¥ Ty a), 08)
j=1

w is a test function, belonging to CZ(R®), equal to 1 in a neighbourhood of the

origin, and x,€IR®. The functional (0.7) is independent of w and of x,, invariant

under time translations and satisfies the identity

E (@' ¥)=Eq,p(@, )+ Eg, )% B) 0.9)
if (;) e#, ) and o, L*(R®), k=1, ..., n (see Section 3).

Identity (0.9) shows that within such sectors the energy scale does not have
a physical meaning. In the same Hilbert sectors one may define a linear momentum
Sfunctional

P, (@)= | Zl [wi¥@;—w¥Veldx (0.10)
RS j=
which is obviously finite.

Within this framework we can prove the existence of dynamical charges which
are constant in time. The key observation is that if @eY], then ¢7(r,w)=
@(x=rw)—0 as r— +oo for almost all weS*~!. This shows that all the elements
of a Hilbert sector have the same asymptotic behaviour as r— 400 (almost
everywhere in S*7!) and that this behaviour is preserved in time. Furthermore,
for sectors #, ,, with Vo,e L*(R®), k=1, ...,n and for s=3, we may prove that
¢(r, ®) has a finite limit a(w), as r— + 0o, for almost all we $*~*. Analogous results
hold for s=1 under suitable conditions on the potentials U (see Appendix C).
Each function a(w) identifies a charge whose origin is strictly related to the structure
of the Hilbert sectors, i.e. to the dynamics of the theory (dynamical charges).

In the space X one may introduce the concept of local internal symmetry
and the existence of Hilbert sectors explains the mechanism by which a local
internal symmetry can be spontaneously broken in a given sector. Local internal
symmetries g are proved to be affine transformations (see Section 5) g(¢)=A4,¢ +a,
with A7 A4,=1,1g. and can be described by unitary operators in a given sector
if they are not spontaneously broken in that sector.

The plan of the paper is as follows:

0. Introduction

1. General framework

2. Hilbert space sectors—Stability and time evolution

3. Total energy and momentum

4. Dynamical charges

5. Internal symmetries and spontaneous symmetry breaking

Appendix A, B, C
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Finally we list the non-standard symbols used to denote some functional spaces.

n 1/2
m{ﬂmmamm%;mﬂwm,

1/2
V=@ H'(RY), Mﬂw=(‘lmJPmWﬂ ,
n J
Y=Y,0Y,.

n 12
Xom @ LLRY).  Ipi XYo@ = ( 3 IniLi@P7)

n
|
=1

n 1/2
Xi=@ Hi, (R, [o; X,(Q)]= (Z lo;; H‘(Q)HZ) ,
n Jj=1
X——'Xl@XO .
(Q is any open bounded set).

1. General Framework

We state existence and uniqueness theorems, for the integral Equation (0.2),
which will be needed in the following.

Theorem 1. Let be given a function U(x, z):R* x R"—R of class C*® in the z variable
satisfying the conditions

1) V,U(x, p)e Xy, Ve X ;.

2) For any sphere Qi' of radius R and for any ¢>0 there exists a positive
constant C(Qp, ), for which sup, <,<gj» C(Qg—,, 0)< 00, and such that

17U, V)= V,U(x, 9'); X ()| = ALk, Q0 — 0 X1(24)]], 1.1)
forall g®PeX,, 0 X1(Qu)ll S0, k=1,2.

Then, for any initial data (Z) € X the integral equation

(“’(t)) — W) (Z’)) + g W(t-s)( 0 )ds (12)

() —.U(x, ¢(s))
0 1
where W(t) is the one parameter group in X generated by A 0) ®1¢n, has at
t
most one solution (q)( )) e C(R, X).
w(t)
Theorem 2. Under the same conditions on U stated in Theorem 1 and the additional
assumption
3) There exist two non negative continuous functions o, f:IR*—>IR such that
U(x, 2)= —a(x) = f(x)lzl*,  (x, z)eR°xR”, (1.3)

()

v (t)) e CO(R, X) for any initial data in X.

the integral Equation (1.2) has a solution (

' In this paper sphere will be synonymous of open sphere; Q_, will denote the sphere of radius

R —t concentric to Qg
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Theorems 1 and 2 are essentially contained in Theorem 3.2 of [6], with some
minor modifications we are going to ex plain. In contrast to what was done in [6],
where V,U(x, z) was split into three terms called j, g’ and g and suitable con-
ditions were imposed separately on each term, here the conditions are directly
given on U and V,U. To perform a kind of identification we could take g'*(x, z)=
2B(x)z, j(x, 2)+gP(x, z)= — V,U(x, z) — 2B(x)z, and G(x, z)= U(x, z)+ B(x)|z|>. The
only difference with respect to Definitions 3.1 and 3.4 of [6] is that now G(x, z)
and V,G(x, z) do not necessarily vanish for z=0. Furthermore, assumption iii)
of Definition 3.1 is replaced here by the slightly weaker assumption 2) of Theorem 1.
The proof of Theorems 1 and 2 will not be given here since it involves only trivial
changes in the proof of Theorem 3.2 of [6].

In the next sections we will analyze finer structure properties of the family #
of solutions of Equation (1.2) belonging to the space C°(R, X). In particular
we will state necessary and sufficient conditions for the existence of Hilbert space
sectors. For this purpose one is naturally lead to study the integral equation

)28) 10=¢'0 ¢, {O=1/(O—y, where

)belongs to & and ¢@'(0)—@eY;, v'(0)—yeY,. Such integral equation has

satisfied by the vector valued function (
((p’(t)

y'(t)
the following form (for a derivation see Section 2):

o) =0 o) voro-0 (]

t 0 t 0
#1969 g ) I g gt 09
where
* oU
F(p(x5 Z)= U(xa (P(x)+z)— U(X, ¢(x))— Z E‘ (X, (p(x))zj . (15)
j=1%4j
The crucial step is to prove that Equation (1.4) has a unique solution
x(t)) 0)
( € eCR,Y).

This will be done by a slight modification of Segal’s approach [7], which involves
Lipschitz and “positivity” conditions on F,. In this section we will establish some
preliminary results connecting Lipschitz and positivity conditions of F, to

corresponding properties of U.
Definition 1. We will say that a map
[ R x X, ->2'(RY)

is locally Lipschitz continuous if for any sphere Qy of radius R and for any ¢>0
there exists a positive constant C(Qpg, @), for which supy<,<g;, C(Q2g-, 0) <0,
such that

1/ @)= £ (x, 9); Xo( Q) < CQg, 0) 90— 05 X (2R 1.1y
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for all
o¥eXy, llo®: X, (Qplse,  k=1,2.
We will say that a map
[ R*x Y, -Z'(R")
is globally Lipschitz continuoﬁs if for any ¢ >0 there exists a positive constant C(g)
such that

1S )= £ 1) Yol £ Qo) 1™V =2 Y| (1.1

for all
e, 179 YL, k=1,2.

