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Asymptotic Behavior of Solutions to Certain
Nonlinear Schrδdinger-Hartree Equations*

R. T. Glassey

Department of Mathematics, Indiana University, Bloomington, Indiana 47401, USA

Abstract. The asymptotic behavior of solutions to the Cauchy problem for the
equation

iψt = \Aψ — v(ψ)ψ, v = r~1*\ψ\2,

and for systems of similar form, is studied. It is shown that the norms

are integrable in time for any fixed R > 0, from which it follows that

Nevertheless, it is established that an L2-scattering theory is impossible.

Introduction

We consider classical solutions to the Cauchy problem for the equations

\ 3 , ί>0)

υ(ψ) = r-U\ψ\2= j \x-y\-'\ψ{y,t)\2dy (r = |x|)

and
N

idψj/dt=±ΔΨj-Σ(ψjVk-ΨkVjk) (/=U,...,IV) (2)
fc=l

where

Equations (1), (2) are Coulomb-free versions of the time-dependent Hartree and
Hartree-Fock equations. In [2] we have treated the existence question for
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Equations (1), (2) with coulomb terms present, and have shown that global solutions
exist with the quantity [for (2)]

Σ {llv/ί)lli + ll^/ί)lli}

remaining uniformly bounded. The notation here is

etc. A similar result is valid for solutions to (1).
In this paper we shall obtain the following results: Let ψ be a solution of (1) with

finite energy norm (as above). Then for every fixed R > 0 we have
CO

ί ί {\ψ\2+ \Vψ\2)dxdt <ao
0 \x\^R

from which we conclude that

lim J \ψ\2dx = 0.
t^co \χ\£R

For spherically symmetric solutions ψj of (2) with finite energy, the same results are
valid for each ψp 1 rgjrgiV. However, we also show that an L2-scattering theory for
non-trivial solutions of (1) is impossible. It is plausible that solutions to (1) do decay
uniformly to zero as ί->oo, but if so, the rate of decay cannot be fast enough to
insure the existence of asymptotic free states.

The desired estimates follow from an identity obtained essentially through
use of the multiplier dψ~/dr [for (1)]. The resulting estimate is the exact analogue of
Morawetz' estimate [5]. During the preparation of this work, the author learned
that this multiplier was found independently and, in fact, first, by Lin. In his thesis
[4], Lin studies the asymptotic behavior of solutions to equations of the form

iut = Δu — h(x)q(\u\2)u

and shows that

N 0 l l o o = 0 ( r 3 ' 2 ) as ί -oo

under certain conditions on h and q1. In addition, decay of the "local energy norm"
is established, and a scattering theory is developed.

The reason for the restriction to spherically symmetric solutions of (2) involves
the use of a radial derivative as a multiplier; this will be evident from the proof.

Although we dealt in [2] only with generalized solutions, it is easy to see that in
the absence of coulomb terms [i.e. for (1), (2)], solutions will be smooth if the data is.
By induction on k we can show that the norms Σ|α|<fc II Daψ\\ 2 a r e finite for all t ^ 0 .
For k ̂  2, this was done in [2]. For higher values of k, we write the potential υ [in the
case of Equation (1)] as

v=$\zΓ1\ψ(x-z,t)\2dz
R3

1 The restrictions involving h can be removed, e.g. h=l is admissible (private communication from

Prof. Walter Strauss)
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and take successively higher derivatives of \xp\2. The induction suceeds easily when
we take into account the inequality

ί \x-yΓ2\φ(y)\2dy^4 f \Vφ\2dx (φeC-(IR3))
IR 3

and apply GronwalΓs inequality.

I. Time Decay

We shall work first with Equations (2); the corresponding results for (1) can be
simply deduced from this. The system to be studied is

N

idψj/dt = {Δxp.- Σ (ψjvk~ Ψkvjk) (J = U 2, . , N) (2)
fc=l

for xeR 3 , t > 0. Smooth initial values ψj{x, 0) = ψj(x) are given, which belong, say, to

Here

vjk = \\x-y\-1\pjxp~dy, vk = ^x-y^^ψfdy

so that vjk~=υkj. From [2] we have that there is a constant M such that the energy
satisfies

for all ί^O.
Let ζ = ζ(r\ r = \x\, be a smooth bounded real-valued function. We obtain our

estimates from the following identity:

Lemma. Let ψj,j =1,2, ...,N, be solutions to (2) with finite energy. Then

~ ί I m Σ ί Cψj dψ-/drdx=- Σ j ζ'\dΨj/dr\2dx
a t j=1 j = 1

-ldψj/dr^dx-lπ £ ζ(0)|φ/0,ί)|2

+ Σ WψjWϊ^A'1 -ί'\A~2+ϊΔζ'^dx

+ Σ ϊ WHdvJd^-RexprxptdvjJdrdx (3)
k,j=l

We sketch the derivation of the lemma. We begin by multiplying each of
Equations (2) by ζdψ~/dr (the use of ζ is an idea from [8,9]). The real part of the
resulting expression is then summed over7 and integrated over IR3. The result can be
written as
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])~ dψ: dψj dψ~
where N 3