Definition 2. By %(X) we denote the class of all maps U(x, z):R* x R"- R of class
C® in the z-variables with the properties

i) VU(x, p)e X, Yo X ;.

ii) The map IR* x X 3(x, p)—V,U(x, @) is locally Lipschitz continuous.
iii) There exist two non-negative constants «, §§ such that

U(x, z)= —a—plz*, (x, z)eR*xR". (1.3

By %(Y) we denote the class of all maps F(x, z):IR* x R"RR of class C? in
the z-variables with the properties
i)l VzF(xa X)G YOa VXE Yl'
ii)’ The map R* x Y, 3(x, y)—V,F(x, y) is globally Lipschitz continuous.
iil) There exists a non negative constant y such that

F(x,2)= —ylz]*, (x,z)eR*xIR".

Clearly each Ue%(X) satisfies the hypotheses of Theorems 1 and 2. A reason
for defining the class %(Y) is that if F, [see Eq. (1.5)] belongs to %(Y) then, under
suitable assumptions on ¢ and yp, Equation (1.4) has a unique solution in Y (see
Section 2). We remark that #(Y)C%(X) as a consequence of the following
Lemma 1. Let be given a function g(x, z):IR® x R"—R".

Then

1) If g(x, y)e Y, Ve Yy, it follows that g(x, p)e X, Voe X,

2) If the map IR® x Y;3(x, y)—>g(x, y) is globally Lipschitz continuous it is also
locally Lipschitz continuous.
Proof. For a given sphere Qp let nz:(P H'(Qg)— Y, denote a linear continuous

extension operator with the following property (see e.g. Appendix B of [6]):
There is a function d(R) which is O(R) if R=1 and O(R™') if R<1, such that
[7gl < d(R).

Suppose now that g(x, y)e Y, if yeY;. The locality of g yields

l9(x, @); Xo(Qr) = lg(x, Tr(@lo,)); X o(2g)]
= gt mr(@log); Yol <o, Ve X, .
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This proves part 1). By the same argument we have
lgCx, ') = g(x, 9); Xo(Qw)ll
< AQ)lIm(@ Vo) —mr(@?l0,); Yi
< AdR) [~ X,(Qp),
for all
ePeX ., lo®; X (Qp|<e/dR), k=12.

This establishes part 2).
It is important to find conditions on the potential Ue %(X) and on the function
@e X, which guarantee that F,e%(Y) [see Eq. (1.5)].

Definition 3. Given Ue%(X), we say that @pe X, is admissible with respect to
U if F, belongs to %(Y).

The following two lemmas give sufficient conditions for admissibility.
Lemma 2. Let Ue%(X) and pe X, with the properties
1) pe@ L(RY).

2) The map R*x Y, 3(x, )V, U(x, ¢ +x) is globally Lipschitz continuous.
3) For any compact subset K CIR" there exist non negative contants a;,i=1, 2, 3,
such that

U(X, Z)é a» |VzU(x’ Z)I éaZ >
VVU(x,z2)Z —asleg., VY(x,z)eR*xK.
Then ¢ is admissible with respect to U.

Proof. Conditions 1)’ and ii)’ of Definition 2 are immediate consequences of hypo-
thesis 2) and the identity

VF(x, 2)=V,U(x, ¢(x) + 2) = V,U(x, ¢(x))

To prove that Inequation (1.3)" is satisfied we first apply the mean value theorem

1

F (x,y)= [(1—0) VV,U(x, p(x)+06Y)y, yydo (1.6)
0

which yields, by hypotheses 1 and 3,
Fo(x,)Z(—as/2)Iy*, xeR®, [y|<1.
On the other hand, Equation (1.5) and Inequation (1.3) imply
Fo(x, )2 —a—ply+o(x)|* — U(x, p(x)) = <V.U(x, p(x)), )
which, for |y| =1, yields
Fo(x, )= = [0+ B+ B supseps {l9(x)|* +2lp(x)| + V. U(x, o(x))|}
+max (0, supps Ux, (x)))] [yI* .
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Lemma 3. Let Ue#(X) and pe X, with the following properties

1) Condition 2) of Lemma 2 holds
2) There exists a non negative constant b such that

VVU(x,z)= —blg., V(x,z)eR*xR".
Then ¢ is admissible with respect to U.

Proof. By Lemma 2 only Inequation (1.3)" remains to be checked. This follows
immediately by the mean value theorem, Equation (1.6), and the property 2).

Remark 1. Condition 2) of Lemma 2 is implied by the following condition on U':
For any ¢>0 there exists a positive constant ({g) such that

i LRI

/51 02,0z, ;2o

for all y®e Y, k=1, 2, with ||y; Y| Zo.

This is a trivial consequence of the mean value theorem.

SAlx*; 1 (1.7)

Supk=1,...,n

Remark 2. If Ue(X) does not depend on the x variables conditions 3) of Lemma 2
are automatically satisfied whereas condition 2) of Lemma 3 does not hold in
general.

We now list some concrete interesting examples of interactions to which the
above lemmas can be applied.
Proposition 1. Let U(x, z):IR* x R"—>R be a function satisfying condition iii) of
Definition 2 and of the type listed below

s=1
Ulx,2)= Y cfx)z*
acN"
such that

1) c,e L°(RY), Va.
) Y Jley; LPRY 0" <00,  ¥o>0.
s=2

Ulx,z)= ) cx)z* satisfying condition 1) as in the previous case and
aeN"

) Y ey LR o261 <00, Vo>0.
s=3
U(x, z) is a real function of class C'® in the z variables with
1) Ulx, 0)e L*(R?), ,U(x, 0)e@ L*[R5).
2) There is a positive constant C such that

SUPseps V.V UCx, )| S C(L+[27),  zeR”™.
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Then Ue%(X) and any pe X 10(@ L°°(]RS)) is admissible with respect to U.

Proof. To prove both assertions it will be enough to establish that U satisfies
the estimate (1.7) for all pe X lr\(@ L°°(IRS)>. In fact, by Remark 1, estimate (1.7)

implies that the map R® x Y; 3(x, y)—V,U(x, ¢ + y) is globally Lipschitz continuous.
Then, by Lemma 1 (part 2), the map R*x X, 3(x, O)—V,U(x, 0) is locally Lip-
schitz continuous. Moreover, since by hypothesis V,U(x, 0)e@ L*(R*)CX, the
identity V,U(x, 0)=[V,U(x, 6)—V,U(x, 0)]+V,U(x,0) implies that condition i)
of Definition 2 is also satisfied. This shows that Ue%(X). The admissibility
of ¢ follows from Lemma 2. The proof of estimate (1.7) is reduced to estimating
in ¥, terms of the type (¢ +xV)*®, with yPe Y, k=1,2, aeN"for s=1, 2, |¢| <2
for s=3. Now

@+ 12 ®; Yol S21{]l ol x®}; L2
+ 1 P2 LR} (1.8)
The first term on the r.h.s. of Inequality (1.8) is immediately estimated by
260 oIl ); LR =A™ | @3 @D LR ™ |25 Yl - (1.9)

We estimate the second term by applying the usual Sobolev inequalities®
28] @ LR |
§2|a| H ‘X(l)‘; L2(|a|+1)(IRs)H|a| n IX(2)|; LZ(la|+ 1)(IRS)“
S {BHC 2l + 2 x5 Y 3225 Yl (1.10)

For s=3 the proof is completed. For s=1, 2, the convergence of the sum over
the o’s is taken care by conditions 2) and 2)' respectively.

Proposition 2. Let U(x, z):IR*x R"—>R be a function satisfying the hypotheses
of Proposition 1 and such that there is a non negative constant b for which

V.V,U(x,z)= —blg., V(x,z)eR*xR".
Let pe X be such that for some cube Q of size R

SUPezs 7 X1(Q+ Rm)| <0, (L7
then UeU(X) and ¢ is admissible with respect to U.

2 For the convenience of the reader we recall the Sobolev inequalities [8]:

s=1|f;LARYSC@ISH R,  22pseo,  Ci(p)=0(1),
s=2 |5 LAR) S CN S H R, 2=p<cowo, Cyp)=00p'"?),
s=3|f; LARY) | SCyp)Il /s H' (R, 2=p<6, C5(p)=0(1)
The same kind of estimates hold locally. In particular, for any cube kCIR® of size R, they take the form

IS5 Lok < C, xS s HY

with pe[2, +oo] for s=1, pe[2, +oo[ for s=2 and pe[2, 6] for s=3. The constants C; x(p) depend
only on the size R and exhibit the same dependence on p as in the global case
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Proof. As remarked at the beginning of the proof of Proposition 1, to establish
that Ue(X) it is enough to prove that U satisfies the estimate (1.7) [for ¢ satis-
fying (1.7)]. The admissibility of ¢ then follows from Lemma 3. Actually by
Inequation (1.8) we need to estimate only the term || |o|™™[y®|; L*(R%). By suc-
cessive applications of Holder and local Sobolev inequalities®> one obtains

L e W B N

meZs \Q+ Rm

( j |X(2)|2(|a|+ 1)dx)1/(|a|+ 1)

Q+Rm

< Y BEHITAC, y(2uf+2R 2

meZs

“llo; X ((Q+Rm)[* ;s X,(Q+Rm)|*
S 2°{(sUPezsll @5 X 1(Q + Rm) >
BAF2C, g2l + 272} [P 117

2. Hilbert Space Sectors—Stability and Time Evolution

We already know (Section 1, Theorems 1 and 2) that for any Ue%(X) the integral
Equation (1.2) has a unique C(IR, X)-solution with initial data in X. It is con-
venient to denote by %, Ue%(X), the set of all such solutions. There is a canonical

map from X onto &y, namely the map which to every <$>€X associates the

solution <(p(t) )eﬁ"u with (go(O) ) = <¢) As already motivated in the introduction
() v(O0)  \w
we partition %, by the following equivalence relation.

Definition 4. On % we define the relation

¢%~¢w©mmwn(m
(w(t) (w’(z) (lp(t)—-w’(t))ec R, ¥). @.1)

The quotient set will be denoted by 7.

’

Relation (2.1) can be interpreted by saying that (Z 8) is, for all teR, a “small”

. t
perturbation of (qo( )
w(t)
in an obvious way a partition of X. However, we are mainly interested in those
classes of X which are left invariant under time evolution. This leads naturally

to the following

). The partition of %, into classes of equivalence induces

Definition 5. By Z we will denote the set of all <z)eX such that

((p(t) —¢

(0)
w(t)—w)ec & 1.
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In Z we introduce the equivalence relation

(Zj) ~ (Z) = (i _ fZ) v 22)

The quotient set will be denoted by Z~ Each element of Z~ will be called a
Hilbert space sector in X. By #,, ,, we denote the Hilbert space sector containing

that the canonical map from Z into % induces an injective map from Z~ into & 3.
In the next theorem we will find, under suitable assumptions, a necessary

bo

Yo

venient to establish the following technical

Lemma 4. For all h, ye2'(IR%), the map

(=)~ H(L—cos((— A2 hh+(—A)~ 2 sin(— ) Peyp) _ (A1)
(= A) "2 sin((— 4)2t)h +(cos((— 4) ) — Dy B(t)

belongs to CO(R, HY(R*)® L*(R®)) if and only if he H™Y(R®) and ype L*(R®).

Proof. Expression (2.3) must be understood in the following sense

At)=F (€7 (1 —cosEl) (F ) (&) + ¢~ sin[E[e(F y) (&)
B(t)=""(|¢|” " sin[£|t(F h) (&) +(cos €|t — 1) (Fw) (€)) -
A(t) and B(t) are well defined elements of 2'(IR®) since the coefficients of (% h) (&)
and of (ZFy) (£) are analytic functions of |¢]* bounded in the complex space C°
by const exp(const [Imz]), as can be seen by application of a Phragmen-Lindel6f

Theorem [9]. If he H (R®) and e L*(R®), to see that the map (2.3) belongs
to CO(R, H(R%)@ L*(R®)) it is enough to prove that the maps

(1+])/=A?* (= 4)" " (cos]/— 4t —1)
Ra—>q(1+]/—4)(—4)~ ' (sin]/ — 4t) (2.4
cos|/—At—1
belong to CO(R, L(L(R®), L*(IR%))), with the strong topology of Z(L*(R*), L*(IR%)).
The proof is trivial and will be omitted. Conversely, by the continuity of the map
(2.3) we can integrate B(t) and obtain

iB(‘E)d‘C =((—=A)"" (1 —cos|/ — At)h+(—4)" ' (sin]/ — Aty — ty)e LA(R?) .
0 2.5

condition for an element ( )GX to belong to Z. For this purpose it is con-

]Rat|—>( ) 23)

2.3y

By comparison with the ex pression for A(¢) it follows that pe L*(R®). Consequently,
(=)~ 2 sin((— 4)*)pe COR, H'(R?))
and therefore

(=)~ (1 —cos((—A)'t)hhe COAR, H'(R?)).
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Finally, he H™ (R®) if we prove that
I T ©Pde+ | |G NFhOPde=1+1,<o.
|

l&l=2 glz2

The integral I, is taken care by the estimate
_ £
€17 *(cos €]t —1) (Fh) (&) = 7 1Fh©l

which is valid for |£| <2 and ¢ sufficiently small. On the other hand, integration
of the L?-valued continuous function (—A4)"%(cos(—A)1?t—1)h yields
(—4)~'sin(—4)'? —(—4)"?*)he LYR®). Now the finiteness of the integral I,
is a consequence of the estimate

(1€172 sin ¢ = 1" IFh) (Ol z 7 €17 1(Fh) ()
which is valid for || = 2.

Theorem 3. Let M(x, z):IR* x R"=R" be a function such that X3 A—>M(x, Ax))

is a continuous X o-valued map. Let <(1f78> e C(R, X) be a solution of the integral
equation
<P(t)> (%) | ( 0 )
=Wt + | W(t—s ds 2.6
(o) =0 o) = 179 g g0 29
with (“’")ex.
Yo
If

a) Y ax—=M(x, oo+ x)— M(x, @) is a continuous Yy-valued map ;
t a—
b) <<ﬂ( ) (/’0) GC(O)(]R, Y);

(1) =,
then
{A%—M(x, po)=he® H™(R%), 27
o€ Yy . " ’
Proof. It is convenient to recall that
B cos((—4)'7?1) (= A)~ 12 sin((— 4)*%t)
W)= <—(—A)”2 sin((—4)'%t) cos((—4)!"t) )®]1C"
_ | g1, [ cosllt €]~ sin ¢t P
g (—m sinféle coslélt ) 7|®le- @8

Then, it can be checked by direct computation that the quantities

U= o(t)— o 29)
{O=yp(t)—w,
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satisfy the following integral equation

(x(t))_ (— 2 (1 —cos(~ 4 ) () P sin(~ )P0\ |(h
) ( (—4)” "2 sin((— 4)'7%1) cos((—4)'?1)—1 )® C"Klpo)
! 0
+! W“"S)(—M(x, ¢o+x(s»+M(x,<po)> ds- (210

The assertion is now an immediate consequence of conditions a), b) and of Lemma 4.