^3=-2 Σ Σ

We rewrite Iλ as

and integrate by parts in doing so we find that

t Σ ( j
7 = 1

The second term appearing here may be calculated by appealing to the Equation (2)
again. Integrating by parts several more times, we evaluate 7X as

d N

h=γf

lml Σ ζψj~8ψj/
aτ j =

+1 Σ
j,k=l

- έ ί Σ \Wj\

Again integrating by parts, we calculate I2 in a straightforward fashion and obtain

h=\ Σ mxΓ

Finally, since the matrix (vjk) is hermitean, I3 can be written as

/ 3 =-f Σ ΣCM-'xMdlψf/dxddx
k,j=l 1=1

N 3

+ R e ί Σ Σ CM " lχιvjΛψj -Xk)/δxιdx.
k,j=l I = 1

We integrate by parts once more and find that

W Σ iψf
k,j=ί

kj=ί

When we combine these expressions we obtain the lemma.
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Following [9] we now choose ζ as

Then C^O, C = — | ( r + l ) ~ 2 ^ 0 and a direct calculation shows that

We then have

Theorem 1. Let \ppj=\, ...,iV, be spherically symmetric solutions of (2) wίί/z
energy, and let R>0 be arbitrary. Then for each j=l,2, ...,N we have

i) f |ψ/0,ί) | 2 Λ<oo,

13

(4)

? J } j
0 \x\£R

iii) lim j \ψj\2dx = 0.

Proof Let T > 0 be arbitrary and integrate (3) over the interval [0, T\. We find that

7 = 1 V

]\(r+lΓ2\dΨj/dr\2dxdt
o

ί = 0

j = i o

7 = 1 0

T N

0 7 = 1

Γ iV

0

Let us denote by L the last term appearing here. If we could show that L^O, then,
since ψj and dψj/dr are bounded in L2(IR3), conclusions i) and ii) of the theorem
would follow immediately. To accomplish this, we recall that in the spherically
symmetric case the potentials υk, vjk are expressible as

vk = 4π\r 1$s2\y)k(s9t)\2ds + f s\ψk(s, t)\2ds
0 r

s, ήds .vjk

Hence

dvk

= 4π
0

we have

/dr = -4πr
r

Ί
0

ΨΛs,

s2\ψk

t)ds

(s,t)\

oc

r

2ds
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r

dvjk/δr = - 4πr " 2 J s2ψjψk~{s, ήds.
o

Thus the expression for L can be written as

Σjψf ΣJ/lwfds- Σ

Recall that £ ̂  0. Let J be the expression in the brackets above. We show that J ^ 0.
We have by the Schwarz inequality

j^Σ \ψj\2 Σ ]s2\ψk\
2ds

- Σ | φ Γ ( / ) (
j,fe=i \o / \o

Σ N 2 Σ ί
7 = 1 fc=l 0

Σ \ψk\
2\s2\Ψj\

2ds\
J, k = 1 0 /

j , fc=l

Hence L is nonnegative, which proves i) and ii).
It remains to establish iii). We put

= ί \V>M,t)\2dx.

From [2] we have the conservation law

$d\ψj\2/dt =
k=l

Σ
1=1

We sum this over j and integrate over |x |^ρ:

Σ (δ/δί)β,[ψ/ί)]=έlm Σ I ψ-δΨjldrdSx
j l 1 | |7 = 1

1 N

- J - I m Σ ί vndvnldrdSx.4π j t l = 1 w = ρ

The last expression vanishes identically since vj~=vlj. This relation is integrated
with respect to ρ over i^1 <ρ<R2, where i^ >0; we get

f = Im ψj\dψj/dr)dx.
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Next, we integrate this with respect to t over ίx ^ ί ^ τ , obtaining

Σ (ϊ Qρl
j=l\Ri

N τ

= Σ ImJ j ψ~{dψj(x,s)/dr)dxds.
7 = 1 ί! R 1 = | x | = J R 2

This is integrated once again with respect to τ over ^ gτgί. The result can be
written as