Remark 3. If Ue(X) and ¢, is admissible with respect to U then Theorem 3
holds once M(x, z) is identified with V,U.

The next fundamental theorem, together with Lemmas 2, 3 and Propositions
1, 2, guarantees the existence of non trivial Hilbert space sectors.

Theorem 4. Let Ue%(X) and let (ZZO) € X such that
0

a) hEA(pO—VZU(X, (Po)e® H_l(IRs)a wOGK)'

b) ¢, is admissible with respect to U.

Then (%) € Z (see Definition 5) and

Yo
((”_q’")e Y}= (q"’> Y. @.11)

Q
H, = {( )eX
(o v0 ™ |\ Y=o Vo

Proof. In the same way as in the proof of Theorem 3 we consider the following
integral equation

<X(t) ) = W(t) (XO) +L(1)+ i W(t—s) ( ° ) ds @.12)
0

0 < —VLF %, 105)
where
_ (=)~ Y1 —=cos((— M%) (—A)" 2 sin((—4)1?1) b
L(t)= ( (= A)~ Y2 sin((— A)?¢) cos((— )2t —1 )@ﬂcnjl( 0).(2.13)

By condition a) and Lemma 4, t—L(t) is a continuous Y-valued map with L(0)=0.
Furthermore, W(t) is a one-parameter strongly continuous group of linear
bounded operators in Y. Therefore, it makes sense to consider Equation (2.12)
()
&)

. . t . . .
of Equation (2.12), with <X 0) € Y, then (X( )+ (PO) is a continuous X-valued solution
Co {0+ o

of Equation (1.2) with initial data (<Po+xO
Yo+l

The theorem now follows easily if we admit for the moment that Equation (2.12)

has a unique solution (gg)eC(o)(R Y) for any @o)e Y, Let (ﬁg;)ec(o)(ﬂ{, X)
0

in Y. It is important to remark that if ( ) is any continuous Y-valued solution

> as can be seen by direct inspection.
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Yo {®

be the solution of Equation (2.12) with zero initial data. Theorem 1 implies that

o(t)=x(t)+ o, W(t)={(t)+ vy, and therefore that <(p°) eZ. Let now (oc(t)) eC®
Yo B@)

(R, X) be the solution of Equation (1.2) with initial data (;0) such that (zo B Z()) eY
0 o~ Mo

t
If we denote by (58)600)(]1{, Y) the solution of Equation (2.12) with data
Qo=0o— o, 0o=Po—o, then, by Theorem 1, o(t)+@o=0lt), o(t)+wo=Pp(t),

and therefore (ao) e,
Bo

. . . t
To prove that Equation (2.12) has a unique solution (ﬁtDeC‘o)(]R, Y) for
any initial data ()20) e Y we apply Theorem A of Appendix A. The only non trivial
0
hypothesis to be verified is Inequality (A.3) that we are going to establish from

energy conservation and from the lower bounds of the potential. To express the
energy conservation it is convenient to work with the differential equation as-
sociated to the integral Equation (2.12). For this purpose, to avoid domain
problems, let us define the linear operators

P=(7 1op(8-F)@Len, 1>0,

t
be the solution of Equation (1.2) with initial data (%) and let (X( ))EC(O)(]R, Y)

90, Yo)*

| < (2.14)
> = r
ro-{y S
It is trivial to verify that
P, 0 P, 0
o pwo=wolg L)
(2.15)

P.fe()(D H"'(IRS)) , Vfe U(@ H'"(IRS)) :

m n m n

0 . .
to Equation (2.12) allows to differentiate

r

P
Now, application of the operators { O'
in the time variable, obtaining
L )= P +y0)
dt rX — 4 w0 H

) (2.16)
E(PrC)ZAPrX-l_Prh_PerF(pg(x’ X)

By a well known argument Equations (2.16) imply

3 [KPY(0), PV (D) + < PAC+o) (1) PAL+1o) () — < Po(2), Phy
=3 [{PV(0), P,V(0)) + {PAL+1o) (0), PAL+ o) (0)1+< P,x(0), P,y

= - g CPAC+wo) (5), PVF (x, x(s))yds . (2.17)
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By letting r— +00 we obtain a relation exactly equal to (2.17) in which P, is
substituted by the identity.

Now, it can be verified (see Appendix B) that y(f) is L*-differentiable with
dy/dt={+1,, that F, (x, x(, x))e L'(R®) for all ¢ and that

t

J <L)+ o, VoF oo, a(s)>ds= | F(x, 1(t, x))dx

4] RS

— f F ,o(x, (0, x))dx . (2.18)

Equations (2.17) and (2.18) yield % E(t)=0, where

E(t) =5 [<V(®), Vx(£)) + <L) + o, L(t) +wo)]
— (), hy + js F (%, 2(t, x))dx . (2.19)

If we define

H()=E@)+ @ + D0, 16> + 3 <o, po> +‘ 2 (2.20)

h;@® H™H(RY)

where y is the constant in Inequality (1.3)", it follows that

H(t)Z 3 [, 1)) + L®), L)) + <V a(), V()] (2:21)
and that
dH(t)/dt =2(y+ ) [{x(®), 20> + xl0), wo)] - (222)

Finally, application of Gronwall’s lemma yields
@), 10 + <P (e), V() +< L), (1)) < Cre®Hl

which is the required a priori estimate to apply Theorem A of Appendix A.

3. Total Energy and Momentum

In the theory described by Equation (1.2) we take as expression for the energy
density the following quantity

n

K(p,p)=13 Y. (IPo* +v))+ U(x, @) 3.1)

j=1
which integrated over the whole space IR® is expected to yield the total energy.
Unfortunately, if (Z:)GX and Ue%(X), the function K(¢p, ) is locally but, in

general, not globally integrable. However, keeping in mind that what one usually
measures are energy differences, we would hope that for some pairs of elements
of X the difference of the corresponding energy densities is globally integrable.
Natural candidates for the families of elements of X having relatively finite total
energy are the Hilbert space sectors defined in Section 2.
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Theorem 5. Let (i) eX, UeU(X) such that

a) h=4¢—V,U(x, p)e® H™(R")
pey,.
b) ¢ is admissible with respect to U.
Then, for all (Z/) €A\, With supp(¢'— @) compact, the function K(¢', y’)—
H(p, w)e L'(R®) and the functional

“%qnw)a(z:) r_)E(«),w)((pl’ wl)
= | [(K(¢',w)—K(p,w)]dx, supp(¢p'—¢) compact (32)
RS
has a unique extension to the whole #, ,, (which we will continue to denote

by the same symbol).

Proof. A trivial computation yields
K(o', v')— Ko, )
n s a
Vit 0+ ¥ 5oyt Y za—x’ﬂ (33)
. £1iE

111

where
=9 -, (=Y -y,

. (3.4
Voot 0= 5 2 (Vo> +(G+p)* =) +F ol 2).
j=1
Since F,(x, x)e L'(R®) [see Eq. (B.3) of Appendix B] it follows that V, ,,(x,)e
L'(R®). Moreover the other two terms on the r.h.s. of Equation (3.3) belong to
LY(RR®) if y is compactly supported. Therefore

Ei (@ W)= | Vgt Odx+Ly(x) (3.5)
]RS
where
L) =<VU @) XD ik, oy T VO VIO Boc, 120 (3.6)

for y with compact support.
The distribution L, can obviously be rewritten as

L, (0)=—<h, 0ugt, Hlomp 3.7

which, by hypothesis a), can be uniquely extended to all ye Y;. To complete the
argument it will be enough to show that the map

Ya(?) Vi o> )€ LY(IRY) (3.9)
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is continuous, ie. that the map Y;3y—F,(x, x)e L'(R®) is continuous. This is
a consequence of the following estimate based on the mean value theorem

IF o, 11) = F (x, 22); L'(IR?) |

=SUPg<ys<1 [ l7zF(p(X5 X1 +t006—x1); Yol 12— x15 Yol (3.9
and of the fact that F ,e%(Y) by the admissibility of ¢.
Remark 4. By Theorem 4 the Hilbert space sector #, ,, is the affine variety

(z) + Y (and thus isomorphic to Y). It is clear from the proof of Theorem 5 that

the functional E, ,, is continuous on #, ,, equipped with the Y-topology.

@, )

’

Corollary 1. Let the hypotheses of Theorem 5 be satisfied and let <z/) eH iy )

If (:;) e CO(R; X) is the solution of Equation (1.2) with initial data ¢'(0)=¢’,
y'(0)=vy/, then

E, @ W)=E, @), y'(t), VteR. (3.10)
Proof. Obvious by Theorem 4 [see expression (2.19)].

Since the energy measurements we are able to perform are always local in
space, it should be possible to consider the energy functional E, ,, [see Eq. (3.2)]
as the limit of the corresponding differences of the energy densities integrated
over a finite volume as the volume invades the whole space. To prove this property
we need some extra assumptions on the admissible ¢. In this way (Corollary 2)
we will be able to satisfy the important physical requirement that the energy
scale does not have a physical meaning.

Theorem 6. Let the hypotheses of Theorem 5 be satisfied with the additional as-
sumption

o Vo) eL(R%), j=1,...n.

Then for all xoeR® and for all we CF(R®) equal to 1 in a neighbourhood of the

origin, one has

. ., X—Xx
o0, 9)= limg-.. | (K~ K(p il o[ %) . @11
le

Proof. As in the proof of Theorem 5 it is immediate to check that

] K w)—Kig. vl ( }x") de= { Vg6 0 ( ;"0) ix
~(ro 5
< “’( R ) erm
x—xo
—( Vo,V
<(p( w( R ))X>L2,Lz

=1,~1,—1I,. (3.12)
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Now I,— | ¥, % {)dx, as R—+oco, by the dominated convergence theorem,
IRS

I,—<h, x> g-1 g since w(%) x—7, a8 R— 400, in Y, I;—0, as R— +o0, by
assumption c).

Corollary 2. Let the hypotheses of Theorem 6 be satisfied. Let { oc) eH, ) and o
be admissible with respect to U. Then \B

’

/ ! !/ 12 ¢
R I R Y N (AT (313

Proof. We remark that o satisfies assumption c) of Theorem 6. Equality (3.13)
is then an immediate consequence of Equation (3.11).

Corollary 2 has the obvious implication that the difference E, (9", y')—
E, »(®",y") does not depend on the choice of the element (z) .
Besides the energy it is worth defining also the linear momentum.

Theorem 7. Let the hypotheses of Theorem 6 be satisfied, then the functional (linear
momentum)

(p, / / c ! !

%(w,w)a(w/) =P (@)= Y WiV ei—wVe)dx (3.14)
RS j=1

is well defined and continuous on #, ,, (see Remark4).

Proof. Obvious.

It is clear that, contrarily to the case of the total energy, now the quantity

J
ground”.

We will now give a brief description of the space-time translations.

YV belongs to L'(IR®) without subtracting the momentum of the “back-
=1

Theorem 8. For all (t, a)eR x R® let us consider the map

SN @'(t, x) 0 _ @'(t+7,x+a)
COR; Xb(w’(r, x)) = (w) - (w'(t+r, x+a)) ' o
Then

1) T, , is continuous with values in C°(R; X).
2) If UeU(X) and does not depend on the space variables, T, , is a bijection
of Fy (see the beginning of Section?2).

\
3) If (i} € X satisfies the hypotheses of Theorem 6 with U independent of the
space variables, the map

ol @'(?)
%“”"”’a(w’) ” (T (w'(t)))

(3.16)

t=0
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?'(®)

is a bijection of H,, [here (w’(t)

) is the solution of Equation (1.2) with ¢'(0)=¢’,

v'(0)= w’] :

Proof. Assertion 1) is trivial. Assertion 2) follows, by the uniqueness Theorem 1,
from the equation

((p’(t +1,x+a)

¢'(0,x+ a))
Y'(t+1,x+a)

) ="e [W“) (w'(o, x+4)

t+1 0
] W(H)(—V,U(<p'(s,x+a»>ds}

 @mxta) ! 0
=W (w’(r, x +a)) +[We-o) (— VU@ (40, x +a)) do

which is a consequence of Equation (1.2) and of the fact that W(t) is a convolution
operator. Assertion 3) follows easily from the identities

V(T x+a) =y (x) =t x+a)—y'(x+a)) + (' (x+a)—y'(x)) (3.17)
@0 x+a)=9'(x)=(¢'(t, x+a) - ¢'(x + ) +(¢'(x +a) —¢'(x)) . (3.18)

In fact, '(x +a)—'(x) and V(¢'(x +a)— ¢'(x)) obviously belong to Y,. Moreover,
Y'(t, x+a)—y'(x+a)and ¢'(t, x +a) — ¢'(x +a) belongs to ¥, and to Y;, respectively,
by the definition of /), . Finally (¢'(x+a)—¢'(x))e Y, as a byproduct of the
mean value theorem and of |V j|eL2(IRS), j=1,...,n

It may have some interest to compare the energy of pairs of elements belonging
to different Hilbert sectors because their relative energy may be finite, as e.g. in
the case of degeneracy

Definition 6. Let #,, ,, and #,, 4 be two different Hilbert sectors with (i), (;)

satisfying the hypotheses of Theorem 6. We say that these sectors have relatively
finite energy if for all x,eIR® and for all we CF(IR®) equal to 1 in a neighbourhood
of the origin, the limit

iy  [K(' )= K)o (72 s (3.19)

exists, finite, independent of x, and w, for all

q0/ al
NEH (b 0y > ( ,)eéfa .
(U’) (@, v) ﬁ (a, B)

To establish that the sectors #, ,, and #, ; have relatively finite energy
it will be enough, as a consequence of Theorem 6 and relation (3.13), to check

the existence and the properties of the limit (3.19) only for one pair of elements.
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In particular it will be sufficient to verify that the limit

limg_, o j LU(x, p(x))— U(x, (x))]w (x ;x()) dx (3.20)

exists, finite, independent of x, and w.
The results of this Section allow a rigorous treatment of the Hilbert sectors
based on constant fields. Precisely we have the following

Theorem 9. Let Ue(X), independent of the space variables and such that all
constant functions @ =c are admissible with respect to U. Then

1) (S) belongs to some Hilbert sector iff V,U(c)=0 (Goldstone’s theorem) and,

in this case, the energy functional takes the form

S L (gl + )+ Ulg)— U@ dx (3.21)

j=1

E_ 0)((/’/’ Y)= f

RS

2) The Hilbert sectors #,, o), # s ) have relatively finite energy iff U(c)= U(c).