(ί-ίi) / Σ β β W ί i » = Σ ί ίQQίψjiτ)]dQdτ
Ri 7 = 1 7 = 1 ίi * i

— Im J (t — s) Σ J ψJ"{^Ψj{χ^ s)/dr)(x> s)dxds
ίi 7=1 ^ l ^ l ^ l ^ ^ i

which leads to the inequality

(ί-^K^-ΛjΣe^cv/ίi)]
7 = 1

^(*2-*i) ί Σ β Λ 2 [^ (τ)]dτ
ί i 7 = 1

+ έ Σ ί(ί-s) J (|φ/ + |3φyδr|2)dxώ.
7=1 ίi Λig|x|^Λ2

We now choose ίt = ί — 1 and apply ii) to conclude that iii) is valid.
We remark that the assumption of spherical symmetry was only needed to show

that the last term in the expression (3) was nonnegative (for ζ<0).
For the single Equation (1) no such assumption is necessary. In fact, in this case

we have the following identity:

Lemma. A solution ψ of finite energy of (1) satisfies the identity

- (d/dή Im J ζψψ'dx = - j ζ'\ψr\
2dx

| -\\Vψ\2- \ψr\
2)dx - 2πζ(0)|φ(0, Ol2

ηnVvfdx-μπΓ1 SiQxΓ1 -ζ')(dv/dr)2dx, (5)

for ζ as above.

Now again choose ζ < 0 as in (4). Since ζ '<0 and since by direct calculation

we conclude, as in ii) of Theorem 1, that for any R>0,
oo

j j 2 . (6)
0 \x\ί,R
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To bound the gradient of ψ9 we put ζ = — 1 in (5) and obtain

Thus by (6), J j \Vψ\2dxdt is finite. Hence we have
0 \x\£R

Theorem 2. Let ψ be a solution of (1) with finite energy. Then

i) J|v>(0,r)|2Λ<oo,

ii) j j [|φ

00

iii) j J |xΓ 1 ϋ Γ

2 dxΛ<oo,
0 R3

iv) l imβ Λ |>( ί ) ] = lim J |φ|2(ix = 0.

Of course, iii) is the direct analogue of Morawetz' estimate [5] (cf. also [6]).
Conclusion iii) seems to be very weak here. In fact, it is not difficult to show, by
considering the spherical means of v that iii) implies

0

which is a trivial result in view of ii), iv) above.

II. Nonexistence of Scattering

Consider again the equation

idψ/dt = Δψ — v{ψ)ψ (Γ)

where

v ( ψ ) = f \χ—y\~1 \ψ(y> t)\2dy

and where we have changed the coefficient of Aψ to unity for simplicity. We call a
solution ψ of (Γ) asymptotically free if there exists a free solution ψ+ (a solution of
the linear Schrόdinger equation) satisfying

We assume the solution ψ itself has data in L2 and that the free state ψ+ has data in
L1nL2.

Following [3], [7] we then have

Theorem 3. The only solution of (Γ) which is asymptotically free is ψ = 0.
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Proof. Suppose that ψ φ 0 is a solution of (Γ) which has an asymptotic free state ψ +.
We form the expression

H(t) = lm J ψιp+~dx

and calculate directly

H(ή = Ro j v(ψ)ιpψ+~dx

= j v(Ψ + )\ψ + \2dx + j \ψ + \2(v{ψ)-v{ψ + ))dx

+ Re j y; +~u(y;){ιp~ψ + )dx . (7)

Put

As is well-known, φ + satisfies the estimate

llv+(ί)IL=0(ί"3/2) a s

Hence we have, for ί ^ l , say,

where we have used a Sobolev-type inequality from [1] to estimate the L3-norm of
the expression v(ψ) — υ(ψ + ). Thus

\J1\ = o(Γ1) as ί->oo .

Similarly we have

l^ l l vMOII 2 αί 3 f \ψ+\1/3v(Ψ)\ψ-ψ+\dx

= o(t~1) as f->oo .

Hence from (7) we have

Hiή^lυiψ + yψ + fdx-oiΓ1) (8)

for all ί^ l , say. Now let fc>0 be arbitrary. Then

v(ψ + )=$\x-yΓ1\Ψ + (y,t)\2dy^ J | x - y Γ Ί v + ̂ 0 1 2 ^ .
|y|<kί

Hence for |x|<feί we certainly have
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It follows that

ίυ(ψ + )\ψ + \2dx^ J v
\x\<kt

^(2ktyΊ f \ψ + (xj)\2dx)2 .
\\x\<kt I

However, from [7] we have the result

lim J \xp + \2 dx= J \φ + ~(ξ)\2dξ
t^co \x\<kt \ξ\<k/2

where φ+ denotes the Fourier transform of the initial data φ+ oίψ + . Since ψ was
assumed nontrivial, there is some value of fc for which this limit does not vanish.
Then from (8) we have that there exists a positive constant c0 such that

for all sufficiently large t. Since the left-hand side here is integrable in time, we have a
contradiction, which proves the theorem.

We remark finally that for solutions of Equation (2), a simple corresponding
theorem does not seem to be readily available. This is due to the fact that the
dominant term in the proof of Theorem 3 vanishes identically in equations (2), i.e.
when k =j in Equation (2), the resulting nonlinear term disappears.
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