Proof. The first part of assertion 1) is a consequence of Theorems 3, 4, while
Equation (3.21) follows from Theorem 6. Assertion 2) is a consequence of Definition
6 and of Equation (3.20).

A generalization of the above situation (@ =c¢) is provided by the case in
which ¢ satisfies the equations 4¢ —V,U(x, ¢)=0 (soliton-like solutions). Some
results in this direction, for s=1, are collected in Appendix C.

4. Dynamical Charges

The structure of Hilbert space sectors allows us to introduce as an invariant
of each sector the “behaviour at co” of its elements. In this Section we will show

that for all <<p

’

!

)eéﬁqw) the difference ¢'—¢ tends to zero at co in almost all

directions, and therefore if ¢ has a limit at co in almost all directions, ¢’ has the
same limit. This will enable us to define a dynamical charge associated to #,, ,,
which is preserved in time. The idea of associating a charge to the asymptotic
behaviour of solutions of non-linear evolution equations has been first discussed
by Finkelstein and Misner [4]. The framework constructed in the previous
permits a rigorous treatment of this concept.

Lemma 5. Let pe H(R®) and let us define
pro)=9okx), x=ro, r>0, weS$ . 4.1)

Then for almost all weS*™' (the unit sphere in R) the function r—¢(r,w) is
continuous and satisfies the estimate

FS D267, @) =o(1), r— 400 . 4.2)
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Proof. By Fubini-Tonelli’s Theorem there is a subset T; CS*~! of zero measure
in $*7! such that

[lo(r, )P~ tdr+ [ Vo(r,w)-x/rr ldr< 4o, VYo¢T,. 4.3)
1 1

We can always find a sequence ¢;e C7(IR°) such that ¢;—»¢ in H Y{R®) and for
which

lim;., | l¢"r, 0)— @ (r, 0)*r* 'dr
1

+ }O (Vo (r, ) —Veolr, w) x/rl*r*~tdr=0 4.4)
1

for all we S*~ '\ T, where T, is a suitable set of zero measure independent of j [10].
From now on we fix w¢T;UT,. There is a sub-sequence of {¢;} (depending
on o), still denoted by {¢;}, such that

¢ r,0)—¢(r,w) aein [l,o0[ as jooo.

Therefore

@r, 0)=¢(ry, w)+ i Vp-x/agdo ae. 4.5)

ro

as a consequence of the corresponding equations for the ¢7;’s. This establishes
the continuity of ¢'(r, w) conveniently redefined on a set of zero measure in r.
On the other hand, the estimate

r

]

ro

3 1/2 /r 1/2
gz(j |¢j|205_1da> (j Idgoj/dalzas'lda)

ro ro

i~ 1127 =

d ;
- (lpfow)e* Mo

_1 r
+ ST- { lo,20*" do 4.6)

0 ro
yields, in the limit j—o0
lim, o @7, @)~ =g (ro, ) *r ™ 1|=0 (4.7)
which implies Equation (4.2), by Equation (4.3).

Definition 7. Let #,, be a Hilbert space sector (see Definition 5). If there is a
map a:S*” ! -IR" such that ¢7(r, w)= ¢(rw)—a(w) as r— + o0, almost everywhere
in $°7', we will say that a is the charge of #,, .

The above Definition makes sense by Lemma 5 since Jf((p,w)c(z)ii—lf.

’

Moreover, by definition of sector, for all (z/ ey pp ¢ (51, 0)=Q'(t, rw)—a(w)

a.e. in S*71 as r—o0, VteR [where ¢'(t, x) is the solution of Equation (1.2) with
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¢0'(0,x)=¢’, (0, x)=y']. This fact may be interpreted as the conservation of
charge. It is worthwhile to remark that the existence of non-trivial charges relies
crucially on the existence of non-trivial Hilbert sectors (see Section 2, especially

Theorem 4).
For s>3 the existence of the charge is guaranteed for those sectors #, ,,
for which Vg;e L*(R®), j=1, ...n, as a consequence of the following

Lemma 6. Let s23, pe H,(IR%) with dp/dx;e L*(R%), j=1,...s, and define

loc
olr,o)=9x), x=ro, r>0, weS!.

Then for almost all weS*™! (the unit sphere of R®) the function r—@(r, w) is
continuous, has a finite limit ¢(c0, w) as r— +oo0 and

=225, ) — @(00, )| =o(1), as r— 400 . (4.8)

Proof. It is possible, by using a mollifier technique, to find a sequence
{0}, p;€ C*(R?), with d¢;/0x,e L*(R®), Vj, k, such that ¢,—»¢ in Li(R%) and
0p;/0x,— 0p/dx, in L*(IR®), Vk. Now, by the same kind of arguments used in the
proof of Lemma 5, one can establish the continuity of ¢7(r, w) for almost all
weS*~ 1. On the other hand, the estimate (r>7y>1)

g™ (r, @) — ¢ (ro, @) = | |do (o, w)/doldo

v 12 /v 12
< (f ldo (o, w)/da]zas"lda) (f al_sdo) (4.9)

yields, in the limit j— oo,
r 1/2
lg7(r, @) — @ (ro, w)| = const (I IV o(o, ®)-x/o*c*~ ‘d6> P2 7S =13 T (4.10)
from which Equation (4.8) follows.

The results presented in Appendix C provide sufficient conditions for the
existence of the charge a in the case s=1.

5. Internal Symmetries and Spontaneous Symmetry Breaking

In this Section we will discuss the concept of internal symmetry and we will
show how, within our framework, the mechanism of symmetry breaking can be
understood in a rigorous way. It is convenient to start with the following natural
definition of internal symmetry

Definition 8. Let g:IRR"—IR" be a diffeomorphism of class C'? such that the map

(o) g(o(x))

”'(w(x))H (Jg(<o<x>)w(x)) (5.1)
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where J, is the Jacobian matrix of g, is continuous from X to X. We will say

. . . t
that T, is a local internal symmetry of Equation (1.2)if, for every solution ((P8> eC?
P
o(t)

(t )) is again a solution of Equation (1.2).
The. next two theorems give a simple characterization of internal symmetries
under mild assumptions on the interaction.
Theorem 10. Let Ue O?Z(X ) with the properties
i) U(x,0)=0 VxelR®, U(x, z)=£0.
ii) For any C*(R®)-initial dqta (

(t, x)
(t, x)

Then, if T, is a local internal symmetry, the map g is an affine transformation
with J]J,= A1 for some constant 4, and for all spheres Q

{j} [K(g°@, J w)— 2,K(e, p)— U(x, g(0))]dx =0 (5.2)

(R; X) of Equation (1.2), T, <

o(x)

( )> the corresponding continuous solution
w(x

of Equation (1.2) ( ) is such that ¢ (t, x)e CHR xR, j=1, ...n.

for all (Z) € X [for the definition of K see Equation (3.1)].

o(t, x)
y(t, x)

then condition ii) and Definition 8 imply

Proof. If (

) is the solution of Equation (1.2) with C*-initial data ("’(x)>

w(x))

ou
O (pj(ta x) + 6— (xa (p(t, X)) =
Zj

U (5.3)
Dglo(t, x)+ = (x glolt, x))=0.
Zj
A combination of the two Equations (5.3) yields
: 0 oU
— 3 Y i )+ 2 (gl =0,

ik=1 10z, 0z 0z,

(5.4)

I=

Now, by Definition 8, Equation (5.4) has to hold for all times and for all initial data.
A suitable choice of such data in Equation (5.4) shows that

azgl

(¢)=0, I=1,...n, ceR", (5.5
0z;0z,
i.e. g is of the form
g(z)=Az+a (5.6)

with A4 an invertible matrix and aeIR".
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Then, from Equation (5.4) it follows
V.[U(x, Az +a)lg.— U(x, 2)ATA]1=0 (5.7)

and therefore

U(x, Az +aflgn=U(x, 2)ATA + U(x, a)lg . (5.8)

Since U is non-trivial we conclude that A4 is a multiple of the identity. At this
point the validity of Equation (5.2) can be immediately verified.

Remark 5. It is easy to see that the set of local internal symmetries {7} is a group
and that T,— 4, is a one-dimensional representation of such a group.

Remark 6. It can be checked directly on Equation (1.2) that any map g of the
form (5.6) and satisfying Equation (5.8) defines a local internal symmetry.

Remark 7. Conditions on the potential U ensuring the validity of hypothesis ii)
of Theorem 10 have been discussed in [6]. Hypothesis i) can always be satisfied
by an inessential redefinition of U. Finally, in the case U=0 the only internal
symmetries are the affine transformations.

Theorem 11. Let g:R"—IR" be a diffeomorphism of class C® such that Equation (5.1)
defines a map from X to X. Then, if there exists a real constant 1 and measurable
Sfunction f:IR*—>IR such that

[ [K(ge®, J (@)w) — 2K(@, p)— f (x)]dx =0 (5.2)
Q
for all spheres Q and for all (Z) € X, the mapping T, is a local internal symmetry.
Proof. From Equation (5.2)' it follows that f(x)= U(x, ¢g(0)) and that

i (Mg = AP x)1*) + U(x, (g°9) (x)) = AU(x, 9(x)) — f ()

= 3 (I (@CDp(0)* — Ahp(x)|?) . (59
By varying ¢ and v independently, Equation (5.9) implies
JH2) ()= Mg, VzeR" (5.10)
and
U(x, g(z)) = AU(x, z) + U(x, g(0)) . (5.11)

The map g,(z)=A"'/ g(2) has the property that J} (z)J,,(z) = L., ¥z and therefore,
by the mean value theorem,

l91(z)—9g:(2")=1z' 2", Vz,z'eR”. (5.12)

By a well known result Equation (5.14) implies that g, is an affine transformation.
By Remark 5, g defines a local internal symmetry.
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Definition 9. A local internal symmetry 7, is called a global internal symmetry
of the Hilbert space sector #, ,, if

¢ ¢’
T(w) Ko V(w') g (5.13)

A local internal symmetry is said to be spontaneously broken in the Hilbert sector
H ., if there exists a (3) €A, such that T, ( )é%ﬂ(q, o

The next Theorem shows that to have a global symmetry it is enough to
check condition (5.13) on a single element of the sector. Consequently, if T, is
spontaneously broken, then 7;(22:)3%,%”(%@ for all elements (f;) belonging to
H,

@,y

Theorem 12. Let T, be a local internal symmetry induced by an affine transformation
and #, , a Hilbert sector. If for some (zl) €A, ) (i:) €Ay, then T, is a
global internal symmetry (of # . ).

Proof. The proof is an immediate consequence of the structure of g and of the
definition of Hilbert sector.

Now any Hilbert space sector of the form #,,, ,,= ((p) + Y carries an obvious
("
Hilbert structure (see Remark 4), i.e. that induced by the identification i:#,, ,,— ¥,

i ((p) = <¢ —q0>‘ Therefore, if T, is a global internal symmetry for 5, ,,, with

Y’ (I

g(z2)=Az+a and A"A= ] My, then the map U,:#,, ,,~>H , (:Z,) = (qo) +

Yy
12 (A(<P —®)

, is unitary.
Ay —w))

Appendix A

In this Appendix we state and prove an existence and uniqueness theorem for the
solution of an abstract integral equation of the type

u(t)=W(tyuy+ L(t)+ i W(t—s)f(s, u(s))ds (A1)
0

under suitable assumptions on W(t), L(t), and f(t, v). The proof, which is obtained
by a straightforward modification of Segal’s approach [7], is reproduced here for
the convenience of the reader
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Theorem A. Let B be a Banach space with norm ||-||. Suppose we are given

i) A strongly continuous one-parameter group (W(t)),cg (with W(0)=1) of linear
bounded operators on B.

ii) A map fe CO(R x B; B) such that, for any T,0>0, there exists a positive
constant (T, o) for which the inequality

supo << LS (6 W) =1t )| = AT, @) u—vll (A2)

holds for all u, ve B with ||u] <o, |[v]|Zoe.
iil) A continuous map

L:R-B
such that L(0)=0.

Furthermore we suppose that for any T>0 if ue C([0, T[; B) (resp.
ue C9(—T,0]; B) is a solution of the integral Equation (A.1) on the interval
[0, T'[(resp.]—T,0]) with ugeB, then there exists a sequence 0<t;TT (resp.
t;l —T) such that

sup,, [[u(t;)| <o . (A3)

Under these assumptions the integral Equation (A.1) has a unique solution
ue CO(R; B) for any initial data u,eB.

Proof. For obvious reasons it is enough to prove that Equation (A.1) has a unique
solution ue C°Y([0, + oo [; B) for any initial data uyeB. It is useful to recall that
as a consequence of hypothesis i), [11], there exist constants 4>1 and w >0 such
that

IW(ull < Ae*ul, teR, ueB. (A4)

Uniqueness is now obvious because if u,u,e C([0, T]; B), 0<T <00, are
solutions of Equation (A.1) with the same initial data, then

lu1(6) —u (1) = Ae®" AT, o) g lluy(s) —ux(s)llds, te [0, TT, (A.5)

where @=supo<,<7.x=1.2 lut)l, and therefore Gronwall’s lemma implies
u,()=u,(t), te[0, T].

To establish existence we first proceed to the construction of a perturbative
solution. Given T, ¢ >0 we define the space

E(T, o) = {ue C°([0, T1; B)|supo <, < ¢ [lu(t)[| =lulr <o} . (A.6)
Equipped with the distance d(u, v)=|u—vls, E(T, ) is a complete metric space.
We now show that for any uye B, |luy| <0/2A, there exists a T>0 (depending

only on ) such that Equation (A.1) has a (unique) solution ue E(T, 9). Consider the
operator

(Su)(t)y=W(t)uo+ L(t) + 3 W(t—s)f(s, u(s))ds, ue E(T, 0) . (A7)
4]
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The estimates

I(SuXe)l| < Ae [luol + I|L(2) || + Ae* t[supo <, <7 L/ (5, 0)l| + AT, @)e]
(A.8)

[1(Suy)(©) — (Su)t)| < Ae™ (T, @) g [y (5) —uz(s) | ds

imply the existence of a 0< T<T such that the operator § is a contraction on
E(T, o). By Banach’s theorem on contractions S has a unique fixed point which is
a solution of Equation (A.1).

To complete the proof of the Theorem we are going to show that any solution
ue CO([0, T[; B), 0< T <0, of Equation (A.1) can be continued beyond T. For
this purpose let us consider the integral equation

w(t)= W(t—t)u(t) + L(t) — W(t —t)L(t) + f W(t—s)f (s, u(s))dss (A9)

where te [, +oo[ and t can be any of the t/s of Inequality (A.3). If we can show
that Equation (A.9) has a continuous solution v on an interval [z, f+1] with ©
independent of ¢, then the function

ut), O0=<t<t

- - +1>T
u(t), t<t<t+z

o=
continues the solution beyond T. This follows from the equality

o0~ W00 + [ 509115 s |

=W(t—1) {u(?) —L(t)— ; W(t—s) f (s, u(s))ds — W(E)uo} =0.

The existence of a perturbative solution of Equation (A.9) proceeds exactly as
above. The crucial fact, that we can choose 7 independent of the ¢;s, is a
consequence of the estimate

IW(t—t)u(t) + L) — W(t =) L(7)|
< Ae® D sup, |lut)ll + 1L+ W (=) L)

and of the uniform continuity of the function (6, a)+ L(6 + o) — W(8)L(0) on the
compact subsets of R* x IR*.

Appendix B
To recognize that y(t) is L2-differentiable we first integrate Equation (2.17)

(Prx(t)) _ (P,xo) i (P,C(S) +Ppo

PO \PL AP,y(s)+P,h—P,V,F, (x, X@))) ds (B.1)

0
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and then apply the linear bounded operator (0 g)@ﬂ@. to (B.1)

1

0 0 t 0
(P,X(t))_ (P,x0> * g ( P.L(s)+ Pr%) ds . (B.2)

It is now clear that, letting r— o0, dy(t)/dt ={(t) + v,.
We now show that for any ge Y;, F, (x, o(x))e L'(IR’). Successive applications
of the mean value theorem and Holder inequality yield

[ 1F g%, 00X Ssupg < 5 < 1 IVF (X, 00(x)); Yol lles Yo (B.3)
Rs

which is obviously finite because F, e %(Y).
Finally we prove that the function

C(t)= j F,(x, x(t, x))dx (B.4)

is differentiable with
dC(t)/dt = {Lt) 4o, VF ,o(x, 2(1)) . (B.5)

It is convenient to start from the identity

Ae+A4)—At) j F,(x, x(t+ A4t, x)) = F, (x, x(t, x))
At e { At

_ Z (I’O (x (t ))Xj(t+At’ x)—Xj(tﬁ X)}dx
At
i > X)— xt, d
+ j Z1 6% (x, x(t, ))[XJ(H_At :2 1X) % 2t x)| dx

iy "f°(x 1, x» 1t =1+ L 41

RS j=1

Application of the mean value theorem yields

n=3 1%

j=1 RS

20 (x, x(t, x) + o(x(t + At, x)— (¢, x))

J

2 (x, x(t, x))} do A HALX) =y (%) 5
oz, At

and therefore I, -0, as 4t—0, since F, e %(Y),

X(t + At’ X) - X(t9 x)
At

; Yol <o0

SUP 411 <1
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and || x(t+ At, x)— x(t, x); Y; || 4 »o—0. A similar argument takes care of the term I,.
In conclusion
dQp)/dt= <dy(t)/dt, V.F ,(x, x(1))

which implies Equation (B.5) as a consequence of the explicit expression for
dy/dt.

Appendix C

Throughout the whole Appendix we will work in R' and suppose Ue%(X)
independent of the x variable. It is convenient to separate the case n=1 from the
case n> 1.

Theorem C.1 (n=1). If
i) YAeR the equation U(z)— =0 has at most a discrete set of solutions

ii) VAeR one has | |U(z)—A"?dz= [ |U(z)—A|'"*dz=+c0

for some z,€IR then any ¢ with ¢'e L*(R") and such that
U(p(x) — Me)e L'(R") (C1)
for some real constant M), has a finite limit as x— + 0.

Proof. Let us define

A(z)= [ |U(0)— Mo)|*'*do . (C2)
Then, the fundamental theorem of calculus and the Schwarz inequality yield

1/2|x

f (¢'(0)*ds

1/2

A(P(0)— Al < || [U(0(0) — Ae)ldo

which implies that A(¢(x)) has finite limits a,, a_ as x— + 00, — 0. The function
A(z) is strictly increasing since A'(z)=|U(z)— A(¢p)|*/* vanishes only on a discrete
set by condition i). Moreover, by condition ii), range of A=IR.

Consequently

p(x)=A4" 1(A((P(x))—x:_r;ﬁf1 “Yay).

Theorem C.2 (n>1). If

i) VAeR the equation min, -,|U(z,,...,z,)—Al=0 has at most a discrete
set of solutions g.

ii) VAR [ (min,,,_,|U(z,, ..., 2,)— A)"2dg = + 0.
0
Then, for any ¢ =(¢y, ..., p,) with ¢'e L*(R"), Vj and such that
U(@1(x), ... @,(x) = Mp)e L'(IRY) (C.1y

n 1/2
for some real constant @), |@(x)| _( Y oo 2) has a finite limit as x— + 0.
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Proof. With the definition

T

A()=[ Fle)g (C2)

0

where
F(o)=(min - ,|U(zy, ..., z,) — M@)) "/

the argument proceeds as in Theorem C.1.
The conditions on ¢ in Theorems C.1 and C.2 are satisfied if ¢;e L*(IR")Yj and

A

ou
@;(x)=g(¢1(x), R (pn(x))’jZL e N (C4)
J
In fact Equation (C.4) implies the existence of a constant A(¢) such that
U@y, .. @)= Me)=7 3, (@j(x)*e LY(RY).
j=1

Now, if U(gq,...,p, has a finite limit as x— +oo, then necessarily
lim,, ., U(@y(x), ..., (x))=A(e). This obviously happens if the ¢s have a
finite limit as x— +o00 or if |[p(x)| has a finite limit in the case U(z)=U(|z|). The
following example shows that additional assumptions on U, such as conditions
i) and ii) are necessary in order to guarantee that ¢ has a finite limit. If we have
U(z)=2¢ %1 —e %) for z=0, U=2z—32% for z<0, ¢(x)=In(1+ x?), then ¢"(x)=

(cfi—lzj) ((P(X)), (P/GLZ(IRI) but (/)(X)—) +0o0 as x— t+oo.

For n=1 examples of potentials U(z) satisfying conditions i) and ii) of Theorem
C.1 are the polynomials of degree >1, U(z)=cosz, U(z)=e*. For the cases
U(z)=(z>—1)?, U(z)=cos z, simple solutions ¢ of Equation (C.4) are the standard
soliton-solutions (see [1, 3]).
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